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Abstract— Consider the following setup: Through a joint
design, multiple observations of a remote data source shall
be locally compressed before getting transmitted via several
error-prone, rate-limited forward links to a (distant) processing
unit. For addressing this specific instance of multiterminal Joint
Source-Channel Coding problem, in this article, the founda-
tional principle of the Information Bottleneck method is fully
extended to obtain purely statistical design approaches, enjoying
the Mutual Information as their fidelity criterion. Specifically,
the forms of stationary points for two types of distributed
compression schemes are characterized here. Subsequently, those
acquired solutions are utilized as the centerpiece of the pro-
posed generic, iterative algorithm, termed the Multiterminal
Forward-Aware Vector Information Bottleneck (M-FAVIB), for
addressing the design optimizations. Leveraging an unfolding
trick, it will be proven that both distributed compression schemes
fall into the category of Successive Upper-Bound Minimization,
ensuring their convergence to a stationary point. Eventually,
the effectiveness of the proposed compression schemes will be
substantiated as well by means of numerical investigations over
some typical transmission scenarios.

Index Terms— CEO problem setup, distributed quantization,
information bottleneck, mutual information, noisy channels.

I. INTRODUCTION

THE Information Bottleneck (IB) method was introduced
in [1] as a task-based compression technique, and its ini-

tial applications are traced back to the context of Unsupervised
Learning, where it was utilized as an information-theoretic
approach towards Cluster Analysis [2]. To put it briefly, its
main idea is to extract a relevant summary of data by bringing
a statistically correlated variable into play that determines
the meaning of relevance. The data set is then summarized
in such a fashion that its information content w.r.t. that
target variable is mostly retained. The inevitable trade-off
between the informativity and compactness of the obtained
result is established by employing two Mutual Information
(MI) terms for gauging each aspect. Interested readers are
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referred to [3]–[6] to gain further insights into this Variational
Principle. Particularly, [5] provides an exhaustive discussion
on the information-theoretic and learning features of the IB
method and points out relevant connections to some classical
problems like the Wyner-Ahlswede-Körner problem [7], [8],
the efficiency of investment information [9], and also the
Wyner-Ziv setup [10] under the Common Reconstruction (CR)
constraint [11] with the logarithmic-loss distortion [12].

The underlying setup of the IB method can be immediately
exploited to address the problem of Noisy Source Coding
(NSC) [13]–[16]. Specifically, utilizing the IB paradigm to
compress an imperfect observation from a remote data source
yields a purely statistical design approach. Besides, a certain
instance of this framework tackles the problem of designing
such quantizers that maximize the end-to-end transmission
rate for a fixed source statistics, a criterion that is highly
requested in all modern transmission systems. The footprints
of the IB method are already traceable in various fields of
advanced data communication schemes. Those applications
encompass the design of receiver front ends’ Analog-to-Digital
converters [17], polar codes construction [18], and efficient
discrete decoding concepts [19], [20] with excellent perfor-
mance, to mention a few.

The multiterminal extensions of the original IB method
have been considered as well (see, e.g., [21]–[27]). The
underlying scenario for such distributed schemes usually sets
about dealing with several noisy observations from a (set of)
remote source signal(s) that have to be compressed (with
possibly different rates) following specific strategies such
that, collectively, the retrieved signals after decompression
preserve as much information as possible about the (set
of) source signal(s). In practice, it occurs rather frequently
that the compressed signals at the quantizers’ outputs have
to be transmitted over second error-prone hops to be fed
into a (distant) processing unit. Several instances for such
scenarios incorporate the distributed inference sensor networks
with imperfect connections to the fusion center [28], [29],
the Cloud-based Radio Access Networks (Cloud-RANs) with
noisy fronthaul links [30], [31], the cooperative relaying
setups with the Quantize-and-Forward strategy [32], [33]
and also devices with unreliable memories [34], [35]. The
aforementioned assorted applications can be subsumed under
a more general framework, the Joint Source-Channel Coding
(JSCC) [36], [37], wherein the impacts of the imperfect
forwarding of the quantizers’ outputs are taken into account
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Fig. 1. The considered system model for uniterminal Joint Source-Channel Coding. Access and forward channels are assumed to be discrete and memoryless.

within the quantization design formulation. A closer look at
the pertinent literature on this topic reveals some general
approaches: Among others, several techniques have been pro-
posed for judicious assignments of some binary codewords
to the quantizers’ output signals [38], [39] or, concentrating
on the squared-error distortion, specific modifications have
been suggested [40], [41] for adapting the conventional Lloyd
algorithm [42] to the JSCC setup. Furthermore, in [28], [43],
[44], as the fidelity criterion, the MI has been considered
to acquire quantization schemes, maximizing the end-to-end
transmission rate. An extensive review of different approaches
has been provided in [45], [46]. Also, [47], [48] survey some
distributed JSCC schemes over independent, multiple access,
and broadcast channels.

Contributions: The full-format extension of the original
IB method for NSC to uniterminal JSCC has been developed
in [49], where an iterative algorithm, termed Forward-Aware
Vector Information Bottleneck (FAVIB) has been proposed to
tackle the underlying non-convex design problem. Herein,
we concentrate on a particular instance of the multiterminal
JSCC problem in which several observations from a given data
source shall be compressed locally before getting transmitted
over multiple noisy forward links to a (distant) processing
unit. This can be reckoned as a straightforward extension of
the well-known Chief Executive Officer (CEO) problem setup
[50], in which the communications between the deployed
agents and the CEO happen over several error-prone channels.
As one tangible example out of many practical applications of
such a distributed setup, one can think of achieving a highly
reliable wireless transmission scheme by leveraging the spatial
diversity obtained by the joint processing of the incoming
signals from a densely employed network of radio access
points with the overlapping coverage areas. Pursuing the IB
philosophy, then we introduce the parallel and successive
compression schemes, both enjoying a joint design of local
quantizers and utilizing specific MI terms to quantify the
informativity and compactness of their resultant outcomes.
Subsequently, with a similar argument to [49], we characterize
the form of stationary solutions regarding the considered
distributed compression problems. Particularly, we find the
stationary points obtained by the Lagrangian relaxation of
the constrained optimization modeling of such problems.
Thereupon, we propose a generic algorithm, the Multitermi-
nal FAVIB (M-FAVIB), that leverages the derived stationary
points to address both design optimizations. Applying an
unfolding trick, we also prove that both schemes fall into
the Successive Upper-Bound Minimization (SUM) framework
[51], ensuring that they converge to a stationary point. In a
variety of practical occasions, the proposed methods become
crucial, i.a., in applications where the separate employment
of the iterative, modern error-correcting techniques on the
noisy forward links will be prohibited by stringent latency
constraints, or when dealing with the hardware imperfections

in which the separate utilization of those techniques results in
a substantial overhead regarding the energy efficiency, giving
rise to a plain waste of resources since they are utilized merely
to take precautions against worst-case situations [35]. Further,
it should be mentioned that from a sheer theoretical viewpoint,
since Shannon’s source and channel separation’s optimality
[52] does not hold in general [53], e.g., when working in
a non-asymptotic blocklength regime, devising such JSCC
schemes becomes relevant.

Outline: The uniterminal IB-based JSCC will be briefly
discussed in Section II as a prelude to the multiterminal
extensions. In Section III, a specific distributed setup that
frequently appears in a diversity of applications is consid-
ered, and, over that, the parallel and successive compression
schemes are introduced. Subsequently, the stationary points
are characterized for both cases, and, in Section IV, a generic
algorithm, the M-FAVIB, is presented to address the design
optimizations together with the convergence proofs to the
stationary points. The effectiveness of the devised compression
schemes is corroborated in Section V by means of numerical
investigations over typical transmission setups. Finally, a bare
concise wrap-up is given in Section VI. The proofs have been
relegated to the Appendix.

Notation: The discrete random variable, a, with the proba-
bility mass function, p(a), takes particular realizations, a, from
its domain, A. The same also applies to the random vector,
a1:J = [a1, · · · , aJ ] with boldface counterparts. a-j

1:J excludes
aj from a1:J . H(·), DKL(·‖·), I(·; ·) and D{·,·}

JS (·‖·) stand for
Shannon’s entropy, the Kullback-Leibler (KL) divergence [54],
the MI, and the Jensen-Shannon (JS) divergence [3].

II. IB-BASED JSCC: A BRIEF OVERVIEW OF THE

UNITERMINAL CASE

In [49], the Noisy Source Coding (NSC) scenario of the
Information Bottleneck (IB) method [1] has been extended to
the Joint Source-Channel Coding (JSCC) setup for quanti-
zation of a single noisy observation (scalar/vector-valued).1

For that, the illustrated system model in Fig. 1 has been
considered. A data source, x, is observed via a discrete memo-
ryless (access) channel with the transition probabilities, p(y|x).
The observation, y, is then compressed into the signal, z, ahead
of transmission over another discrete, memoryless (forward)
channel with the transition probabilities, p(t|z), to a (distant)
processing unit. To formulate the quantizer design problem
for this setup and fully aligned with the fundamental principle
of the IB paradigm, two Mutual Information (MI) terms are
employed. On the one hand, the relevant information, I(x; t),
which is the MI between the source, x, and the forward channel

1Although the entire study in this article can be directly applied to the Vector
Quantization (VQ) case as already presented and discussed in [49], solely for
the sake of simplicity, we will stick to the scalar-valued setup in the upcoming
descriptions.
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Fig. 2. Considered system model for multiterminal Joint Source-Channel Coding. All access and forward channels are assumed to be discrete and memoryless.

output signal, t, is considered as the natural choice for gauging
the informativity of the resultant outcome. On the other hand,
the MI between the input and output of the compression unit,
I(y; z), called the compression rate, is chosen as the term that
quantifies its compactness. Lower values of I(y; z) indicate
higher compression and vice versa. The quantizer design
problem is then formulated by establishing a fundamental
trade-off between both aspects. The goal is to derive the
conditional distribution, p∗(z|y), for which it applies

p∗(z|y) = argmax
p(z|y): I(y;z)≤R

I(x; t), (1)

with 0 ≤ R ≤ log2 |Z| bits, stipulating an upper-bound on
the compression rate. By employing the method of Lagrange
Multipliers (LM), one can reformulate the design problem
(1) as an unconstrained optimization (up to the pertinent
mapping’s validity)

p∗(z|y) = argmax
p(z|y)

I(x; t)− λI(y; z), (2)

with λ ≥ 0, denoting the counterpart relaxation of the upper-
bound, R, in (1). Utilizing Variational Calculus, it has been
shown in [49] that for stationary points of the objective
functional in (2), it holds (for each pair (y, z) ∈ Y × Z)

p(z|y) =
p(z)
ψ(y, β)

exp
(
−β

∑
t∈T

p(t|z)DKL
(
p(x|y)‖p(x|t)

))
, (3)

with β = 1
λ and ψ(y, β), being a normalization function,

ensuring the resultant mapping’s validity. Further, an iterative
routine, termed Forward-Aware Vector Information Bottleneck
(FAVIB), has been proposed in [49] that, indeed, carries out
the Fixed-Point Iteration method on (3). The convergence of
FAVIB to a local optimum of its objective functional has been
proven as well, and it has been shown that this compression
scheme enjoys inherent error-protection, capable of obviating
the need for channel coding on the noisy forward link.

III. IB-BASED JSCC: PARALLEL & SUCCESSIVE

MULTITERMINAL EXTENSIONS

We consider the illustrated system model in Fig. 2 for
multiterminal extensions of the uniterminal JSCC setup.
Explicitly, a data source, x, is observed independently via
J discrete, memoryless (access) channels. The outputs of
these channels have to be locally compressed (yet follow-
ing a joint design) and then transmitted over J discrete,
memoryless (forward) links to a (distant) processing unit

that should figure out the source signal, x. Analogous to the
uniterminal scenario, we presume that the source distribution,
p(x), the access channels’ transition probabilities, p(yj |x), and
the forward channels’ statistics, p(tj |zj), are available for
all branches. We presume that the Markovian independence
relation x↔ yj ↔ zj ↔ tj applies per branch, j, and the
counterpart signals of every two distinct branches are con-
ditionally independent given the source signal, x.

To formulate the design problem(s) through an analogous
approach to the original IB framework, one should specify
the responsible terms regarding both the informativity and
compactness of the resultant outcomes. In this work, we nat-
urally choose the end-to-end transmission rate, I(x; t1:J),
as the term gauging the information preservation. In contrast,
there is no natural, unique choice for the other side of
the trade-off, and, indeed, different meaningful expressions
can be applied. Herein, we consider two distinct constraint
sets for stipulating the compactness of outcomes (extending
the raised ideas in [31]). Then, for each specific choice,
we characterize the form of stationary points regarding all
the individual quantizer mappings. Those solutions will be
utilized as the backbone of the proposed M-FAVIB algorithm
to address both design optimizations for this multiterminal
IB-based JSCC setup. We also provide the convergence proofs
to the stationary points of the objective functionals.

A. Parallel Retrieval: Compression Without Side-Information

As the first choice of the imposed constraint set, we consider
the case where individual branches are subject to differ-
ent rate limitations, and from a compression’s perspective,
no side-information will be utilized when treating each partic-
ular observation, yj , allowing for the pure parallel processing
across branches. This fully discrete scenario has been analyzed
in [25] for an identical setup to the one depicted in Fig. 2 with
the major difference of presuming ideal (rate-limited) forward
links. There, for characterizing the form of stationary points
and tackling the design problem, the Multivariate Information
Bottleneck (MIB) [21] framework was aptly tailored to the
considered scenario. The conducted derivations here extend
the provided results in [25] to this parallel IB-based JSCC
setup. The design problem is then formulated as looking for
the optimal set, P ∗ = {p∗(z1|y1), · · · , p∗(zJ |yJ)}, where

P ∗ = argmax
P :∀j I(yj ;zj)≤Rj

I(x; t1:J ), (4)
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Fig. 3. An illustrative example of parallel retrieval: Independent processing flow across branches from the codeword, zj , to the retrieved one, tj . Mappers
are located in the compression units and demappers in the (remote) processing unit.

with 0 ≤ Rj ≤ log2 |Zj | bits, setting an upper-bound on
the j-th compression rate, I(yj ; zj).2 Employing the LM
method, the design problem (4) can be reformulated as an
unconstrained optimization (up to the pertinent mappings’
validity)

P ∗ = argmax
P

I(x; t1:J)−
J∑
j=1

λjI(yj ; zj), (5)

with λj ≥ 0, denoting the counterpart relaxation of the upper-
bound, Rj , in (4). Aligned with the performed analysis in
[1], the following theorem characterizes the form of stationary
points3 of the objective functional in (5).

Theorem 1 (Parallel IB-based JSCC): Assume the joint
distribution, p(x, y1:J) = p(x)

∏
j p(yj |x), the forward chan-

nels’ statistics, p(tj |zj), and λj are available for all j = 1 toJ .
The set of local quantizers, {p(zj |yj) |j}, is a stationary point
of the parallel IB-based JSCC Lagrangian

LPar. = I(x; t1:J)−
J∑
j=1

λjI(yj ; zj), (6)

if and only if for each pair (yj , zj) ∈ Yj × Zj

p(zj|yj) =
p(zj)

ψPar.
zj

(yj , βj)
exp

(
− dPar.(yj , zj)

)
, (7)

with ψPar.
zj

(yj , βj), being a partition (normalization) function,
ensuring the pertinent quantizer mapping’s validity, and for
the relevant distortion, dPar.(yj , zj), it holds

dPar.(yj , zj) = βj
∑
z-j
1:J

p(z-j
1:J |yj)

∑
t1:J

p(t1:J |z1:J)

×DKL
(
p(x|yj , z-j

1:J)‖p(x|t1:J)
)
, (8)

with βj = 1
λj

and p(t1:J |z1:J ) =
J∏
j=1

p(tj |zj), resulting from

presumed Markov properties.
The proof has been presented in Appendix A.
The provided solution in Theorem 1 incorporates the ideal

forwarding scenario as a specific instance. Explicitly, for
the case in which the forward channels are presumed to

2Aside from one-shot formulations, the (asymptotic) coding problems of
Section III call for a formal multi-letter description.

3Note that, with the presumption of smoothness, all internal local extrema
are stationary points as well. Thus, from this perspective, the derived forms
can be regarded as necessary conditions for local optimality.

be rate-limited but error-free, the design problem is then to
maximize the overall transmission rate that now gets reduced
to I(x; z1:J), under the same set of constraints on individual
compression rates. Through substituting, p(tj |zj) = δtj ,zj , for
each pair, (zj , tj) ∈ Zj × Tj (with Kronecker Delta denota-
tion4), the acquired relevant distortion in (8) boils down to

dide.Par. (yj , zj) = βj
∑
z-j
1:J

p(z-j
1:J |yj)

×DKL
(
p(x|yj , z-j

1:J)‖p(x|z1:J)
)
, (9)

which is identical to the one provided in [25]. This verifies
the Backward Compatibility of our deduced solution for
this (parallel) IB-based JSCC problem to its NSC counterpart.

Coding Perspective: To acquire a crisp image about possi-
ble applications of this setup, one can consider a conventional
coding scenario. For that, as depicted in Fig. 3, the processing
flow from the compressed signal, zj , up to the retrieved one,
tj , is presumed to be realized independently across branches.
Each mapper allocates a bit-tuple, z̃j , to the codeword, zj ,
and, conversely, each demapper retrieves a codeword, tj , from
the received bit-tuple, t̃j at the output of a Binary Symmetric
Channel (BSC).5 Contrary to the case of ideal forwarding,
it must be noted that, here, the apposite choice of bit-tuple
mappings (applied in the compression units) becomes relevant
in terms of the end-to-end information preservation. The
respective demappings will be performed independently across
branches in the (remote) processing unit.

B. Successive Retrieval: Compression With Side-Information

As the second choice regarding the imposed set of con-
straints, again we consider the case where individual branches
are subject to different rate limitations but here, contrary
to the previous setup, from a compression’s perspective,
the side-information is exploited when treating the obser-
vation, yj . The principal idea behind this scheme is fully
aligned with the well-known Wyner-Ziv setup [10] for source
coding in which a statistically correlated signal is utilized as
side-information at the decoder. With the major difference
of presuming ideal (rate-limited) forward channels, in [27],

4The two arguments on its subscript differentiate this denotation from the
one that is used for functional derivatives.

5Note that the choice of forward channel is arbitrary, and the BSC has been
taken here just as an exemplary error-prone channel.
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Fig. 4. An illustrative example of successive retrieval: Interconnected processing flow across branches from the codeword, zπ(j), to the retrieved one, tπ(j) ,
in line with the well-known principle of “binning & detection” (see, e.g., [55]).

a completely discrete scenario has been analyzed for an
identical setup to the one illustrated in Fig. 2. There, to address
the design problem, the proposed algorithm in [24] for the
Distributed Information Bottleneck (DIB) has been generalized
to allow for various rate constraints across branches. The
conducted derivations here extend the provided results in [27]
to this successive IB-based JSCC setup. The design problem
is then formulated as looking for the optimal set, P ∗ =
{p∗(z1|y1), · · · , p∗(zJ |yJ )}, where

P ∗ = argmax
P :∀j I(yj ;zj |t1:j−1)≤Rj

I(x; t1:J), (10)

with 0 ≤ Rj ≤ log2 |Zj | bits, stipulating an upper-bound on
the j-th conditional compression rate, I(yj ; zj |t1:j−1). Here
as well, by employing the LM method, the design problem
(10) can be restated as an unconstrained optimization (up to
the pertinent mappings’ validity)

P ∗ = argmax
P

I(x; t1:J)−
J∑
j=1

λjI(yj ; zj |t1:j−1), (11)

with λj ≥ 0, being associated with the upper-bound, Rj ,
in (10). Aligned with the performed analysis in [1], the fol-
lowing theorem characterizes the form of stationary points of
the objective functional in (11).

Theorem 2 (Successive IB-based JSCC): Assume the joint
distribution p(x, y1:J) = p(x)

∏
j p(yj |x), the forward chan-

nels’ statistics, p(tj |zj), and λj are available for all j = 1 toJ .
The set of local quantizers, {p(zj |yj) |j}, is a stationary point
of the successive IB-based JSCC Lagrangian

LSuc. = I(x; t1:J)−
J∑
j=1

λjI(yj ; zj |t1:j−1), (12)

if and only if for each pair (yj , zj) ∈ Yj × Zj

p(zj |yj) =
p(zj)

ψSuc.
zj

(yj , βj)
exp

(
− dSuc.(yj , zj)

)
, (13)

with ψSuc.
zj

(yj , βj), being a partition (normalization) function,
ensuring the pertinent quantizer mapping’s validity, and for
the relevant distortion, dSuc.(yj , zj), it holds

dSuc.(yj , zj)

= βj
∑
z-j
1:J

p(z-j
1:J |yj)

∑
t1:J

p(t1:J |z1:J)

×DKL
(
p(x|yj , z-j

1:J )‖p(x|t1:J )
)

−
∑

t1:j−1

p(t1:j−1|yj) log p(t1:j−1|zj)− βj
J∑

n=j+1

1
βn

×
∑

t1:n−1,zn

p(tj |zj)p(t-j
1:n−1, zn|yj) log p(zn|t1:n−1), (14)

with βj = 1
λj

and p(t1:J |z1:J ) =
J∏
j=1

p(tj |zj), resulting from

presumed Markov properties.
The proof has been presented in Appendix B.
A closer look at the obtained relevant distortion in (14)

reveals that, basically, it extends the derived solution in (8)
for the case of parallel retrieval by two extra terms appearing
due to the consideration of side-information for the compres-
sion rates of individual branches. In the upcoming section,
the present common structure in the obtained results for both
parallel and successive compression schemes will be leveraged
for devising a generic algorithm, the M-FAVIB, to address the
respective design optimizations.

The ideal forwarding scenario is encompassed as a specific
instance in the derived solution in Theorem 2. Explicitly,
in the case where the forward channels are presumed to be
rate-limited but error-free, the design problem would be to
maximize the overall transmission rate that now gets reduced
to I(x; z1:J ), under the adapted set of constraints on individual
conditional compression rates, i.e., for the j-th branch it must
apply I(yj ; zj |z1:j−1) ≤ Rj . By substituting, p(tj |zj) =
δtj ,zj , for each pair (zj , tj) ∈ Zj ×Tj (with Kronecker Delta
denotation), the calculated relevant distortion in (14) boils
down to

dide.Suc. (yj , zj)

= βj
∑
z-j
1:J

p(z-j
1:J |yj)DKL

(
p(x|yj , z-j

1:J )‖p(x|z1:J)
)

−
∑

z1:j−1

p(z1:j−1|yj) log p(z1:j−1|zj)

−βj
J∑

n=j+1

1
βn

∑
z-j
1:n

p(z-j
1:n|yj) log p(zn|z1:n−1), (15)

which is the same as the one provided in [27]. This con-
firms the Backward Compatibility of our deduced solution
for this (successive) IB-based JSCC problem to its NSC
counterpart.
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Coding Perspective: As a tangible example of possible
applications for this setup, one can consider a conventional
coding scenario. Denoting by π(·) a specific demapping order,
as illustrated in Fig. 4, the processing flow from the com-
pressed signal, zπ(j), up to the retrieved one, tπ(j), is presumed
to be realized in an interconnected fashion across branches.
Therefore, the major difference compared to the previous
setup is that the demappings are performed in a sequential
manner across branches such that the already retrieved signals,
tπ(1):π(j−1), can be utilized as an available side-information
when applying the pertinent demapping to retrieve tπ(j), since
all demapper blocks are located in the (remote) processing
unit.6 In this fashion, contrary to the parallel setup, the present
correlation between the signals of different branches will be
leveraged as well.

IV. A GENERIC DESIGN METHOD

A. Proposed Algorithmic Approach

In this section, we develop a generic, iterative algorithm to
tackle both distributed compression design problems. To that
end, it has to be noted that irrespective of the chosen com-
pression scheme, the derived stationary solution for every pair
(yj , zj) ∈ Yj × Zj of each individual quantizer mapping has
the following implicit form

p(zj|yj) =
p(zj)

ψrzj
(yj , βj)

exp
(
− dr(yj , zj)

)
, (16)

with r ∈ {Par., Suc.}.7 The right side of (16) can be
interpreted as a functional featuring all the individual quan-
tizer mappings, {p(zj |yj) |j}, as its input arguments since
they come into play when calculating the relevant distortion,
dr(yj , zj). This indicates that (16) can be viewed as (with Fj
denoting a specific functional)

p(zj |yj) = Fj
(
p(z1|y1), · · · , p(zJ |yJ )

)
, (17)

for the j-th branch. Going through all branches then yields
a non-linear system that extends the structure of Multivariate
Fixed-Point systems [56] to the field of functionals wherein
the functions of multiple variables are substituted by the
functionals of multiple mappings. Hence, the conventional
iterative procedures can be applied for solving the obtained
system as well. Herein, we propose an iterative procedure with
the synchronous updating rule in line with the standard Jacobi
method for solving linear systems [56].

The proposed algorithm, termed Multiterminal Forward-
Aware Vector IB (M-FAVIB), with the pseudo-code presented
in Alg. 1 proceeds as follows: Commencing with a set of
random (yet valid) mappings, {p(0)(zj |yj) |j}, for each pair,
(yj , zj) ∈ Yj ×Zj , the updates are executed (till convergence

6It shall be mentioned that, generally, the processing order, π(·), affects the
obtainable performance. Thus, it is subject to optimization. Herein, for the
sake of simplicity, we presume that the optimal ordering is set by π(j) = j.

7Note that the form of the solution was to be expected since the problem
characterization and the solving technique here are the same as the original
IB method [1], but for a more complex setting.

Alg. 1 Multiterminal Forward-Aware Vector IB (M-FAVIB)

Input: p(x, y1:J), βj > 0, p(t1:J |z1:J), conv. parameter ε > 0
Output: A (soft) partition zj of Yj into (at most) |Zj | clusters
Initialization: i = 0, random mappings {p(0)(zj |yj) |j}

while True do
for j = 1 : J do
• p(i)(zj)←

∑
yj

p(i)(zj |yj)p(yj) ∀zj ∈ Zj
• find the i-th update for distributions in dr(yj , zj) from

p(i)(x, y1:J , z1:J , t1:J) = p(x, y1:J)
J∏
�=1

p(i)(z�|y�)
× p(t1:J |z1:J)
• p(i+1)(zj |yj)← p(i)(zj)

ψ
r (i+1)
zj

(yj ,βj)
exp

(
− d(i)

r (yj , zj)
)

end for
if ∀j, ∀yj : D{ 1

2 ,
1
2}

JS

(
p(i+1)(zj |yj)‖p(i)(zj |yj)

)
≤ ε then

Break
else
i← i+ 1

end if
end while

by ε	 1) through8

p(i+1)(zj |yj) =
p(i)(zj)

ψ
r (i+1)
zj (yj , βj)

exp
(
− d(i)

r (yj , zj)
)
, (18)

with, i, representing the iteration counter. The quantizer output
probability, p(i)(zj), and the relevant distortion, d(i)

r (yj , zj),
in (18) are calculated through exerting the current versions of
all the individual quantizer mappings, {p(i)(zj |yj) |j}, to mar-
ginalize the joint distribution, p(i)(x, y1:J , z1:J , t1:J). The
updates are performed synchronously, i.e., at iteration i + 1,
all the individual quantizer mappings of different branches,
{p(i+1)(zj |yj) |j}, will be updated based on the previous
configuration of the same set, i.e., {p(i)(zj |yj) |j}. In the
following part, it will be proven that irrespective of the chosen
compression scheme (i.e., parallel or successive retrieval),
the M-FAVIB algorithm converges to a stationary point of the
objective functional. Hence, as a commonly used workaround
for avoiding poor results, the aforementioned procedure can be
repeated with different starting points, {p(0)(zj |yj) |j}, with
the aim of retaining the best outcome. It should be reminded
that, as its name suggests, the M-FAVIB algorithm is directly
applicable to the case of Vector Quantization (VQ), following
the same line of argumentation that already has been provided
in [49] for its uniterminal counterpart.

B. Proof of Convergence

In this part, it will be shown that the design optimizations for
parallel and successive schemes can be addressed by an alter-
nating minimization w.r.t. the set of all quantizer mappings, P ,
and another set of apposite auxiliary probability distributions,
Q, by introducing a tight variational upper-bound, F̄r(P,Q),

8Per iteration, for every realization, yj ∈ Yj , of the access channel output
the sum of calculated terms in (18) (by ignoring ψr

zj
) over all output bins,

zj ∈ Zj , acts as the normalization (partition) function, ψr
zj

(yj , βj), to ensure
�

zj∈Zj

p(zj |yj) = 1.
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on the respective objective functional,Fr(P ). The focal update
step of M-FAVIB can then be interpreted as merging together
the updates of P and Q. Through this unfolding trick, one
principally shows that M-FAVIB falls into the category of
Successive Upper-Bound Minimization (SUM)9 [51], ensuring
that it converges to a stationary point. Similar approaches have
been presented in [24] and [26] for convergence proof of their
proposed algorithms.

Parallel Retrieval: The design optimization in (5) can be
reformulated as minimizing the functional

FPar.(P ) = H(x)− LPar. =
J∑
j=1

λjI(yj ; zj) +H(x|t1:J), (19)

over P . By defining Q = {q(x|t1:J)} and the functional

F̄Par.(P,Q) =
J∑
j=1

λjI(yj ; zj)− E x,t1:J{log q(x|t1:J)}, (20)

the following Lemmas hold:

Lemma 1: It applies

min
P
FPar.(P ) = min

P
min
Q
F̄Par.(P,Q). (21)

Proof: For the difference of F̄Par.(P,Q) and FPar.(P ),
it holds

F̄Par.(P,Q)−FPar.(P ) =
∑
t1:J

p(t1:J)

×DKL
(
p(x|t1:J)‖q(x|t1:J)

)
≥ 0, (22)

where the equality holds iff q(x|t1:J ) = p(x|t1:J).
Lemma 2: F̄Par.(P,Q) is separately convex in P and Q.
Proof: It follows directly from the application of log-sum

inequality [54].
Lemma 3: For a fixed P , there exists a unique Q that

minimizes F̄Par.(P,Q), given by

q∗(x|t1:J) = p(x|t1:J), (23)

where p(x|t1:J) is calculated from P .
Proof: It follows directly from the proof of Lemma 1.
Lemma 4: For a fixed Q, there exists a P that minimizes
F̄Par.(P,Q), given by

p∗(zj |yj) =
p(zj)

ψ̄Par.
zj

(yj, βj)
exp

(
− d̄Par.(yj , zj)

)

∀(yj , zj) ∈ Yj ×Zj , (24)

with ψ̄Par.
zj

(yj , βj), being a partition function, ensuring the per-
tinent quantizer mapping’s validity and the relevant distortion,
d̄Par.(yj , zj), is calculated by

d̄Par.(yj , zj) = βj
∑
z-j
1:J

p(z-j
1:J |yj)

∑
t1:J

p(t1:J |z1:J)

×DKL
(
p(x|yj , z-j

1:J)‖q(x|t1:J )
)
. (25)

9The principal idea of the SUM is to optimize a sequence of approximate
objective function(al)s (satisfying certain mild assumptions [51]), rather than
directly optimizing the original non-convex and/or non-smooth objective
function(al).

Proof: It follows from the same line of reasoning as in the
proof of Theorem 1, noting that

δ
(
E x,t1:J{log q(x|t1:J)}

)
δp(zj |yj)

= p(yj)
∑
z-j
1:J

p(z-j
1:J |yj)

×
∑
t1:J

p(t1:J |z1:J )
∑
x

p(x|yj , z-j
1:J ) log q(x|t1:J). (26)

Merging together the optimal results for Q and P from the
last two Lemmas, one directly obtains the focal update step
(7)-(8) of M-FAVIB regarding any of the involved quantizer
mappings. Consequently, it is ensured by [51, Thm 1] that the
M-FAVIB will converge to a stationary point of the objective
functional as F̄Par.(P,Q) and FPar.(P ) satisfy [51, Prop. 1].

Successive Retrieval: The design optimization in (11) can
be reformulated as minimizing the functional

FSuc.(P ) = H(x)− LSuc. =
J∑
j=1

λjI(yj ; zj)

−
J∑
j=2

λjI(zj ; t1:j−1) +H(x|t1:J), (27)

over P . Defining the set of auxiliary probability distributions
Q = {q(z2|t1), · · · , q(zJ |t1:J−1), q(x|t1:J)} and the func-
tional

F̄Suc.(P,Q) =
J∑
j=1

λjI(yj ; zj)−
J∑
j=2

λj

×Ezj ,t1:j−1{log
q(zj |t1:j−1)

p(zj)
} − Ex,t1:J {log q(x|t1:J )}, (28)

the following Lemmas hold:
Lemma 5: It applies

min
P
FSuc.(P ) = min

P
min
Q
F̄Suc.(P,Q). (29)

Proof: For the difference of F̄Suc.(P,Q) and FSuc.(P ),
it holds

F̄Suc.(P,Q)−FSuc.(P )

=
∑
t1:J

p(t1:J)DKL
(
p(x|t1:J)‖q(x|t1:J)

)

+
J∑
j=2

λj
∑

t1:j−1

p(t1:j−1)

×DKL
(
p(zj |t1:j−1)‖q(zj |t1:j−1)

)
≥ 0, (30)

where the equality holds iff q(zj |t1:j−1) = p(zj |t1:j−1) for
j = 2 toJ and q(x|t1:J) = p(x|t1:J).

Lemma 6: F̄Suc.(P,Q) is separately convex in P and Q.
Proof: It follows directly from the application of log-sum

inequality [54].
Lemma 7: For a fixed P , there exists a unique Q that

minimizes F̄Suc.(P,Q), given by

q∗(zj |t1:j−1) = p(zj |t1:j−1) for j = 2 to J,

q∗(x|t1:J) = p(x|t1:J), (31)

where p(zj |t1:j−1) for j = 2 toJ and p(x|t1:J ) are calculated
from P .
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Proof: It follows directly from the proof of Lemma 5.
Lemma 8: For a fixed Q, there exists a P that minimizes
F̄Suc.(P,Q), given by

p∗(zj |yj) =
p(zj)

ψ̄Suc.
zj

(yj , βj)
exp

(
− d̄Suc.(yj , zj)

)

∀(yj , zj) ∈ Yj ×Zj , (32)

with ψ̄Suc.
zj

(yj , βj), being a partition function, ensuring the per-
tinent quantizer mapping’s validity and the relevant distortion,
d̄Suc.(yj , zj), is calculated by

d̄Suc.(yj , zj)

= βj
∑
z-j
1:J

p(z-j
1:J |yj)

∑
t1:J

p(t1:J |z1:J )

×DKL
(
p(x|yj , z-j

1:J )‖q(x|t1:J)
)

−
∑

t1:j−1

p(t1:j−1|yj) log
q(zj |t1:j−1)

p(zj)
− βj

J∑
n=j+1

1
βn

×
∑

t1:n−1,zn

p(tj |zj)p(t-j
1:n−1, zn|yj) log q(zn|t1:n−1). (33)

Proof: It follows from the same line of reasoning as in the
proof of Theorem 2, noting that

δ
(

E zj ,t1:j−1{log q(zj |t1:j−1)
p(zj)

}
)

δp(zj |yj)

= p(yj)
∑

t1:j−1

p(t1:j−1|yj) log
q(zj |t1:j−1)

p(zj)
, (34)

and in the case of n > j

δ
(
E zn,t1:n−1{log q(zn|t1:n−1)

p(zn) }
)

δp(zj |yj)

= p(yj)
∑

t1:n−1,zn

p(tj |zj)p(t-j
1:n−1, zn|yj) log

q(zn|t1:n−1)
p(zn)

.

(35)

The focal update step (13)-(14) of M-FAVIB regarding any
of the involved quantizer mappings is directly obtained by
merging together the optimal results for Q and P from the
last two Lemmas.10 Hence, the convergence of M-FAVIB to a
stationary point of the objective functional is ensured by [51,
Thm 1] as F̄Suc.(P,Q) and FSuc.(P ) satisfy [51, Prop. 1].

C. Supplementary Mathematical Discussion

For the parallel retrieval, applying (7)-(8) as the central
update step of the M-FAVIB, in the limit of letting βj → 0,
the design problem (5) boils down to minimizing the j-th
compression rate, I(yj ; zj) (presuming fixed p(z�|y�) and λ�
for all � = 1 toJ and � �= j) w.r.t. the j-th quantizer

10Regarding the second component in (33), replacing q(zj |t1:j−1) by

p(zj |t1:j−1) =
p(t1:j−1,zj)

p(t1:j−1)
, the log term inside can be rewritten through

log
p(t1:j−1 ,zj)

p(t1:j−1)p(zj)
= log p(t1:j−1|zj) − log p(t1:j−1). Furthermore,

the term
�

t1:j−1

p(t1:j−1|yj) log p(t1:j−1) can be ignored since it does not

depend on zj , and, therefore, gets absorbed into the respective normalization
function.

mapping, p(zj |yj). In that case, each realization, yj ∈ Yj ,
is allocated to all output bins, zj ∈ Zj , equiprobably (state
of full diffusion). In this fashion, the input and output of the
j-th compression unit become statistically independent, and
the respective compression rate, I(yj ; zj), reaches its global
minimum, i.e., zero. Further, for finite βj values, stochastic
(soft) mappings, p(zj |yj), are engendered in general, while
in the asymptotic case of letting βj → ∞, the partition
function, ψPar.

zj
(yj , βj), for each realization, yj , allocates all

the probability mass into the specific bin that reveals the
minimum dPar.

βj
value and, hence, induces the quantizer mapping

to become deterministic (hard), i.e., p(zj|yj) ∈ {0, 1} for
each pair (yj , zj) ∈ Yj × Zj (state of full concentration).
To rationalize this, by presuming fixed p(z�|y�) and λ� for all
� = 1 toJ and � �= j, and by letting βj → ∞ (λj → 0),
the design optimization (5) boils down to maximizing the
overall transmission rate, I(x; t1:J), w.r.t. the j-th quantizer
mapping, p(zj |yj), that is a convex maximization task. To dis-
cern this, it should be noted that I(x; t1:J) is convex w.r.t.
p(t1:J |x) for a fixed p(x) [54]. Furthermore, p(t1:J |x) and
p(tj |x) are related through

p(t1:J |x) = p(tj |x)
∏

�=1:J, � �=j
p(t�|x), (36)

which is an affine transform since fixing p(z�|y�) implies that
p(t�|x) is fixed as well. Affine transforms preserve convexity
[57, Sec. 3.2]. Hence, I(x; t1:J) is also convex w.r.t. p(tj |x).
Moreover, p(tj |x) and p(zj |yj) are related through

p(tj |x) =
∑
zj∈Zj

∑
yj∈Yj

p(tj |zj)p(zj |yj)p(yj |x), (37)

which is also an affine transform. This, in turn, concludes the
proof of the claimed proposition. Resorting to a well-known
theorem from convex maximization theory asserting that a
convex function that is defined over a closed and convex set
obtains its global maximum at an extreme point of that set
[58, Ch. 4], it is directly inferred that it suffices to focus on
deterministic mappings. To realize this, one may recall that
the space of valid mappings, p(zj |yj), is a closed, convex
polytope generated by the Cartesian product of |Yj | probability
simplices [59]. The extreme points of this polytope occur at its
corners, corresponding to the Cartesian product of the corners
of its constituent probability simplices, yielding a deterministic
mapping per extreme point.

For the successive retrieval, analogous behavior is observed
as well. Specifically, applying (13)-(14) as the central update
step of the M-FAVIB, (presuming fixed p(z�|y�) and λ� for
all � = 1 toJ and � �= j) and by letting βj → 0 (λj → ∞),
the design problem (11) boils down to minimizing the j-th
conditional compression rate, I(yj ; zj |t1:j−1), w.r.t. the j-th
quantizer mapping, p(zj |yj). Like before, this is addressed
by allotting each realization, yj ∈ Yj to all output clusters,
zj ∈ Zj , equiprobably (state of full diffusion), resulting in
the global minimum (i.e., zero) of the respective conditional
compression rate, I(yj ; zj |t1:j−1), since it is non-negative and
upper-bounded by I(yj ; zj). Similarly, for finite βj values, sto-
chastic mappings, p(zj |yj), are engendered in general, while
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Fig. 5. End-to-end transmission rate, I(x; t1:3), vs. allowed number of bins, N , equiprobable 16-QAM signaling (σ2
x = 10), discrete AWGN access channels

with the noise variance, a) σ2
n = 0.15 and b) σ2

n = 0.20, symmetric N × N forward channels with the varying reliability values, θ = 0, 0.1, 0.2, 0.3,
βj = 100 for j = 1, 2, 3, the convergence parameter, ε = 10−3.

in the asymptotic case of letting βj →∞, as before, the par-
tition function, ψSuc.

zj
(yj , βj), induces the quantizer mapping,

p(zj |yj), to become deterministic (state of full concentration).
To justify this, a similar line of reasoning as in the previous
case is also applicable here. Specifically, by presuming fixed
p(z�|y�) and λ� for all � = 1 toJ and � �= j, and by letting
βj → ∞ (λj → 0), the design optimization (11) boils down
to maximizing11

I(x; t1:J ) +
J∑

n=j+1

λnI(zn; t1:n−1), (38)

w.r.t. the j-th quantizer mapping, p(zj |yj), that can be shown
to be a convex maximization task. To that end, it only suffices
to demonstrate that I(zn; t1:n−1) is convex w.r.t. p(zj |yj) since
λn is non-negative and the sum of several convex functions
will be convex as well. I(zn; t1:n−1) is a convex function of
p(t1:n−1|zn) for a fixed p(zn) [54]. Noting that the relation
between p(t1:n−1|zn) and p(zj |yj), established by (39), shown
at the bottom of the page, is also an affine transform, in turn,
concludes the proof of the claimed proposition.

V. SIMULATION RESULTS

A. (Forward-) Awareness Vs. Unawareness

Regarding the depicted system model in Fig. 2, we pre-
sume equiprobable source signals from a standard 16-QAM
(Quadrature Amplitude Modulation) constellation (σ2

x = 10)
over J = 3 branches. The access link between the source and
each compression unit has been modeled as a discrete mem-
oryless channel, approximating a discrete-time discrete-input
continuous-output Additive White Gaussian Noise (AWGN)
channel with the noise variance, σ2

n . To acquire the transition

11This can be realized by noting that from Markovian relations, it is inferred
I(yn; zn|t1:n−1) = I(yn; zn) − I(zn; t1:n−1).

probability matrices, rather than a prequantization of the
output signal, 160 samples have been generated per branch,
following a pure Monte Carlo approach. Denoting by N the
allowed number of quantizers’ output clusters, we consider a
symmetric N ×N forward channel model per branch that is
characterized by the reliability parameter, θ, in the following
fashion: Each input symbol is received correctly with the prob-
ability 1− θ and erroneously (to every other output symbols)
with the probability θ

N−1 . Therefore, higher θ values indicate
less reliable transmissions and vice versa.12 Further, note that
for a specific reliability value, θ, the transition probabilities,
p(tj |zj), will be influenced by the particular choice of N . We
consider a totally symmetric setup (having the same access
channel noise variance, σ2

n , and the forward channel reliability
value, θ, across branches), and set all βj values (for j = 1, 2, 3)
to 100. Then, the end-to-end transmission rate, I(x; t1:3),
is calculated as the performance indicator.

The required quantization is applied by the proposed
M-FAVIB (parallel retrieval) and the baseline MultiIB algo-
rithm from [25] to check whether integrating the forward
channels’ effects into the quantizers’ design problem brings
about some performance gain or not in comparison with the
case, wherein the error-prone forward channels are totally
neglected, and one simply aims at maximizing I(x; z1:3). Since
these algorithms are randomly initialized, to be fair, we choose
an identical set of starting points, {p(0)(zj |yj) |j}, for both
approaches. To avoid poor results, each method has been
repeated 100 times, and the best outcome has been retained.
The obtained curves have been illustrated in Fig. 5.

Specifically, for two distinct values of the access channels’
noise variance, namely, σ2

n = 0.15, 0.20, (with I(x; y1:3) ≈ 4

12The capacity of this symmetric N×N forward channel model is equal to
CFC(N, θ) = log2 N + (1 − θ) log2(1 − θ) + θ log2

θ
N−1

[60].

p(t1:n−1|zn) =

∑
x∈X

p(x)p(zn|x)p(t-j
1:n−1|x)

∑
zj∈Zj

∑
yj∈Yj

p(tj |zj)p(zj |yj)p(yj |x)

p(zn)
, (39)
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Fig. 6. End-to-end transmission rate, I(x; t1:3), vs. allowed number of bins, N , equiprobable 16-QAM signaling (σ2
x = 10), discrete AWGN access

channels with the noise variance, σ2
nj

, for branch j, symmetric N ×N forward channels with the reliability value, θj for branch j, βj = 100 for j = 1, 2, 3,
the convergence parameter, ε = 10−3.

bits), the allowed number of output clusters (per branch), N ,
has been varied from 2 to 6 and the overall transmission rate,
I(x; t1:3), has been calculated for four choices of the forward
channels’ reliability value, namely, θ = 0, 0.1, 0.2, 0.3. For the
particular case of θ = 0, corresponding to considering error-
free forward channels, the M-FAVIB (parallel retrieval) and
the MultiIB [25] algorithms engender the same result. For the
other three cases, corresponding to having error-prone forward
channels, it is directly observed that, compared to the MultiIB
algorithm that completely ignores the imperfect forwarding of
quantizers’ output signals, the proposed M-FAVIB provides
larger end-to-end transmission rates through an increase in the
allowed number of quantizers’ output clusters. This clearly
substantiates the fact that integrating the forward channels’
effects into the design problem of the compression scheme is,
indeed, beneficial. This was to be expected, noting that for
the M-FAVIB, the design of compressed signals are such that,
in addition to capturing well the information from the remote
source, they also account for the errors occurring over the
imperfect forward links, while for the MultiIB, by ignoring
the impacts of the forward channels, they are designed solely
to preserve information about the source. Comparing the
respective curves of M-FAVIB with the pertinent results for
the specific case of error-free forward channels, θ = 0, reveals
that by increasing the output levels, the occurring information
loss over imperfect forward channels is steadily reduced.

Through a more detailed inspection of the provided results
in Fig. 5, it is observed that, contrary to the baseline curves,
the performance of M-FAVIB remains almost the same for
the chosen values of the access channels’ noise variance, σ2

n .
The reason behind this is the fact that in the interplay
between the influencing parameters, i.e., the access channels’
noise variance and the forward channels’ reliability para-
meter, the predominant confining factor is the reliability of
the forward channels. Obviously, this does not happen for
the baseline curves as they do not take into account the
imperfections of the forward channels. The performance gap
of the baseline and the M-FAVIB stems from the point that
the baseline totally ignores the forwarding effects and only

tries to maximize I(x; z1:3). Thus, it does not fully leverage
the available resources (the allowed forward rates) in the sense
of attempting to preserve as much end-to-end rate, I(x; t1:3),
as possible. The saturation (flattening effect) occurring over
the baseline curves can also be understood analogously. The
lower the access channels’ noise variance, σ2

n , the lower the
number of required quantizers’ output clusters to come quite
close to the maximum supportable value of I(x; z1:3) and,
consequently, the sooner the saturation effect and, thus, ending
up to lower end-to-end transmission rates, I(x; t1:3).

B. Joint Vs. Separate Design

In this part, we substantiate the fact that the joint design of
local quantizers is, indeed, beneficial compared to the simplest
approach of applying independent (separately designed) local
quantizers across branches. For that, we consider the same
setup as that of the previous part but with different (i.e., asym-
metric) parameter specifications. Explicitly, we presume the
equiprobable source samples out of a 16-QAM constellation.
The access links are modeled as discrete memoryless chan-
nels (160 samples per branch), approximating discrete-time
discrete-input continuous-output AWGN channels with the
particular noise variance, σ2

nj
, for the j-th branch. The for-

ward links are modeled as N × N symmetric channels each
characterized by the particular reliability parameter, θj , for the
j-th branch. We set all βj values (for j = 1, 2, 3) to 100 and
calculate the end-to-end transmission rate, I(x; t1:3), as the
performance indicator, when varying the allowed number of
quantizers’ output clusters, N , from 2 to 6. Here, we perform
the same investigations for the M-FAVIB (parallel retrieval)
and the case in which, per branch, the proposed FAVIB
algorithm in [49] has been employed to maximize I(x; tj)
for j = 1, 2, 3, separately. To be fair, like before the same
set of starting points, {p(0)(zj |yj) |j}, has been used for
both approaches, and to avoid poor results, each method has
been repeated 100 times with the best outcome retained. The
obtained results have been illustrated in Fig. 6.

In Fig. 6a, we considered an asymmetric specification for
the access channels through choosing different noise variances
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Fig. 7. End-to-end transmission rate, I(x; t1:3), vs. overall forward rate,
�

j I(yj ; zj |t1:j−1) successive /
�

j I(yj ; zj) parallel, equiprobable 16-QAM
signaling (σ2

x = 10), discrete AWGN access channels with the noise variance, σ2
n , allowed output clusters, N = 4, symmetric 4 × 4 forward channels with

the reliability value, θ, 1.5 ≤ βj ≤ 3.5 for j = 1, 2, 3, the convergence parameter, ε = 10−3.

across branches, namely, σ2
n1

= 0.3, σ2
n2

= 0.3, σ2
n3

= 1.0
(with I(x; y1:3) ≈ 3.98) and varied the reliability value of the
forward channels (the same value, θ, across branches), namely,
θ = 0.005, 0.03, 0.06. Contrarily, in Fig. 6b, we considered an
asymmetric specification regarding the forward channels by
choosing different reliability values across branches, namely,
θ1 = 0.001, θ2 = 0.001, θ3 = 0.4 and varied the noise
variance of the access channels (the same value, σ2

n , across
branches), namely, σ2

n = 0.25, 0.40, 0.55 (with I(x; y1:3) ≈
4, 3.98, 3.91 bits, respectively) for capturing the effects of
both present channels (access and forward) in the presumed
system model. It can be observed that the joint design of local
quantizers results in a superior end-to-end transmission rate,
I(x; t1:3), compared to the simplest approach of implementing
separately designed quantizers on different branches.

C. Parallel Vs. Successive Retrieval

In the last part, we consider again the same setup as
before, but with completely symmetric specifications regarding
both the access and forward channels (analogous to the first
round of investigations in subsection V-A), i.e., an equiprob-
able 16-QAM source signaling over J = 3 branches, each
featuring a discrete memoryless access channel (160 sam-
ples per branch), approximating a discrete-time discrete-input
continuous-output AWGN channel with the noise variance,
σ2

n (same value across branches), and a symmetric N × N
forward channel model with the reliability parameter, θ (same
value across branches). The quantizers’ allowed output clusters
are fixed to N = 4, and the βj values (for j = 1, 2, 3) are
varied from 1.5 to 3.5. The end-to-end transmission rates and
the forward (compression) sum rates have been calculated for
two cases of utilizing the M-FAVIB with both approaches of
the parallel and successive retrieval. The obtained results have
been illustrated in Fig. 7.

Explicitly, in Fig. 7a, we fixed the noise variance of the
access channels to σ2

n = 0.25, and varied the reliability
value of the forward channels, namely, θ = 0.05, 0.10, 0.15.
Contrarily, in Fig. 7b, we fixed the reliability value of
the forward channels to θ = 0.05, and varied the access
channels’ noise variance, namely, σ2

n = 0.25, 0.50, 0.75 (with

I(x; y1:3) ≈ 4, 3.95, 3.75 bits, respectively). As the main
takeaway, it can be immediately observed from both results
that, under identical specifications, the utilization of available
side-information can decrease the required overall forward rate
for supporting a certain level of the end-to-end transmission
rate compared to the parallel scheme wherein the correlations
among different forward channels’ outputs is totally neglected.
This can be clearly rationalized by noting the fact that, due
to the presumed Markovian properties, conditioning on the
previous forward channels’ outputs can either deduct from the
current unconditional compression rate or keep it unchanged
as it applies

I(yj ; zj |t1:j−1) = I(yj ; zj)− I(zj ; t1:j−1), (40)

and the MI is non-negative.

VI. SUMMARY

We concentrated on a particular multiterminal Joint
Source-Channel Coding problem wherein several noisy obser-
vations from a remote source are compressed locally (yet fol-
lowing a joint design) prior to getting forwarded to a (distant)
processing unit over multiple error-prone channels. Herein,
we adapted the fundamental idea of the Information Bot-
tleneck method and proposed two distributed compression
schemes. For that, we obtained the form of stationary points
regarding the individual local quantizers and also presented a
generic iterative algorithm, the M-FAVIB, which extends the
schemes MIB [25] and FAVIB [49]. Applying an unfolding
trick, we linked the proposed algorithm to the Successive
Upper-Bound Minimization, thereby providing the proof of
convergence to a stationary point. After an in-depth analysis
of the proposed method, we also substantiated its effectiveness
by means of numerical simulations.

APPENDIX

A. Proof of Theorem 1

As the parallel IB-based JSCC Lagrangian, LPar., in (6) is
a functional of all the individual local quantizer mappings
{p(zj|yj) |j}, to come into a stationary point of it, its deriva-
tive w.r.t. every quantizer mapping, p(zj |yj), must be equated
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to zero. Associating a Lagrange multiplier, λyj , per realization,
yj ∈ Yj , of the observation, yj , one can incorporate the
validity conditions into the overall parallel JSCC Lagrangian,
LOv.

Par., for which it applies

LOv.
Par. = I(x; t1:J)−

J∑
j=1

λjI(yj ; zj)

+
J∑
j=1

∑
yj∈Yj

λyj

( ∑
zj∈Zj

p(zj|yj)− 1
)
. (41)

Fixing {p(z�|y�) |� �= j} and taking the functional derivative
w.r.t. p(zj |yj), it holds

δ
( J∑
j=1

λjI(yj ; zj)
)

δp(zj |yj)
= λj

δI(yj ; zj)
δp(zj|yj)

= λj p(yj) log
p(zj |yj)
p(zj)

,

(42)

and

δ
( J∑
j=1

∑
yj∈Yj

λyj

( ∑
zj∈Zj

p(zj |yj)− 1
))

δp(zj |yj)
= λyj . (43)

Therefore, to be able to calculate δLOv.
Par.

δp(zj |yj)
, the only remain-

ing part is to derive δI(x;t1:J )
δp(zj |yj)

. By applying the chain rule for
MI to decompose I(x; t1:J ), it becomes rather undemanding
to discern that

δI(x; t1:J )
δp(zj |yj)

=
δI(x; tj |t-j

1:J)
δp(zj |yj)

, (44)

as fixing {p(z�|y�) |� �= j} also fixes the other appearing terms
in the conducted decomposition. Noting the present Markov
chain, yj ↔ z-j

1:J ↔ t-j
1:J , it holds

δI(x; tj |t-j1:J )
δp(zj |yj)

=
δ
(
H(tj |t-j1:J )−H(tj |x, t-j

1:J)
)

δp(zj |yj)
=

∑
z-j
1:J

p(yj , z
-j
1:J)

∑
x

p(x|yj , z-j
1:J)

×
∑
t1:J

p(t1:J |z1:J) log
p(x|t1:J )
p(x|t-j

1:J )
. (45)

Due to the positivity of p(yj) and by applying the stationary

condition, δLOv.
Par.

δp(zj |yj)
= 0, it is directly deduced from (42), (43)

and (45) that
∑
z-j
1:J

p(z-j
1:J |yj)

∑
x

p(x|yj , z-j
1:J)

∑
t1:J

p(t1:J |z1:J) log
p(x|t1:J)
p(x|t-j

1:J)

−λj log
p(zj|yj)
p(zj)

+
λyj

p(yj)
= 0. (46)

Thus, by definition of the KL divergence, it holds

−
∑
z-j
1:J

p(z-j
1:J |yj)

∑
t1:J

p(t1:J |z1:J)DKL
(
p(x|yj , z-j

1:J )‖p(x|t1:J )
)

−λj log
p(zj |yj)
p(zj)

+ λ̃Par.
yj

= 0, (47)

with λ̃Par.
yj

, being equal to

λ̃Par.
yj

=
λyj

p(yj)
+

∑
z-j
1:J

p(z-j
1:J |yj)

∑
t-j
1:J

p(t-j
1:J |z

-j
1:J)

×DKL
(
p(x|yj , z-j

1:J)‖p(x|t-j
1:J)

)
. (48)

Bringing the second summand in (47) to the other side of
equality, multiplying both sides by βj = 1

λj
, exponentiating

them, and, eventually, multiplying by p(zj), it applies

p(zj|yj) = p(zj) exp
(
− dPar.(yj , zj) + βj λ̃

Par.
yj

)
. (49)

Enforcing the validity condition,
∑
zj
p(zj |yj) = 1, and noting

that λ̃Par.
yj

is independent of zj , one can treat exp(−βj λ̃Par.
yj

) as
the partition function, ψPar.

zj
, to come into the form of (7). �

B. Proof of Theorem 2

The successive IB-based JSCC Lagrangian, LSuc., in (12)
is a functional of all the individual local quantizer mappings
{p(zj|yj) |j}. To come into a stationary point of it, its
derivative w.r.t. every quantizer mapping, p(zj |yj), must be
equated to zero. Associating a Lagrange multiplier, λyj , for
every realization, yj ∈ Yj , of the observation, yj , one can
incorporate the validity conditions into the overall successive
JSCC Lagrangian, LOv.

Suc., for which it applies

LOv.
Suc. = I(x; t1:J )−

J∑
j=1

λjI(yj ; zj |t1:j−1)

+
J∑
j=1

∑
yj∈Yj

λyj

( ∑
zj∈Zj

p(zj|yj)− 1
)
. (50)

Fixing {p(z�|y�) |� �= j}, to be able to calculate the func-
tional derivative of LOv.

Suc. w.r.t. p(zj |yj), only the corresponding
derivative of its second term must be determined at this point
as the pertinent derivatives of its first and last terms are already
given in (45) and (43), respectively. To do so, it has to be noted
that

δ
( J∑
�=1

λ�I(y�; z�|t1:�−1)
)

δp(zj |yj)
=

δ
( J∑
�=j

λ�I(y�; z�|t1:�−1)
)

δp(zj |yj)
, (51)

since the first j − 1 appearing summands in the numerator
do not depend on p(zj |yj). Moreover, noting the presumed
Markov properties and via some intermediate manipulations,
it holds

δI(yj ; zj |t1:j−1)
δp(zj |yj)

=
δ
(
H(zj |t1:j−1)−H(zj |t1:j−1, yj)

)

δp(zj |yj)

=
δH(zj |t1:j−1)
δp(zj |yj)

− δH(zj |yj)
δp(zj |yj)

= p(yj)

×

⎡
⎣log

p(zj |yj)
p(zj)

−
∑

t1:j−1

p(t1:j−1|yj) log
p(t1:j−1|zj)
p(t1:j−1)

⎤
⎦ ,
(52)
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and in the case of j < � ≤ J
δI(y�; z�|t1:�−1)

δp(zj |yj)
=
δH(z�|t1:�−1)
δp(zj |yj)

− δH(z�|t1:�−1, y�)
δp(zj |yj)

=
δH(z�|t1:�−1)
δp(zj |yj)

− δH(z�|y�)
δp(zj |yj)︸ ︷︷ ︸

0

= p(yj)
∑

t1:�−1,z�

p(tj |zj)p(t-j
1:�−1, z�|yj)

× log
1

p(z�|t1:�−1)
. (53)

Due to the positivity of p(yj) and by applying the stationary

condition, i.e., δLOv.
Suc.

δp(zj |yj)
= 0, it is inferred from (43), (45), (52)

and (53) that

−
∑
z-j
1:J

p(z-j
1:J |yj)

∑
t1:J

p(t1:J |z1:J)

×DKL
(
p(x|yj , z-j

1:J)‖p(x|t1:J)
)

−λj log
p(zj |yj)
p(zj)

+ λj
∑

t1:j−1

p(t1:j−1|yj)

× log p(t1:j−1|zj) + λ̃Suc.
yj

+
J∑

k=j+1

λk
∑

t1:k−1,zk

p(tj |zj)p(t-j
1:k−1, zk|yj)

× log p(zk|t1:k−1) = 0, (54)

with λ̃Suc.
yj

, being equal to

λ̃Suc.
yj

= −λj
∑

t1:j−1

p(t1:j−1|yj)

× log p( t1:j−1) +
λyj

p(yj)

+
∑
z-j
1:J

p(z-j
1:J |yj)

∑
t-j
1:J

p(t-j
1:J |z

-j
1:J)

×DKL
(
p(x|yj , z-j

1:J )‖p(x|t-j
1:J)

)
. (55)

Bringing the second component in (54) to the other side of
equality, multiplying both sides by βj = 1

λj
, exponentiating

them, and, eventually, multiplying by p(zj), it applies

p(zj |yj) = p(zj) exp
(
− dSuc.(yj , zj) + βj λ̃

Suc.
yj

)
. (56)

Enforcing the validity condition,
∑

zj
p(zj |yj) = 1, and noting

that λ̃Suc.
yj

is independent of zj , one can treat exp(−βj λ̃Suc.
yj

) as
the partition function, ψSuc.

zj
, to come into the form of (13). �
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