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Abstract

Advances in mobile communication capabilities open the door for closer integration of pre-hospital and in-

hospital care processes. For example, medical specialists can be enabled to guide on-site paramedics and can, in

turn, be supplied with live vitals or visuals. Consolidating such performance-critical applications with the highly

complex workings of mobile communications requires solutions both reliable and efficient, yet easy to integrate with

existing systems. This paper explores the application of Deep Deterministic Policy Gradient (DDPG) methods for

learning a communications resource scheduling algorithm with special regards to priority users. Unlike the popular

Deep-Q-Network methods, the DDPG is able to produce continuous-valued output. With light post-processing, the

resulting scheduler is able to achieve high performance on a flexible sum-utility goal.

Index Terms
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I. INTRODUCTION

The increased capabilities of mobile data transfer have opened opportunities to more tightly connect the chain

of emergency care, e.g., transmitting video, vitals or specialist input directly at an emergency site. When time

is of the essence, [1] show that a patients recovery chances may be improved significantly. Pilot projects such

as [2] have taken first steps in the direction of harnessing this potential of communications technology, but highly

integrated solutions are only just emerging. This is in part due to the substantial performance demands that medical

applications require in, e.g., throughput, latency, and mean failure time. These demands are outliers even in light of

the 5G NR specifications of 3GPP [3]. Serving medical use cases therefore requires new, tailored solutions that are

able to deal with complex optimization problems, balancing heterogeneous performance and reliability demands.

Deep Learning (DL) methods have shown promising results dealing with highly complex tasks in a variety of

fields including computer vision [4] and human speech recognition [5]. In these applications a data-driven learning
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approach has shown strengths where classic, model-based algorithms are struggling; Where an explicit, adjustable

model is not required or feasible, DL offers algorithms that are approximately optimal for given resources and

expected input data range [6], [7]. However, data-driven approaches must be applied in ways that are mindful of

their limitations. Typical gradient-based DL methods result in approximate, hard-to-interpret algorithms in which

undesired behavior patterns are hard or impossible to adjust. For this reason, the applicability of DL for applications

with strict performance demands requires further research, shown by, e.g., [8].

We consider a scenario where an Emergency Vehicle (EV) shares a communication medium with normal users.

Through the use of intelligent resource scheduling, we can influence service quality for all users and ensure the

proper handling of EV communications, though the question of QoS-optimal resource allocation for multiple

traffic classes remains an open topic in research [9]. Other works, such as [10], [11], have applied Deep Q-

Networks (DQN) to the task of intelligent resource allocation in communications with some success. While DQN

are able to leverage the function approximation capabilities of deep neural networks, the basic DQN method restricts

itself, by design, to discrete decision spaces. Some problems, such as allocating available resources by proportion,

lend themselves more easily to continuous-valued formulations. In this paper, we investigate a Deep Deterministic

Policy Gradient (DDPG) [12], [13] based approach to learning a flexible resource allocation algorithm, directly

outputting the proportion of resources to be allocated to each user. In this way, the optimization process can be

melded with the given problem more freely and easily compared to discrete action spaces. Using these Reinforcement

Learning (RL) methods, we form a scheduling algorithm that is able to drastically improve priority user performance

with a minimal drop in the overall utility.

II. SETUP & NOTATION

This section introduces the simulation environment that schedulers will interact with, characterized by a resource

grid, a job queue, and the communication link to users. We then formulate the optimization objective that motivates

our DL-approach.

A. Simulation Environment

As depicted in Fig. 1, we assume a scheduler at a base station that manages a limited number U of discrete

resource blocks, such as in an OFDM-system. In each discrete time step t, the scheduler divides the available

discrete resources U among N connected users. According to the fraction of resources that user n is granted, the

resources are then filled with jobs j from a job queue. For performance metric calculation, we define the set J[t] of

all jobs in queue at time step t, and the set Jn[t] of the jobs assigned to user n. At the beginning of each time step t,

every user n generates a new job j with a probability cj , collected in sets Jn, new[t]. Jobs j have two attributes:

a remaining request size uj, req[t] in discrete resource blocks, and a time-to-timeout vj [t] in discrete time steps t.

The jobs’ initial values are set at generation, with the initial request size uj, req[t] ∼ U[1, un, max] drawn from a

discrete uniform distribution, and the initial time-to-timeout vj [t]← vn, init set to a fixed value vn, init. Both un, max

and vn, init are defined by a user-specific profile.
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Fig. 1. At each time step t, a scheduler is tasked with distributing a number of U discrete resources among users. In a job queue, jobs j

assigned to a user n are requesting a number uj, req[t] of discrete resources to be completed. This example shows a system configuration with

U = 5 managed resource blocks and N = 3 users.

Once resources the have been divided in a time step t, the appropriate amount of discrete blocks is deducted

from the jobs’ resource requests uj, req[t] and all remaining jobs’ time-to-timeout vj [t] is decremented. For record

keeping, a lifetime count un, sx[t] of resources scheduled to a user n until time step t is increased by the appropriate

amount. Should a job have remaining requests uj, req[t] > 0 when timing out, i.e., vj [t] = 0, this job is removed

from the queue and added to the set Jfail[t] of jobs that timed out during time step t to be used in performance

metric calculation.

At the beginning of a simulation episode, all user vehicles n are placed at a position drawn from a uniform

random distribution centered on the base station position. The user distance dn[t] then varies over time due to

vehicle movement, which is simulated akin to the Manhattan-model of movement [14]; At each time step t, user

vehicles move a unit-size step in a random direction, with a 98% probability of selecting their previous direction

and otherwise uniform probability of turning left, right, or stopping. This results in a grid-like movement pattern.

The communication channel between the base station and the users n is assumed as a Rayleigh-fading channel

with additional distance-proportional path loss. Rayleigh-fading amplitudes |h̃n[t]| ∼ Rayleigh(σh) are drawn from

a Rayleigh-distribution with a scale σh, while the path loss PLn[t] is calculated according to the distance dn[t]

between a user n and the base station at time step t,

PLn[t] = min
(
1, (dn[t])

−1
)
. (1)

While typical path loss models assume exponents of −2 or less, we opted for an exponent of −1 to reduce

spread, thereby decreasing the computation required in the learning task ahead. Both path loss and Rayleigh-fading

amplitude are combined into the power fading factor

hn[t] = |h̃n[t]| · PLn[t]. (2)

B. Problem Statement

The scheduler will be tasked with learning an allocation strategy that balances performance in three global

metrics: (a) channel capacity, (b) timeouts, and (c) packet rate. These metrics will be defined subsequently. We also

introduce a priority class of users, the EV-type, that requires preferential treatment by the scheduler.
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(a) We define the sum capacity rC [t] at time step t for a given user power fading hn[t], signal power P and

expected noise power σ2
noise as

rC [t] =

N∑
n=1

log

(
1 + hn[t]

P

σ2
noise

)
=

N∑
n=1

log (1 + SNRn[t]) . (3)

Signal power P and expected noise power σ2
noise are assumed as fixed for all users.

(b) Sum timeouts rL[t] are defined as the sum of resources among the set Jfail[t] of all jobs that have timed-out

at the end of time step t,

rL[t] =
∑

j∈Jfail[t]

uj, req[t]. (4)

We also define the metric rL,EV[t] as the sum of resources lost from timeouts among EV-type users in time step t.

(c) The sum packet rate rP [t] is the ratio of lifetime resources scheduled to a user un, sx[t], and the lifetime sum

of resources requested by that user n. It is calculated as

rP [t] =

N∑
n=1

un, sx[t]∑t
τ=1

∑
j∈Jn, new[τ ]

uj, req[τ ]
=

N∑
n=1

kn[t]. (5)

To judge a scheduler’s overall performance, the aforementioned metrics are combined into a sum utility metric

r[t] = wCrC [t]− wLrL[t]− wL,EVrL,EV[t] + wP rP [t], (6)

with individual tunable weights wC , wL, wL,EV, wP . The weights’ purpose is two-fold: Primarily, they balance the

submetrics against each other, as the individual submetrics are not normalized in regard to their expected magnitude.

Secondarily, they allow us to communicate a preference or importance of the individual submetrics to the overall

optimization process, such as in the case of EV-timeouts rL,EV[t].

III. DDPG APPROACH

We make use of deep RL in order to find an allocation algorithm that optimizes for a diverse set of goals,

balancing multiple global metrics while also protecting priority users with its choice of allocation actions. An

allocation action is a vector that specifies the percentage An[t] of total available resources U that each user n

should receive,

A[t] = [A1[t], A2[t], . . . , AN [t]] . (7)

Central to this is a DDPG [12] actor-critic learning module. It consists of a critic, who learns to assess the quality of

an allocation action according to the sum utility defined in (6), and an actor that learns to output allocation actions

that satisfy the critic. Both actor and critic are modeled by standard fully connected deep neural networks, learning

via variations on stochastic gradient descent from a memory buffer. During the learning process, an exploration

module introduces noise to the allocation action to ensure that the action space is properly explored and the learning

process has a rich and varied set of experiences to draw on. The learning module is bookended and assisted by

pre- and post-processing blocks that embed the learning module input and output with the greater communication

system, as well as ensuring valid allocation solutions. Fig. 2 displays the general process flow of the scheduler for

one time step t, with the scheduling loop in solid lines on the outside, and the learning loop in thin blue lines on

the inside. In the following, we will describe the modules in more detail.
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Fig. 2. The DDPG process flow consists of two main loops: The scheduling loop (outside, solid lines) handles the task of generating a valid

allocation action, as well as gathering the system feedback to that allocation. Based on the experiences collected, the learning loop (blue, thin

lines, on the inside) first tunes a critic Q̂ that judges the goodness of an allocation action, and then uses the critic to update the actors behaviour.

A. The Scheduling Loop

We start with the preprocessor that summarizes the current state of the simulated communication system in a

vector S[t] of fixed dimensionality, fit as an input to a neural network. For each user n, we extract 3 relevant

features:

1) The current channel power fading

Sn,1[t] = hn[t] (8)

2) The sum of resource requests

Sn,2[t] =
∑

j∈Jn[t]

uj, req[t] (9)

3) The inverse minimum time-to-timeout

Sn,3[t] =

(
min

j∈Jn[t]
vj [t]

)−1

= (ln[t])
−1 (10)

The resulting state vector S[t] is saved into a memory buffer as part of an experience, for later use in the learning

loop.

For a given state S[t], the actor neural network is a function µ(S[t],θµ[t]) that outputs an allocation A[t] given

its current parametrization θµ[t]. To ensure that the output vector is normalized, i.e.,
∑N

n=1 An[t] = 1, we use

a softmax-activation for the last layer of the neural network. Initially, the parameters θµ[t] are randomized, and

subsequently tuned to output “good” allocations during the learning loop. Next, an exploration module takes the

network action A[t] and adds random distortion σe · Ãn to each entry An[t], with Ãn ∼ U(−0.5, 0.5) drawn from

a uniform distribution, and a noise magnitude multiplier σe that is decayed to 0 over the course of training. The

resulting noisy allocation Â[t] is clipped to the valid range of [0, 1], re-normalized, and added to the memory buffer

to for learning.

Finally, the post-processing block represents a form of incorporating model-knowledge into the learning process

by, e.g., limiting network output to plausible actions, filtering undesired behavior, or optimizing the output in some

way that is known to be favorable. While this can relax the burden of the learning module to learn outputs that
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are perfect, it also changes the learning objective from finding the best allocation solution to finding the best post-

processing input. An overly zealous post-processor may lead to local optimum solutions that the DL process cannot

escape from. Considering this, we opt for the following post-processing steps:

1) Zero out allocations to users with no requests (implausible)

2) Limit allocation to at most the amount requested per user (implausible)

3) Distribute at most one additional discrete resource to any user that had a fractional resource allocated, removing

the need to learn perfect discrete mappings

During evaluation, when the learning module parameters are frozen and the scheduler is being tested for performance,

we enable a further post-processing step:

4) Distribute remaining available resources by order of largest remaining request, to ensure no resource remains

unused due to, e.g., rounding.

After processing, the action is forwarded to the communication system, where the available resources are distributed

accordingly to jobs from the queue. One-by-one, requests from jobs are scheduled, starting with the jobs closest to

timing out. The success in the metrics defined in Section II-B is calculated, and the simulation state updates to the

next discrete time step t. The sum utility achieved by an allocation, according to (6), is also added to the memory

buffer.

B. The Learning Loop

During each full scheduling loop iteration, the scheduler collects an experience tuple

EXP = (S[t], A[t], r[t]) , (11)

thereby building a data set of state-action combinations and their resulting benefit r[t]. The DDPG algorithm uses

this data set to teach a critic neural network Q̂, parametrized by θQ̂[t], to estimate the reward resulting from a

state-action combination, i.e., Q̂(S[t],A[t],θQ̂[t]) = r̂[t]. In each iteration of the learning loop, a mini-batch of B

experiences is sampled from the experience buffer, and a mean squared estimation loss

LQ̂ =

B∑
b=1

(rb[t]− r̂b[t])
2 (12)

is evaluated on the samples b from this batch. Sampling is done prioritizing experiences that are new or diverge

most from the estimation, as described in [15]. Using variants on mini-batch stochastic gradient descent, the critic

parameters θQ̂[t] are then updated using the gradient∇θQ̂[t]LQ̂ of this batch loss, thus nudging the critic estimate r̂[t]

closer to the true sum utility r[t].

The relevance of the critic lies in approximating the unknown system dynamics that lead from allocation action

to metric success, making them tractable as the concrete parametrized function Q̂(S[t],A[t],θQ̂[t]). It is used to

update the actors parameters θµ[t] by the same principle. A loss function

Lµ = −
B∑

b=1

Q̂
(
Sb[t], µ (Sb[t], θµ[t]) , θQ̂[t]

)
(13)
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TABLE I

USER PROFILES

Delay vj [t] Max Job Size un, max

in sim. steps in res. blocks

Normal 20 30

High Packet Rate 20 40

Low Latency 2 8

Emergency Vehicle 1 16

is evaluated on the same batch of experiences. The loss assesses the sum utility r̂[t] estimated on batch experiences

given the actors current parametrization θµ[t], as well as the critics current understanding of the system dynamics,

i.e., θQ̂[t]. Updating the actor parameters θµ[t] using the gradient ∇θµ[t]Lµ aims to change the parameters to

maximize the estimated rewards.

IV. PERFORMANCE EVALUATION

A. Implementation Details

We configure the simulation environment with U = 16 available resources and N = 10 connected users.

According to the profiles listed in Table I, we assign a normal profile to five of the users, High Packet Rate

and Low Latency to two users each, and the last user is assigned the priority EV-profile. TX-SNR P/σ2
noise is set

to 13 dB for all users, with a variance σh = 1 for the fading channel amplitudes. Both training and evaluation are

carried out with 50 simulation steps t, repeated over 10 000 episodes. The job generation probability per step per

user is set to cj = 0.2, putting an expected load of about 1.6 requests per resource on the system. We set the reward

weightings of (6) such that the submetrics have approximately equal influence on the sum metric according to their

expected magnitudes, wC = wP = 0.25 for sum capacity rC [t] and sum packet rate rP [t], and wL = wL,EV = 1 for

sum timeouts rL[t] and EV-timeouts rL,EV[t]. As EV-timeouts are part of the global sum timeouts, this weighting

means that EV-timeouts have double the weight of other timeouts.

The neural networks for actor and critic are implemented as standard, fully connected feed-forward neural

networks with 6 layers each, and [300, 300, 300, 300, 400, 300] nodes per layer. Optimization is done on batches

of size B = 128 using the Adam optimizer [16] with default parameters and a learning rate of 1 × 10−4 and

1 × 10−5 for critic and actor, respectively. Exploration noise is multiplied by a factor σe = 1.5 initially, decaying

linearly to 0 after 50% of episodes. The learning loop is enabled after a minimum of 100 experiences have been

collected in the buffer.

We use Python to implement the simuation, using primarily the Tensorflow library. Simulations are run on generic

hardware. For further implementation details, we refer to the full code, available at [17].
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B. Benchmark Algorithms

Three basic model-based scheduling algorithms [18] are implemented to gauge the DL schedulers performance

on the given application.

• A Max Throughput (MT) scheduler allocates as many resources as requested to users by order of channel

quality.

• A second scheduler operates by the max-min-fair principle (MMF), allocating at most an equal share of available

resources to each requesting user.

• A Delay Sensitive (DS) scheduler assigns a channel priority

h̄n[t] =
kn[t]∑N
ñ=1 kñ[t]

hn[t]∑N
ñ=1 hñ[t]

given each users relative channel quality hn[t] and packet rate kn[t] (see (5)). Using the lowest time-to-

timeout ln[t], and the total timeouts mn[t] =
∑t

τ=1 rL, n[τ ] specific to user n, the scheduler also assigns a

timeout urgency

m̄n[t] =
mn[t]/ln[t]∑N
ñ=1 mñ[t]/lñ[t]

.

Both priorities are weighted and normalized, after which the scheduler assigns a share of the available resources

equal to the weighted combined priority vector. Uniquely, this scheduler is allowed to not allocate to a job if

it cannot be completed before timeout.

Random scheduling by selecting a normalized action A[t] with entries drawn from U(0, 1) serves as the baseline

benchmark.

C. Numerical Results

The simulation setup inherently exhibits a variance in the performance boundaries achievable within a simulation

run, e.g., in some runs random job creation leads to longer queues and subsequently more unpreventable timeouts.

Therefore, we display results in a normalized cumulative histogram of performances achieved during all simulation

runs. Fig. 4 shows performance on the weighted reward sum and Fig. 3a to Fig. 3d break down performance on

each component metric.

The DDPG scheduler, with the help of post-processing, is able to find a scheduling approach that outperforms the

simple model-based algorithms on the given reward function and weighting. Analysis of the submetrics shows the

balanced profile that the given weighting would suggest, going head-to-head with the best model-based algorithms

performance in each category. On EV timeouts specifically the DDPG scheduler is showing by far the best

performance out of any given algorithm, outperforming even the general timeout-focused Delay Sensitive scheduler,

achieved by the targeted addition of EV timeouts to the maximization goal.

Fig. 5 further compares the weighted sum metric against a random baseline and a DQN adaptive scheduler [19]

that selects from a variety of models in order to maximize a flexible reward goal. While the DQN ensemble scheduler

is able to lean on model-based design more easily without yielding the flexible goal setting that RL offers, it is

ultimately constrained by its available ensemble of models. The DDPG scheduler on the other hand is capable of
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Fig. 3. Cumulative histograms of performance of Maximum Throughput (MT), Max-Min-Fair (MMF) and Delay Sensitive (DS) schedulers as

well as DDPG scheduler on submetrics of capacity (a), packet rate (b), timeouts (c) and EV timeouts (d). The DDPG scheduler achieves strong

performance on all submetrics, balancing them against each other in order to maximize their sum utility.

finding a scheduling solution better than any combination of model-based algorithms, if it exists, and therefore has

a higher performance ceiling. Indeed, in the given simulation setup, the DDPG scheduler is able to outperform the

DQN ensemble scheduler.



9

0.2 0.4 0.6 0.8 1.0

Normalized Episode Sum Rewards

0%

25%

50%

75%

100%

C
um

ul
at

iv
e

% better
DDPG
MT
MMF
DS

Fig. 4. Cumulative histogram of performance of Maximum Througput (MT), Max-Min-Fair (MMF), Delay Sensitive (DS) and DDPG scheduler

on the weighted sum metric. For each episode, all achieved rewards r[t] are summed. Achieved reward sums are normalized by the highest

achieved reward sum.
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Fig. 5. Cumulative histogram of performance of DDPG, DQN adaptive and fully random scheduler on the weighted sum metric.

V. CONCLUSION

In this work, the DDPG principle of RL is used to learn a resource scheduling algorithm for communication system

applications. Continuous-valued output allows DDPG to easily fit in with existing frameworks. The scheduling

strategy learned by DDPG approximately maximizes a complex target utility, where special design boundary

conditions, such as the protection of EV traffic, can be easily incorporated without minor impact on the overall

performance. While neural-network-based learning algorithms are often regarded as black boxes, avenues for

incorporating model-based expert inductive bias still exist. Most prominently, we make use of reward design and

post-processing to guide and stabilize the learning process.

REFERENCES

[1] M. Zanatta, P. Benato, and V. Cianci, “Pre-Hospital Ultrasound: Current Indications and Future Perspectives,” Int. J. Crit. Care Emerg.

Med., vol. 2, no. 2, p. 019, 2016.
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