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Abstract—Systems of small distributed satellites in low Earth
orbit (LEO) transmitting cooperatively to a multiple antenna
ground station (GS) are investigated. These satellite swarms have
the benefit of much higher spatial separation in the transmit
antennas than traditional big satellites with antenna arrays,
promising a massive increase in spectral efficiency. However, this
would require instantaneous perfect channel state information
(CSI) and strong cooperation between satellites. In practice,
orbital velocities around 7.5 km/s lead to very short channel
coherence times on the order of fractions of the inter-satellite
propagation delay, invalidating these assumptions. In this paper,
we propose a distributed linear precoding scheme and a GS
equalizer relying on local position information. In particular, each
satellite only requires information about its own position and that
of the GS, while the GS has complete positional information. Due
to the deterministic nature of satellite movement this information
is easily obtained and no inter-satellite information exchange is
required during transmission. Based on the underlying geomet-
rical channel approximation, the optimal inter-satellite distance
is obtained analytically. Numerical evaluations show that the
proposed scheme is, on average, within 99.8 % of the maximum
achievable rate for instantaneous CSI and perfect cooperation.

Index Terms—low Earth orbit (LEO), small-satellite swarms,
MIMO satellite communications, distributed precoding, angle
division multiple access

I. INTRODUCTION

Integrating non-terrestrial networks (NTNs) into terrestrial
communication systems is an important step towards truly
ubiquitous connectivity [1], [2]. An essential building block
are small satellites in low Earth orbit (LEO) that are cur-
rently deployed in private sector mega constellations [3]–[5].
Their main benefits are much lower propagation delays and
deployment costs due to the LEO when compared to more
traditional high-throughput satellites [6]–[8] in medium Earth
orbit (MEO) and geostationary orbit (GEO). While current
systems focus on connecting ground stations (GSs) to a single
satellite, combining several low cost satellites in swarms leads
to increased flexibility and scalability [9].

Especially the joint transmission of multiple satellites form-
ing large virtual antenna arrays promises tremendous spectral
efficiency gains solely due to the increased spatial sepa-
ration of antennas [10]–[12]. However, the straightforward
implementation of conventional multiple-input-multiple-output
(MIMO) transmission schemes requires complete instanta-
neous channel state information (CSI) and inter-satellite co-
ordination of joint beamforming. This is infeasible due to
very short channel coherence times resulting from high orbital
velocities in combination with comparably large propagation

delays, both in ground-to-satellite and in inter-satellite links.
In this paper, we show that this is not an obstacle if positional
information is exploited. In contrast to complete CSI, this
information is often readily available or easily determined
from the deterministic movement of satellites. This leads to
an approximate channel model, which is employed to derive a
beamspace MIMO [13], [14] based distributed linear precoder
and equalizer. The precoder has low complexity, requires, at
each satellite, only knowledge of the own rotation and the posi-
tion of itself and the GS, and achieves close to optimal spectral
efficiency. Similarly, the equalizer only needs angle of arrival
(AoA) information for the satellites and, given proper design
of the satellite swarm, shows nearly optimal performance. We
obtain an analytical solution on the optimal swarm layout and
numerically evaluate the system performance.

The related literature can be summarized as follows: In
[10], the downlink (DL) from a satellite swarm with more
than 50 nano-satellites towards a single antenna ground sta-
tion (GS) is studied. It is shown that, if the signals of all
satellites add up in phase at the GS a high array gain is
achieved. Communication between multiple satellites and a GS
with multiple antennas is studied in [15], where an iterative
interference cancellation algorithm is considered to deal with
the large spatial correlation between two close GEO satellites.
Furthermore, in [16] and [17], the capacity of multi-satellite
systems are studied. In [18], a distributed precoding algorithm,
based on the minimum mean-squared error (MMSE) criterion
and exploiting information exchange between the satellites,
is proposed for a multi-user DL scenario. In [11] a zero-
forcing (ZF) equalizer at the ground terminal is proposed while
receiving from two satellites. In [19]–[21], beamspace MIMO
is adapted to ground to satellite communications, focusing on
scenarios involving a single satellite.

II. SYSTEM MODEL AND PERFORMANCE BOUNDS

Consider a swarm of NS satellites flying in a trail formation
with constant inter-satellite distance DS. They have a common
circular orbit at an altitude of d0 that is assumed to be ideal
Keplerian and aligned within the xy-plane. Then, the polar
coordinates of satellite ` in the Earth-centered coordinate
system are denoted by r` = [r0, ϑ`]

T , where r0 is the orbital
radius, i.e., the distance from the center of the Earth to the
satellite, and ϑ` is the polar angle. Given the Earth’s radius
rE = 6371 km, the orbital radius is r0 = rE + d0. The GS
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Fig. 1. Geometric relation between Satellites and GS

is located within the orbital plane at position rRx = [rE, π/2].
This setup is illustrated in Fig. 1.

It is convenient to describe the satellites position in a GS
centered coordinate system. The relative polar coordinates of
satellite ` to the GS are denoted as d` = [d`, θ`], where
θ` ∈ [0, π] is the elevation angle, i.e., the polar angle in the
GS centered coordinate frame. This angle is equivalent to the
AoA of the signal from satellite ` at the GS. Considering the
triangle between satellite `, the GS and the Earth’s center, we
obtain from the law of sines ϑ` = θ` + arcsin(rE cos(θ`)/r0).
Correspondingly, the distance d` between satellite ` and the GS
is d` =

√
d2

0 + 2rEr0 (1− sin (ϑ`)). The angle of departure
(AoD) Θ` from satellite ` is readily obtained from the eleva-
tion angle θ` and the satellite’s rotation η` as Θ` = θ`−η`− π

2 ,
where η` is defined such that the antenna arrays at the satellite
and the GS are parallel to each other at η` = 0. Hence,
if the satellite points perfectly towards the GS, the AoD is
Θ` = 0. Assume that the satellite can transmit only in the
directions Θ` ∈ [−π/2, π/2]. Then, its rotation must be within
the interval η` ∈ [min(−π/2, θ` − π),min(π/2, θ`)].

Observe that r0 and rE are constant over time, while d`, ϑ`,
θ`, η`, and Θ` are time variant. All of these values are either
known a priori at the satellites and the GS or can be obtained
easily because the satellites are moving on predefined orbits.

A. Communication Model

Satellite ` is equipped with an uniform linear array (ULA)
consisting of Nt antennas spaced DA = c0

2fc
apart, where fc

is the carrier frequency and c0 is the speed of light. The
satellites jointly transmit M independent messages that are
known a priori at all satellites and encoded in s ∈ CM
using uncorrelated unit variance Gaussian codebooks. Satellite
` employs linear precoding to transmit the signal x` = G`s
with G` ∈ CNt×M . The transmission is subject to an average
power constraint ρ`, i.e.,

tr
{
G`G

H
`

}
≤ ρ` . (1)

The GS is equipped with an ULA consisting of Nr ≥ NS
antenna elements. Its received signal is y =

∑NS
`=1 H`x` + n,

where n is independent and identically distributed (i.i.d.) com-
plex circularly symmetric white Gaussian noise with power

σ2
n and H` ∈ CNr×Nt is the channel from satellite ` to the

GS. Due to the collaborative transmission, this is effectively
a point-to-point channel. In particular, let H = [H1, ...,HNS ]

and x =
[
xT1 , ...,x

T
NS

]T
to obtain the equivalent channel

y = Hx + n.

The capacity of this channel is

Ropt = max
tr{GGH}≤

∑NS
`=1 ρ`

log2

∣∣INr + σ−2
n HGGHHH

∣∣ , (2)

where G = [GT
1 , ...,G

T
NS

]T ∈ CNTx×M with NTx = NSNt
[22]. The maximum in (2) is achieved for

Gopt = VP
1
2 , (3)

where UΣVH is the singular value decomposition (SVD) of
H, and P = diag (p1, ..., pNTx) with pµ the transmit power of
the µth beam. Combining (2) and (3), we obtain

Ropt =

M∑
µ=1

log2

(
1 + λµ

pµ
σ2
n

)
, (4)

where λµ the µth Eigenvalue of HHH . The optimal power
allocation P is obtained from the waterfilling algorithm [22].

III. GEOMETRY BASED DL TRANSMISSION

Observe that several implicit assumptions are made in the
derivation of (4). In particular, perfect instantaneous CSI
is required at all involved communication nodes and the
beamforming matrices are computed centralized. Moreover,
the per-satellite power constraints (1) are not necessarily
met as a relaxed sum power constraint over all satellites
is considered in (2). Obtaining the necessary CSI requires
accurate channel estimation at the satellites, which then has
to be shared with all other satellites in the swarm via inter-
satellite links. Consequently, especially in the LEO, where
the coherence time of the channel is very short, SVD based
optimal precoding is not feasible.

However, the channels from the antenna elements of a single
satellite to the GS are highly correlated [12] and thus, although
the matrix V ∈ CNTx×NTx has NTx columns, there are only
M ≤ NS ≤ NTx singular values significantly larger than zero.
Accordingly, only the right singular vectors corresponding to
the M largest singular values are of interest for designing
the precoding matrix G. Furthermore, the communication
between satellites and GSs is usually done under line-of-sight
(LOS). Thus, the channel matrix H is fully determined by the
distances d`m,n between transmit and receive antennas as well
as atmospheric effects [23], [24].

In this section, we exploit readily available position infor-
mation to estimate the dominant large-scale components of
H. Based on this geometrical channel model, we design a
distributed linear precoder that does not require any inter-
satellite coordination and a linear equalization scheme at the
GS that does not rely on traditional CSI acquisition.



A. Geometrical Channel Approximation

Due to the large distance between satellite ` and the GS in
relation to the antenna spacing, the AoA and AoD between
antennas in the transmit and receive arrays are approximately
equal. Thus, the distance d`m,n from the `th satellite’s nth
antenna to the mth GS antenna is approximately

d`m,n ≈ d` −DA(m− 1) cos(θ`)−DA(n− 1) sin(Θ`) (5)

where d` is the distance from the first transmit antenna at
satellite ` to the first receive antenna. Moreover, the mn
channels from satellite ` to the ground station are subject to
the same atmospheric effects [24]. Thus, it is reasonable to
assume that the entries in H` have equal magnitude and differ
only in their phase. In particular, let ν = 2πfc/c0 be the
wavenumber of the radiated carrier signal. Then, the phase
difference between channels from adjacent transmit antennas
to the same receive antenna is νDA sin (Θ`) = π sin (Θ`).
Likewise, the phase difference between channels from a single
transmit antenna to adjacent receive antennas is π cos (θ`)
[13], [19]. Thus, the (m,n)th entry of H` is approximately
α`e

jπ((m−1) cos(θ`)+(n−1) sin(Θ`)), where α` is the i. i. d. com-
plex channel gain from satellite ` to the GS with E {α`} = 0
and Var {α`} = σ2

α. As the satellites are following the same
trajectory, the statistics of {α`}NS

`=1 are assumed to be the same
for all satellites.

Define the steering vectors

aT` =
[
ejπm cos(θ`)

]Nr−1

m=0
, bT` =

[
e−jπn sin(Θ`)

]Nt−1

n=0
. (6)

Then, the approximated channel matrix is

H̃` = α`a`b
H
` ≈ H` (7)

and has rank one. Due to Nr ≥ NS and the satellites having
distinct positions in the orbital plane, i.e., θi 6= θ`, for all i 6= `,
the overall channel matrix H̃ = [α1a1b

H
1 , ..., αNSaNSb

H
NS

] has
rank NS. This allows for the parallel transmission of M = NS
independent streams.

In the following, the precoder and equalizer are designed
based on H̃. This only requires knowledge of the differential
phases between the antennas that is straightforward to obtain
from local position information, as shown above and in
Section II.

B. Precoding

Based on the observation, that we can transmit M = NS
independent data streams in parallel, we propose the following
geometry based precoder

Ggeo =

√
1

Nt
blkdiag

(√
ρ1b1, . . . ,

√
ρNSbNS

)
. (8)

Thus, satellite ` transmits into the direction of the eigenvector
of E

{
H̃HH̃

}
. Let g`,geo =

√
ρ`/Ntb`, then, due to the block

diagonal precoding matrix, satellite ` transmits x` = g`,geos`,
i.e., it needs not know s but only their part s` of the stream.
Note that according to (8), the per satellite average power con-
straint (1) is always satisfied. Furthermore, satellite ` only has

to know its AoD Θ` and no cooperation between the satellites
is needed to determine the precoding matrix Ggeo. In addition,
the proposed precoding is based on manipulating only the
phase at each antenna and thus, an efficient implementation
with a single RF chain per satellite is possible [13].

C. Linear Equalization

In a satellite swarm, all satellites are usually of the same
type [9] and thus, it is assumed that all satellites transmit
with the same power, in the following, i.e., ρ` = ρ, for all `.
Assuming the previously proposed precoder (8) and employing
a linear equalizer W = [w1, ...,wNS ]

H ∈ CNS×Nr at the GS,
the estimated signal is s̃ = WHGgeos + Wn. Consequently,
the signal transmitted by satellite i interferes with the signal
transmitted by satellite `. Then, the signal-to-interference-and-
noise ratio (SINR) of the `th stream is

Γ` =

∣∣wH
` H`g`,geo

∣∣2∑
i 6=`
∣∣wH

` Higi,geo
∣∣2 + σ2

nw
H
` w`

(9)

=
wH
` H`g`,geog

H
`,geoH

H
` w`

wH
`

(∑
i 6=` Higi,geogHi,geoH

H
i + σ2

nINr

)
wH
`

(10)

and the achievable rate Rlin is given by the sum of the
individual rates

Rlin =

NS∑
`=1

log2 (1 + Γ`) (11)

Observe that Γ` is independent of wi for all i 6= `. Thus, (11)
is maximized by optimizing each Γ` separately. Since Γ` is a
generalized Rayleigh quotient [25], it’s maximizer is [26]

wH
`,opt = gH`,geoH

H
`

(
NS∑
i=1

Higi,geog
H
i,geoH

H
i + σ2

nINr

)−1

.

(12)

However, acquiring perfect instantaneous CSI H is costly.
Instead, we obtain the equalizer based on the approximated
channel in Section III-A. Since H̃`g`,geo = α`

√
Ntρa`, the

proposed equalizer is

wH
`,geo = aH`

(
NS∑
i=1

aia
H
i + σ̄2

nINr

)−1

(13a)

= aH`
(
AAH + σ̄2

nINr

)−1
(13b)

where σ̄2
n = σ2

n/(σ
2
αNtρ) and A = [a1, ...,aNS ]. Note that the

proposed equalizer only requires the knowledge of the AoAs
{θ`}NS

`=1 from all satellites as well the signal-to-noise ratio
(SNR) 1/σ̄2

n at the GS.

IV. OPTIMAL INTER-SATELLITE DISTANCE

Based on the channel approximation (7), the interconnection
between the inter-satellite distance DS and the achievable rate
is now analyzed. Assuming perfect CSI at the GS and the fixed



precoder Ggeo, the ergodic rate R̃ for H̃ is upper bounded by

R̃opt ≤ log2

∣∣∣∣INr +
1

σ2
n

E
{

H̃GgeoG
H
geoH̃

H
}∣∣∣∣ (14a)

= log2

∣∣∣∣INr +
1

σ̄2
n

AAH

∣∣∣∣ (14b)

Thus, the achievable rate for H̃ is determined by the matrix
A, which is composed of the steering vectors {a`}NS

`=1.
Due to the trail formation, the swarm is fully described by

two parameters: The inter-satellite distance DS and the number
of satellites NS. Choosing a proper inter-satellite distance DS
is crucial, as it directly impacts the angular spread of the AoAs
between the satellites, which can be used to tune the matrix
A such that the achievable rate is maximized, as stated in the
following proposition.

Proposition 1. The optimal inter-satellite distance w.r.t. the
upper bound of the rate (14) is achieved, if the following
relation for the AoA between every two satellites ` and i holds

∀` 6= i : | cos(θ`)− cos(θi)| =
2k

Nr
(15)

where k can be any positive integer number which is not a
multiple of Nr, i.e., k must fulfill mod (k,Nr) 6= 0.

Proof. Observe that (14) is equivalent to

R̃ ≤ log2

∣∣∣∣INS +
1

σ̄2
n

AHA

∣∣∣∣ = log2

(
NS∏
`=1

(
1 +

λ̃`
σ̄2
n

))
(16)

where λ̃` are the positive eigenvalues of AHA. Keeping the
trace of AHA constant, this is maximized if all eigenvalues
have the same value [27, Thm. 2.21]. In other words, any
NS × NS matrix B = AHA maximizing (16) has a single
eigenvalue λ with multiplicity NS .

Further, observe that B is a normal matrix. By [25,
Thm. 2.5.4], B is similar matrix to a diagonal matrix, i.e.,
there exists a nonsingular matrix S such that S−1ΛS = B with
Λ diagonal. Since similar matrices have the same eigenvalues
[25, Cor. 1.3.4], Λ must be λI. Then, for every nonsingular
S, we have B = S−1λIS = λS−1S = λI. It follows that
B = λI is the unique maximizer of (16).

If the AoAs θi and θ` of satellites ` and i satisfy (15),
the steering vectors ai and a` can be represented as different
columns of the Nr × Nr discrete Fourier transform (DFT)
matrix and are thus orthogonal as the DFT is an orthogonal
matrix, i.e.,

aHi a` =

Nr−1∑
m=0

ejπm(cos(θ`)−cos(θi)) (17a)

=

Nr−1∑
m=0

ej2π
km
Nr = 0 . (17b)

Consequently, the matrix AHA becomes a scaled identity
matrix

AHA = NrINS (18)

20 40 60 80
101

102

103

θ` [◦]

D
S,

or
th

[k
m

]

Nr = 10
Nr = 30
Nr = 100

Fig. 2. Required inter-satellite distances DS,orth for different elevation angles
θ` and number of receive antennas Nr at altitude d0 = 600 km to achieve
orthogonal steering vectors

which maximizes the achievable rate (14), as all eigenvalues
are identical.

Consider now two neighbouring satellites ` and `− 1. The
difference of the cosine terms ∆φ is given by

∆φ = cos(θ`)− cos(θ`−1) (19a)

= cos(θ`)−
r0 cos (ϑ` + ∆ϑ)√

d2
0 + 2rEr0 (1− sin (ϑ` + ∆ϑ))

. (19b)

where ∆ϑ = ϑ`−1 − ϑ` = arccos
(
1−D2

S/(2r
2
0)
)

is the
angular distance between both satellites ` − 1 and `, mea-
sured from the Earth’s center, which is constant over time
and identical for all neighbouring satellites. In Fig. 2, the
dependency between the required inter-satellite distance DS,orth
and the AoA θ` in degree to fulfill (15) is shown for an altitude
d0 = 600 km, k = 1 and different numbers of receive antennas
Nr.

Obviously, it is not possible to ensure orthogonal channels
between all satellites during the whole flight with a constant
inter-satellite distance DS, as the AoA changes over time.
Adjusting the inter-satellite distance during the flight requires
additional fuel and increased complexity for flight control and
should thus be avoided.

However, as evaluated numerically in the next section, the
capacity is not decreasing dramatically for ∆Φ > 2/Nr.
Therefore, as a close to optimal heuristic, the condition (15)
can be relaxed, such that the average capacity over the whole
flight is maximized if

min
`

∆φ = min
`

cos(θ`)− cos(θ`−1) ≥ 2

Nr
(20)

holds for each time instance.

V. NUMERICAL EVALUATIONS

A. Channel Model

In this paper, a pure LOS based channel model between the
GS and each satellite is assumed and the carrier frequency is
fc = 20 GHz.



The (m,n)th element of the channel matrix H` is modeled
by

[H`]m,n = h`m,n =
1√
L`m,n

e−j(νd
`
m,n+φatm,`) (21)

where φatm,` ∈ [0, 2π] is a uniformly distributed phase shift
caused by the atmosphere, and L is the path loss, which is
given in decibel as [23]

L`m,n|dB = 20 log10 (2νdm,n)− (ζTx,dB + ζRx,dB)

+ Lsf,` + Lcl,` + Lgas,` + Lts,`
(22)

where Lsf,` ∼ N (0, σ2
sf,`) and Lcl,` are the shadow fading

and clutter loss, repsectively. In LOS Lcl,` = 0 dB and σ2
sf,`

depends on the AoA. The specific values can be found in [23],
while in this paper the rural scenario has been considered.
Lgas,` includes atmospheric gas absorption described in [28]
using the reference standard atmosphere [29]. Eventually, Lts,`
includes the losses due tropospheric scintillation summarized
in [30], [31] and ζTx,dB and ζRx,dB are the transmit and receive
antenna gains, respectively.

The proposed precoding approach for satellite swarms is
evaluated numerically in terms of the achievable rate.

The sum transmit power PTx of the satellite swarm and the
total number of transmit antennas NTx = 60 is independent of
the number of satellites NS inside the swarm, i.e., the power
and transmit antennas of each satellite is ρ = PTx/NS and
Nt = 60/NS, respectively. The GS is assumed to be equipped
with Nr = 100 receive antennas and the minimum elevation
angle is θmin = 30◦. For better comparison, the transmission
is assumed to start if the mean AoA of all satellites θmean =
1/NS

∑NS
`=1 θ` equals the minimum elevation angle θmin, i,e,

the evaluation is done for 30◦ ≤ θmean ≤ 150◦. Furthermore,
the noise power is assumed as PN,dB = −120 dBW and the
the transmit and receive antenna gains are GTx,dB = 17.8 dBi
and GRx,dB = 20 dBi, respectively. The altitude of the orbital
plane is d0 = 600 km during all simulations.

B. Inter-satellite distance

In section IV, the optimal inter-satellite distance DS,orth
based on the channel approximation (7) has been derived.
In Fig. 3, the achievable rate (2) is shown in dependence
of the inter-satellite distance DS for a total transmit power
PTx = 10 dBW. It can be observed that the rate increases
with an increasing inter-satellite distance up to DS = 12 km.
Afterwards, it periodically increases and decreases, slightly,
independent on the number of satellites NS. The local maxima
are every 12 km, which corresponds to section IV. In Fig. 4,
the achievable rate is averaged over the considered time. Then,
there are no more periodic variations of the achievable rate, but
the achievable rate does not further increase for DS ≥ 65 km,
which justifies the heuristic (20).

C. Geometry Based DL

Throughout this paper, two different precoder and two
different equalizer approaches have been discussed. In Fig.
5 three possible combinations are compared.
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First, the optimal precoder is given by the SVD (3). Further,
assume an ideal, and in general non-linear, equalizer, the
achievable rate Ropt is given by (4). Second, consider the
geometry based precoder (8) and again, an ideal equalizer.
Then, the achievable rate is given by

Rper = log2

∣∣∣∣INr +
1

σ2
n

HGgeoG
H
geoH

H

∣∣∣∣ . (23)

Finally, consider again the geometric precoder (8) and the
linear equalizer (13). The corresponding achievable rate is
given by Rlin in (11). In Fig. 5 these three approaches are
compared. If the inter-satellite distance is DS = 70 km, i.e.,
DS > DS,orth = 65 km for θmean = 30◦, all three approaches
achieve almost the same performance. If on the other hand
DS = 10 km, the achievable rate decreases with a linear
equalizer. However, with the proposed precoder (8), still, the
optimum achivable rate can be reached.

VI. DISCUSSION

In this paper, we developed a low complexity distributed
precoder for satellite swarms and a linear equalizer, both
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utilizing only the geometric relation between the satellites
and GS positions. Given that the inter-satellite distances are
chosen adequately, we have shown that the proposed precoder-
equalizer combination achieves a performance very close
to the capacity upper bound obtained by assuming perfect
CSI and instantaneous coordination between satellites. This
only requires positional knowledge at all terminals, a small
amount of CSI at the GS, i.e., tracking of one scalar channel
coefficient per satellite, no CSI at the transmitter and no active
coordination between satellites. Of course, in a real world
system even these assumptions might not hold. In particular,
the satellite positions are subject to small perturbations and
channel coefficients are difficult to track perfectly in this high
mobility scenario. However, these aspects can be incorporated
in the system design to make it robust against such imperfec-
tions, as we will show in the journal extension of this paper.
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