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Abstract—Maximizing information has become a powerful
technique for the design of efficient receiver components with
very low bit resolution. In the established information processing
approach, the algorithmic tasks are executed on discrete messages
and the processing steps are designed to optimize the mutual
information. In this paper, we extend the concept of information
optimized processing for exploiting diversity. To that end, we
propose the Relative Entropy based Message Combining (REMC)
approach in order to merge discrete messages with different
underlying distributions, e.g., stemming from different diversity
branches. We exemplary evaluate the proposed REMC for a
single-user uplink-model with multiple Radio Access Points
(RAPs) and higher order modulation schemes. The numerical
results show that message combining is required to leverages
diversity gains in an information optimized receiver.

I. INTRODUCTION

Clustering to maximize Mutual Information (MI) via Infor-
mation Bottleneck Method (IBM) [1] has become a powerful
technique for the design of information optimized channel
quantizers [2]. The information optimized design approach
has also been successfully utilized to design discrete receiver
concepts optimized for coarsely quantized signals [3], [4].
Since a large part of the processing complexity lies in the
decoding part, especially efficient decoder designs are of great
interest. Information optimized decoder implementations offer
excellent performance with a very low bit resolution [5]-
[8], suitable for efficient implementations [9]. It has been
demonstrated, that such designed discrete decoders with only
3 or 4 bits per variable can perform very close to floating-
point decoder implementations. The low bit resolution greatly
reduces the implementation complexity in terms of storage and
interconnections of internal functions [10].

In an information optimized decoder implementation, the
representatives of variables are interpreted as abstract mes-
sages with a specific probabilistic interpretation, i.e. they can
be substituted by any desired representative without changing
its probabilistic relations and therefore the value of information
they preserve. To generalize the information optimized design
procedure for higher-order modulations schemes and irregular
Low Density Parity Check (LDPC) codes, the concept of mes-
sage alignment was proposed in [11], [12]. The information-
optimized decoder is commonly designed for one specific
design channel [13] that shows good performance even if

the actual channel is mismatched to the design channel [7].
Distributed RAP processing offers a flexible assignment of
functionalities between spatially distributed RAPs and cen-
tralized joint processing enables to leverage spatial diversity
and improve reliability [14]. However, if receive diversity is
available, the reliability of different RAPs has to be taken into
account in order to exploit diversity. The proposed centralized
message combining transforms messages from different RAPs
into a combined message that is matched to an information
optimized receiver design.

The main contribution of this paper' is the Relative Entropy
based Message Combining (REMC) approach that leverages
joint processing gains for an information-optimized decoder
and also allows to reuse the same implementation for diversity
schemes and higher-order modulation schemes.

The remainder of this paper is structured as follows. The
system model is introduced in Section II. The information-
optimized processing is discussed in Section III. Section IV
reviews state-of-the-art concepts and introduces the proposed
REMC:s. In the numerical evaluation in Section V, we focus
on the decoding of regular LDPC codes. We show that the
performance of this approach is close to the performance of
floating-point sum-product decoding with double precision.
The final conclusion is given in Section VI.

II. DISTRIBUTED RAP PROCESSING
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Fig. 1. Single-user uplink-model with J distributed RAPs and final data
estimation in the CPU

INotation: Random variables are denoted by sans-serif letters x, random
vectors by bold sans-serif letters X, realizations by serif letters x and vector
valued realizations by bold serif letters x. Sets are denoted by calligraphic
letters X'. The distribution px(x) of a random variable x is abbreviated as

p(z).



In order to demonstrate the general concept of message
combining for diversity exploitation we consider a single-
user uplink system where the user equipment (UE) signal
is observed by J distributed RAPs as visualized in Fig. 1.
Each RAP forwards a compressed representation of its local
observation to the CPU for estimating the source message
based on all observations [15]-[17].

In the UE, the source message is encoded by a linear
channel code, e.g., an LDPC code and mapped onto symbols
from the modulation alphabet X of size M. By omitting
the time index for simplicity, the mapper assigns to any
binary code bit vector ¢ € F3' of length m = log, M
one transmit symbol = € X. Before transmission, further
processing (e.g., transformation to time domain for Orthogonal
Frequency Division Multiplexing (OFDM) and insertion of
pilot symbols) is performed. In the RAPs, the noisy obser-
vations are again processed (e.g., transformation to frequency
domain and sub-carrier wise equalization for OFDM) yielding
the local observation y; € ); for the transmitted symbol x.
Subsequently, these observations y; are quantized/compressed
in order to reduce the fronthaul (FH) data rate for forwarding
the local observations to the CPU for final data estimation (e.g.
decoding the LDPC code).

For appropriate processing in the UE and in the RAPs
the local observation ; depends only on the single transmit
symbol x and the dependency can be modelled by an equiv-
alent Single-Input Single-Output (SISO) channel [18], [19]
with fading-coefficient h; ~ AN¢(0,1). Thus, the influence of
the signal pre-processing at the UE, the physical transmission
channel and the signal processing at the RAPs for each pair
of transmit and receive signals is described by

Y; = hj:c—|—nj (D)

with the effective Signal-to- Noise Ratio (SNR) SNR; =
|hj|?0% /oy . Here, of and o, denote the variance of the
transmit 51gnal and the effectlve noise realization, respectively.
Thus, the influence of varying SNRs per RAPs or subcarriers
are also incorporated in the corresponding effective SNR.
Subsequently, the effective transmission model (1) will be
denoted as access channel and the relation between x and y;
is described by the distribution p(y;|z). Prior to forwarding
local observations to the CPU, the observation y; is quantized
into a message z; € Z; from the discrete alphabet Z; by
the quantizer function z; = Q;(y;) (details for the design of
the quantizer will be provided in Section III-A). Subsequently,
each RAP forwards its message z; via rate-limited FH links
to the CPU. The CPU utilizes the proposed REMC unit that
yields a combined message ¢, € 7 for each code bit ¢, with
index ¥ = 1,...,m of one modulated symbol x based on all
received messages zj, 1 < j < J.

III. INFORMATION-OPTIMIZED PROCESSING

A. Mutual Information Optimized Quantizer Design

In order to forward compressed messages for the local
observations y; to the CPU, a joint design of the local
quantizers would be desirable [20]. However, here we restrict

ourself to an independent design of the local quantizers (); per
branch j such that the MI* I(x; z;) between the source symbol
2 and the quantizer output z; per RAP is maximized. We
assume that the source distribution p(x) is fixed, implying that
the achievable rate of the channel between the symbol x and
the quantizer output z; is given by I(x; z;) [22]. The objective
function of the quantizer design problem (); is formalized as

Q; = argmax I(x;z;) s.t. |Z;[< N, (2)
QeQ

for j = 1,...,J, where Q is the set of all possible quantizer
mappings and N; denotes the upper bound on the cardinality
of the set Z; in branch j. We consider rate limitations of in-
dividual FH links by limiting the cardinality of Z; to IN; such
that at most log, IV; bits are forwarded by RAP j allowing for
unequal cardinalities |Z;| for j = 1,...,J. The objective in
(2) is a special case of the IBM [1] with trade-off parameter
B — oo. For (2) we can restrict our design to deterministic
quantizers, i.e., p(z;ly;) € {0,1}, V{z;,y;} € Z; x Y;, such
that every realization in ); is mapped to only one specific
cluster in Z; [23]. The quantization Q] can be formalized
as probability mass function p(z;|y;) such that under the
presumed Markovian relation x — y; — z;, the meaning of
Zj W.I.t. x is given by

>y, ev, P(zlyi)p(y;le)p(x)
Dwex 2oy,ey, P(Z1Y;)p(ysle)p(z)

The meaning p(z|z;) of message z; per RAP j depends on
the individual access channel p(y;|z) (i.e., on the individual
SNR;) and the quantizer mapping p(z;|y;). Furthermore,
in case of higher-order modulation schemes, the individual
message meaning w.r.t. bit ¢, of one modulated symbol z is
given by the distribution p(c,|z;) with

3)

p(zlz;) =

pley =¢lz) = Z p(x|z;) for & € {0,1} 4)
$EX,§
and X$ = {x(c) € X|c, = &}. In general, the meanings

(cy|z]) are different for unequal bit levels ¢; and ¢; with
i F ]

Fig. 2 visualizes the different meanings of z; by means
of Log-Likelihood Ratios (LLRs) L(c,|z;) = migzi%ﬂz%
for two RAPs with SNR; = 5 dB and SNR, = 15 dB
in case of 4-ASK mapping and SNR optimal quantizers Q7
and Q3. Obviously, the same cluster index has quite different
meanings. For example, in case of z; = 3 the LLRs are
given by L(ci]z1 = 3) =~ 1.5 and L(c2|z; = 3) =~ —0.5,
whereas for zo = 3 the LLRs are L(ci|ze = 3) ~ 5.1
and L(calza = 3) = —4.2 for ¢; and co, respectively.
Consequently, the question arises how to process the different
discrete messages jointly in the centralized estimation step in
the CPU. The resulting message combining problem will be
discussed in detail in Section IV.

2The mutual information between two random variables a and b is given

by I(aib) = X 3= pla,b)logy ;R0 [211.
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Fig. 2. Gray-coded 4-ASK with equiprobable p(x) (i.e. o2 = 5) and AWGN
with variance SNR; = 5 dB (top) and SNRy = 15 dB (bottom), both
quantized into 8 clusters

B. Information-Optimized Message Passing Decoder

As an alternative to the Floating-Point Sum-Product Al-
gorithm (FP-SPA) [24] for decoding LDPC codes, decoder
realizations with low bit resolution using mutual information
maximizing message mappings have been proposed [13]. The
designed discrete decoder is optimized for the processing of
discrete signals and all internal operations can be implemented
by simple Lookup Tables (LUTs). For binary codes the so
called Lookup-Table based Message Passing (LUT-MP) de-
coder performs with a message resolution of only 3 or 4 bit is
close to the FP-SPA with 64-bit double precision [5]. The key
idea for the decoder design is the concept of discrete density
evolution [13] that yields discrete decoder functions that maxi-
mize mutual information for a fixed design distribution p*(c, t)
between the binary input ¢ and the compression variable t € T
of cardinality |7|. Usually, the design distribution p*(c, )
at the threshold SNR of the code is used for the design
yielding good performance even if the transmission channel
is mismatched to the design channel [7].

IV. RELATIVE ENTROPY BASED MESSAGE COMBINING
(REMC)

A. Message Alignment

In Section III-A the problem, that discrete values with
varying meaning for the signals of interest (i.e., transmit
symbols x or code bits ¢, ) need to be handled accordingly has
been illustrated. To this end, the Message Alignment (MA) ap-
proach for the alignment of clusters with similar probabilistic
meaning that enables the design of discrete LDPC decoders
for higher-order modulation schemes has been proposed [11].
For designing discrete decoders for irregular LDPC codes the

iterative MA has been presented [12] to align messages w.r.t.
an averaged degree distribution. Furthermore, iterative MA
has also been applied for distributed wireless sensor networks
where local sensors forward an aligned message to the fusion
center to enable MAP-detection on an averaged distribution
[25] without transmitting additional sensor information to the
fusion center. However, the MA within each local sensor
node requires the knowledge of an averaged distribution that
depends on the access channel of all other sensor nodes and
might be problematic in case of highly dynamic networks.
In contrast to that, we propose a combining approach that
enables an optimized central message combining and considers
also different rate limitations, i.e., | Z;| might be different per
branch j.

B. Message Combining

The general objective of message combining is to generate a
meaning t for the message vector z = [z1, ..., 27] € Z1 X ... X
Z 7. To that end, it is necessary to specify a target distribution
p(-|t). As shown in (3), the meaning p(x|z;) of the message
zj € Z; of RAP j depends on the quantizer mapping p(z;|y;)
and the access channel p(y;|z). For our setup, we select the
index t, where the meaning p(c,|z) of the message vector
z is similar to the design distribution of the discrete decoder
p(cft = ty), ie. plc, = €lz) = p*(c = £|t = t,) for € €
{0,1}. The meaning p(c,|z) of the message vector z is given
under the presumed Markovian assumption x — y — z by

> yey p(zly)p(yl|z)p(r)

e =) = Z; Soex Syey 2y )yl p()
o)
with ' = V1 x ... x Yy, p(zly) = [1; p(2;]y;) and p(y|z) =

[1; p(y;lz) for & € {0,1}. The meaning in (5) depends on all
quantizer mappings p(z;|y;) and all access channels p(y;|z).

Similar to MA, we utilize the relative entropy® Dxy (+||) or
Kullback-Leiber divergence to find an aligned message related
to a target posterior distribution. The relative entropy is a
natural measure that occurs in case of mutual information
optimized receiver processing [26].

In our proposed REMC, we translate the meaning p(c,|z)
of the combined message vector z into a meaning p*(c|t) of
t, that is determined by the design distribution of the discrete
decoder, i.e. the translated message ¢, (z) is given by

tu(2) = Qo.(2) = argmin D (p(ev [2)[P"(clt))  (6)

for every bit ¢,, ¥ = 1,...,m in one modulated symbol x.
Consequently, message combining in (6) finds the combinded
messages ¢, (z) for every bit ¢, that minimizes the missmatch
between the meaning of p(c,|z) and p*(c|t = t,), measured
by the relative entropy. The resulting deterministic combining
mapping Z; X ... x Zy — T is implemented as a REMC LUT
that generally also depends on the individual access channels

3The relative entropy or Kullback-Leibler divergence between two distribu-
tions p(z1) and p(z2) with the same set of possible outcomes X is defined

as Dt (p(21)||p(22) = Sy cx pla1 = ) logy HH=)




p(yj|z) and quantizer mappings p(z;|y;) for j = 1,...,J.
However, as we will discuss in the next subsection, the output
of the REMC LUT is highly informative even if we use
only a small number REMC LUTs and select the one that
best fits the actual channel conditions. The combined message
t, is forwarded to the information-optimized decoder (c.f.
Section III-B). Note that the message combining in (6) also
provides a general framework to combine messages of a source
related to a target distribution, i.e. p*(c|t) can be substituted by
any desired (possibly vector valued) target distribution p(:|t)
of further information optimized processing steps. We also
note that the message combining is not restricted to individual
quantizer design per RAP, i.e. it can also be applied in case of
joint quantizer design [27] and also for generalized quantizer
design measures [28].

C. Preserved Information after Message Combining

In order to analyze the impact of centralized message
combining with REMC we consider a system with J = 2
RAPs and transmission of BPSK symbols x. The effective
SNR of the first branch has been fixed to SNR; = 1.55dB
and SNRy of the second branch is varied. Each RAP quantizes
the observations y; with a fixed 3-bit quantizer which has
been optimized for a design SNR of SNRpgsen = 1.55dB.
Figure 3 shows the resulting Mutual Information (MI) terms.
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Fig. 3. Information rates for two diversity branches with fixed quantizers at
RAP and message combining at CPU

I(x;y1) and I(x;y2) indicate the MI between the source and
the individual observations in the RAPs, whereas I(x;y1,Yy2)
denotes the total available MI if both observations are con-
sidered jointly. Clearly, the gain of a joint processing is
demonstrated and I(x;y;,y2) serves as an upper bound for
the total MI after quantization, I(x;z1,z3). Although, per
RAP the same quantizers optimized for a fixed SNRpegjgn =
1.55 dB are applied, the loss induced by 3-bit quantization
is quite small w.r.t. the upper bound. The REMC approach

(6) yields in the CPU for z; and 2, a combined message ¢;
which is aligned to the given meaning p*(c|t). Here, p*(c|t)
has been selected such that it corresponds to the threshold
SNRhreshold = 1.55dB for (dy = 3, do = 6)-regular LDPC
code [18]. By investigating the MI I(x;t;) between the source
signal x and the REMC output t; only a small loss compared
to the upper bound I(x;z;,zs) is visible. Thus, the varying
meaning of the compressed signals z; and 29 is successfully
considered by the REMC if individual access distributions and
the applied quantizers (or, alternatively the meaning p(x|z;))
are known at the CPU.

V. PERFORMANCE EVALUATIONS

In this section we investigate the Bit Error Rate (BER)
performance for a coded system applying a very short (3, 6)-
regular LDPC code of length No = 96 and code rate Ro =
0.5. The channel between the UE and the varying number
of RAPs are modelled as independent block Rayleigh fading
channels. As a benchmark we consider the direct forwarding
of observations to the CPU, combining of individual LLR and
decoding by the FP-SPA. For the quantized systems each RAP
forwards 3-bit messages per observation to the CPU. If, once
again, FP-SPA is used for decoding, the CPU calculates LLRs
based on the compressed signals z; and performs LLR com-
bining prior to decoding. Alternatively, the REMC approach is
applied for combining the disrete messages and the LUT-MP
decoder optimized for the threshold SNRheshold = 1.55 dB is
used. Subsequently, we will first analyze a mismatched design
for the quantized system indicating a severe performance loss
as the diversity is not exploited. Then, the approach with
REMC is considered for BPSK and 16-QAM, respectively.

A. Missmatched Message Combining
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Fig. 4. BER performance with J RAPs applying per RAP fixed 3-bit quantizer
and fixed message combining

In this setup it is assumed, that fixed quantizers () designed
for the SNRpesnola = 1.55 dB are utilized in every RAP, but
the CPUs is not aware of the effective access SNRs. Thus, for
LLR combining the fixed e2e distribution p(c;|z) given by the



design SNR and the quantizer mappings p(z|y) is assumed.
Similarly, for REMC only the fixed e2e distribution p(cq|z) is
applied. Correspondingly, the instantaneous realization of the
access channel and, thus, the instantancous effective SNR, is
not considered in the processing.

Fig. 4 shows the BER performance of the FP-SPA with-
out quantization and optimal LLR combining (benchmark),
FP-SPA with 3-bit fixed IB quantization at the RAPs as well
as 3-bit LUT-MP decoding for a varying number of RAPs
J = 1,2,3. The case of FP-SPA without quantization and
without fading (i.e. additive white Gaussian noise (AWGN)
channel) is added as an additional benchmark.

As expected, for J = 1 a significant performance loss due
to fading compared to the AWGN case becomes obvious. For
two RAPs (J = 2) the system without quantization shows
the expected diversity gain in the slope of the BER curve
leading to substantial performance improvements. However,
both systems with quantization schemes do not realize any
diversity gain and show only a small improvement compared
to J = 1. Both approaches do not consider the reliability of
the instantaneous realizations leading to a this severe loss in
performance. Although, for J = 3 the schemes with quantized
FH signals realize some diversity gain, the loss compared to
the non-quantized FH system is roughly ~ 7 dB at a BER
of 10~%. Obviously, by using only one fixed 3-bit quantizer
and ignoring the current influence of the access channel is
not sufficient to exploit the available spatial diversity. As the
instantaneous e2e distributions of the different RAP signals is
not considered, the different reliability of the RAP signals z;
is not exploited in the CPU.

B. Optimized Message Combining
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Fig. 5. BER performance with RAPs applying SNR-adapted 3-bit quantizer
per RAP and message combining in CPU for J > 1

Fig. 5 shows the BER performance if the RAPs forward
also their instantaneous SNR; to the CPU such that the LLR
combining or the REMC can be performed based correct
e2e distribution p(c;|z). For J = 1 almost no difference
compared to Fig 4 is visible. In case of J = 2, FP-SPA with

quantizer selection at the individual RAPs and LLR calcu-
lation/combining based on the e2e distributions achieves the
same diversity gain and only a marginal SNR loss compared
to the benchmark without any quantization. The LUT-MP
decoder with REMC at the CPU considers also the reliability
of the two different RAP signals, leading to the same diversity
gain and only a small performance loss of ~ 1.1 dB at a BER
of 10~* compared to the benchmark. For J = 3, the LUT-MP
decoder with message combining and the FP-SPA with LLR
combining also achieves the same diversity gain compared
to the benchmark. Furthermore, relative performance of the
LUT-MP with message combining and the FP-SPA using LLR
combining is quite similar to the case of J = 2.

C. Optimized Message Combining for 16-QAM Modulation

Subsequently, we investigate the performance in case of 16-
QAM modulation. We analyse the forwarding of to 6-bit per
complex-valued rx signal over the FH, while the FP-SPA or
the 3-bit LUT-MP decoder is used.
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Fig. 6. BER performance with RAPs applying SNR-adapted 6-bit quantizer
per RAP and message combining in CPU for J > 1 for 16-QAM modulation

A comparison between the 3-bit LUT-MP and 4-bit LUT-
MP for 6-bit channel quantization is shown in Fig. 6. The
4-bit LUT-MP achieves at a BER of 10~ a performance
gain of ~ 1 dB for J = 1 and ~ 0.6 dB for J = 2,3.
The performance improvement can be further increased by
increasing the number of bits of the LUT-MP. Hence, the e2e
performance by using a low bit resolution for the forwarding
of I/Q data via the FH and the joint processing at the
CPU (REMC and LUT-MP decoding) is very close to the
benchmark without quantization and FP-SPA decoding.

VI. CONCLUSION

We introduced a relative entropy based message combining
approach that generalizes an information-optimized receiver to
leverage joint processing gains by exploiting receive diversity.
The proposed message combining enables a flexible usage
an information-optimized receiver implementation for higher-
order modulation schemes that considers also the possibly
different rate limitations of the corresponding forward links.
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