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Abstract: Motivated by the recent success of Machine Learning (ML) tools in wireless communica-
tions, the idea of semantic communication by Weaver from 1949 has gained attention. It breaks with
Shannon’s classic design paradigm by aiming to transmit the meaning of a message, i.e., semantics,
rather than its exact version and, thus, enables savings in information rate. In this work, we extend
the fundamental approach from Basu et al. for modeling semantics to the complete communications
Markov chain. Thus, we model semantics by means of hidden random variables and define the
semantic communication task as the data-reduced and reliable transmission of messages over a
communication channel such that semantics is best preserved. We consider this task as an end-to-end
Information Bottleneck problem, enabling compression while preserving relevant information. As
a solution approach, we propose the ML-based semantic communication system SINFONY and
use it for a distributed multipoint scenario; SINFONY communicates the meaning behind multiple
messages that are observed at different senders to a single receiver for semantic recovery. We ana-
lyze SINFONY by processing images as message examples. Numerical results reveal a tremendous
rate-normalized SNR shift up to 20 dB compared to classically designed communication systems.

Keywords: semantic communication; wireless communications; wireless networks; infomax; information
bottleneck; machine learning; task-oriented communication; goal-oriented communication

1. Introduction

When Shannon laid the theoretical foundation of the research area of communications
engineering back in 1948, he deliberately excluded semantic aspects from the system
design [1,2]. In fact, the idea of addressing semantics in communications arose shortly after
Shannon’s work in [2], but it remained largely unexplored. Since then, the design focus of
communication systems has been on digital error-free point-to-point symbol transmission.

Today, the systems already operate close to the Shannon limit calling for a paradigm
shift towards including semantic content of messages in the system design. For example,
the data traffic growth still continues with the emergence of the Internet-of-Everything in-
cluding, e.g., autonomous driving and virtual reality, and cannot be managed by semantics-
agnostic communication as it limits the achievable efficiency in terms of bandwidth, power,
latency, and complexity trade-offs [3]. Other notable examples include wireless sensor net-
works, broadcast scenarios, and non-ergodic channels where separation of source and chan-
nel coding according to Shannon’s digital design paradigm is generally suboptimal [4,5].

Owing to the great success of Artificial Intelligence (AI) and, in particular, its sub-
domain Machine Learning (ML), ML tools have been recently investigated for wireless
communications and has shown promising application for improving the performance
complexity trade-off [6–8]. Now, ML with its ability to extract features appears to be a
proper means to realize a semantic design. Further, we note that the latter design is sup-
ported and possibly enabled by the 6G vision of integrating AI and ML on all layers of the
communications system design, i.e., by an ML-native air interface.

Motivated by these new ML tools, and driven by the unprecedented needs of the next
wireless communication standard, 6G, in terms of data rate, latency, and power, the idea
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of semantic communication has received considerable attention [2,9–13]. It breaks with
the existing classic design paradigms by including semantics in the design of the wireless
transmission. The goal of such a transmission is, therefore, to deliver the required data
from which the highest levels of quality of information may be derived, as perceived by
the application and/or the user. More precisely, semantic communication aims to transmit
the meaning of a message rather than its exact version and hence enables compression and
coding to the actual semantic content. Thus, savings in bandwidth, power, and complexity
are expected.

In the following, we first summarize in Section 2 related work on semantic communica-
tion and justify our main contributions in Section 3. In Section 4.1, we reinterpret Weaver’s
philosophical considerations paving the way for our proposed theoretical framework in
Section 4. Finally, in Sections 5 and 6, we provide one numerical example of semantic
communication, i.e., SINFONY, and summarize the main results, respectively.

2. Related Work

The notion of semantic communication traces back to Weaver [2] who reviewed Shan-
non’s information theory [1] in 1949 and amended considerations with regard to semantic
content of messages. Often quoted is his statement that “there seem to be [communication]
problems at three levels” [2]:

A. How accurately can the symbols of communication be transmitted? (The technical problem.)
B. How precisely do the transmitted symbols convey the desired meaning? (The semantic

problem.)
C. How effectively does the received meaning affect conduct in the desired way? (The

effectiveness problem.)

Since then semantic communication was mainly investigated from a philosophical
point of view, see, e.g., [14,15].

The generic model of Weaver was revisited by Bao, Basu et al. in [16,17] where
the authors define semantic information source and semantic channel. In particular, the
authors consider a semantic source that “observes the world and generates meaningful messages
characterizing these observations” [17]. The source is equivalent to conclusions, i.e., “models”
of the world, that are unequivocally drawn following a set of known inference rules based
on observation of messages. In [16], the authors consider joint semantic compression
and channel coding at Level B with the classic transmission system, i.e., Level A, as the
(semantic) channel. In contrast, [17] only deals with semantic compression and uses a
different definition of the semantic channel (which we will make use of in this article): It is
equal to the entailment relations between “models” and “messages”. By this means, the
authors are able to derive semantic counterparts of the source and channel coding theorems.
However, as the authors admit, these theorems do not tell how to develop optimal coding
algorithms and the assumption of a logic-based model-theoretical description leads to

“many non-trivial simplifications” [16].
In [18], the authors follow a different approach in the context of Natural Language

Processing (NLP). They define semantic similarity as a semantic error measure using
taxonomies, i.e., human knowledge graphs, to quantify the distance between the meanings
of two words. Based on this metric, communication of a finite set of words is modeled as a
Bayesian game from game theory and optimized for improved semantic transmission over
a binary symmetric channel.

Recently, drawing inspiration from Weaver, Bao, Basu et al. [2,16,17] and enabled
by the rise of ML in communications research, Deep Neural Network (DNN)-based NLP
techniques, i.e., transformer networks, were introduced in AutoEncoders (AEs) for the task
of text transmission [19–21]. The aim of these techniques is to learn compressed hidden
representations of the semantic content of sentences to improve communication efficiency,
but the exact recovery of the source (text) is the main objective. The approach improves
performance in semantic metrics, especially at low SNR compared to classical digital trans-
missions. It has been adapted to numerous other problems, e.g., speech transmission [22,23]
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and multi-user transmission with multi-modal data [24]. Even knowledge graphs, i.e., a
prior knowledge base, were incorporated into the transformer-based AE design to improve
inference at the receiver side and, thus, text recovery [25].

Not considering Weaver’s idea of semantic communication in particular, the authors
in [26] show, for the first time, that task-oriented communications (Level C) for edge
cloud transmission can be mathematically formulated as an Information Bottleneck (IB)
optimization problem. Moreover, for solving the IB problem, they introduce a DNN-based
approximation and show its applicability for the specific task of edge cloud transmission.
The terminus “semantic information” is only mentioned once in [26] referring to Joint Source-
Channel Coding (JSCC) of text from [19] using recurrent neural networks. In [19], the
authors observe that sentences that express the same idea have embeddings that are close
together in Hamming distance. But they use cross entropy between words and estimated
words as the loss function and use the word error rate as the performance measure, which
both do not reflect if two sentences have the same meaning but rather that both are exactly
the same.

As a result, semantic communication is still a nascent field; it still remains unclear
what this term exactly means [27] and, in particular, its distinction from JSCC [19,28]. As
a result, many survey papers aim to provide an interpretation, see, e.g., [9–13]. We will
revisit this issue in Section 4.

3. Main Contributions

The main contributions of this article are:

• Motivated by the approach of Bao, Basu et al. [16,17], we adopt the terminus of a
semantic source. Inspired by Weaver’s notion, we bring it to the context of com-
munications by considering the complete Markov chain, including semantic source,
communications source, transmit signal, communication channel, and received signal
in contrast to both [16,17]. Further, we also extend beyond the example of determin-
istic entailment relations between “models” and “messages” based on propositional
logic in [16,17] to probabilistic semantic channels.

• We define the task of semantic communication in the sense that we perform data
compression, coding, and transmission of messages observed such that the semantic
Random Variable (RV) at a recipient is best preserved. Basically, we implement joint
source-channel coding of messages conveying the semantic RV, but not differentiating
between Levels A and B. We formulate the semantic communication design either
as an Information Maximization or as an Information Bottleneck (IB) optimization
problem [29–31].

– Although the approach pursued here again leads to an IB problem as in [26], our
article introduces a new classification and perspective of semantic communica-
tion and different ML-based solution approaches. Different from [26], we solve
the IB problem maximizing the mutual information for a fixed encoder output
dimension that bounds the information rate.

– The publication presented here differs also both in the interpretation of what is
meant by semantic information and in the objective of recovering this seman-
tic information from approaches to semantic communication presented in the
literature like, e.g., [21,32].

• Finally, we propose the ML-based semantic communication system SINFONY for
a distributed multipoint scenario in contrast to [26]: SINFONY communicates the
meaning behind multiple messages that are observed at different senders to a single
receiver for semantic recovery. Compared to the distributed scenario in [33,34], we
include the communication channel.

• We analyze SINFONY by processing images as an example of messages. Notably, nu-
merical results reveal a tremendous rate-normalized SNR shift up to 20 dB compared
to classically designed communication systems.



Sensors 2023, 23, 6347 4 of 23

4. A Framework for Semantics
4.1. Philosophical Considerations

Despite the much-renewed interest, research on semantic communication is still in its
infancy and recent work reveals a differing understanding of the word semantics. In this
work, we contribute our interpretation. To motivate it, we shortly revisit the research birth
hour of communications from a philosophical point of view; its theoretical foundation was
laid by Shannon in his landmark paper [1] in 1948.

He stated that “Frequently the messages have meaning; that is they refer to or are correlated
according to some system with certain physical or conceptual entities. These semantic aspects of
communication are irrelevant to the engineering problem”. In fact, this viewpoint abstracts all
kinds of information one may transmit, e.g., oral and written speech, sensor data, etc., and
also lays the foundation for the research area of Shannon information theory. Thus, it found
its way into many other research areas where data or information are processed, including
Artificial Intelligence (AI) and especially its subdomain Machine Learning (ML).

Weaver saw this broad applicability of Shannon’s theory back in 1949. In his compre-
hensive review of [1], he first states that “there seem to be [communication] problems at three
levels” [2] already mentioned in Section 2. These three levels are quoted in recent works,
where Level C is oftentimes referred to as goal-oriented communication instead [10].

But we note that, in his concluding section, he then questions this segmentation. He
argues for the generality of the theory at Level A for all levels and “that the interrelation of
the three levels is so considerable that one’s final conclusion may be that the separation
into the three levels is really artificial and undesirable”.

It is important to emphasize that the separation is rather arbitrary. We agree with
Weaver’s statement because the most important point that is also the focus herein is the
definition of the term semantics, e.g., by Basu et al. [16,17]. Note that the entropy of
the semantics is less than or equal to the entropy of the messages. Consequently, we
can save information rate by introducing meaning or context. In fact, we are able to add
arbitrarily many levels of semantic details to the communication problem and optimize
communications for a specific semantic background, e.g., an application or human.

4.2. Semantic System Model
4.2.1. Semantic Source and Channel

Now, we will define our information-theoretic system model of semantic communica-
tion. Figure 1 shows the schematic of our model. We assume the existence of a semantic
source, described as a hidden target multivariate Random Variable (RV) z ∈ MNz×1

z from a
domainMz of dimension Nz distributed according to a probability density or mass function
(pdf/pmf) p(z). To simplify the discussion, we assume it to be discrete and memoryless.
For the remainder of the article, note that the domain of all RVsMmay be either discrete or
continuous. Further, we note that the definition of entropy for discrete and continuous RVs
differs. For example, the differential entropy of continuous RVs may be negative whereas
the entropy of discrete RVs is always positive [35]. Without loss of generality, we will thus
assume all RVs either to be discrete or to be continuous. In this work, we avoid notational
clutter by using the expected value operator, replacing the integral by summation over
discrete RVs, the equations are also valid for discrete RVs and vice versa.

Our approach is similar to that of [16,17]. In [16,17], the semantic source is described
by “models of the world”. (Note that, in [17], the semantic information source is defined as
a tuple (z, s, p(z, s), L). In this original notation, z is the model, s the message, p(z, s) the
joint distribution of z and s, and L is the deterministic formal language.) In [17], a semantic
channel then generates messages through entailment relations between “models” and
“messages”. We will call these “messages” source signal and define it to be a RV s ∈ MNs×1

s
as it is usually observed and enters the communication system. In the classic Shannon
design, the aim is to reconstruct the source s as accurately as possible at the receiver side.
Further, we note that the authors in [17] considered the example of a semantic channel
with deterministic entailment relations between z and s based on propositional logic. In
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this article, we go beyond this assumption and consider probabilistic semantic channels
modeled by distribution p(s|z) that include the entailment in [17] as special cases, i.e.,
p(s|z) = δ(s− f (z)) where δ(·) is the Dirac delta function and f (·) is any generic function.
Our viewpoint is motivated by the recent success of pattern recognition tools that advanced
the field of AI in the 2010s and may be used to extract semantics [7].

Semantic Source
z ∼ p(z)

Semantic Channel
p(s|z)

Encoder
pθ(x|s) = δ(x− µθ(s))

Communication
Channel p(y|x)

Semantic Decoder
qϕ(z|y)

Classic Decoder
pθ(s|y)

Interpretation
p(z|s)

Semantic
Estimate ẑ

pθ(y|s)

z s x

y

z s

z

Figure 1. Block diagram of the considered semantic system model.

Our approach also extends models as in [21]. There, the authors design a semantic
communication system for the transmission of written language/text similar to [19] using
transformer networks. In contrast to our work, [21] does not define meaning as RV z. The
objective in [21] is to reconstruct s (sentences) as well as possible, rather than the meaning
(RV z) conveyed in s. Optimization is completed with regard to a loss function consisting
of two parts, cross entropy between language input s and output estimate ŝ, as well as
a scaled mutual information term between transmit signal x and receive signal y. After
optimization, the authors measure semantic performance by some semantic metric L(s, ŝ).

We now provide an example to explain what we understand under a semantic source
z and channel p(s|z). Let us imagine a biologist who has an image of a tree. The biologist
wants to know what kind of tree it is by interpreting the observed data (image). In this case,
the semantic source z is a multivariate RV composed of a categorical RV with M tree classes.
For any realization (sample value) zi of the semantic source, the semantic channel p(s|z)
then outputs with some probability one image si of a tree conveying characteristics of z,
i.e., its meaning. Note that the underlying meaning of the same sensed data (message) can
be different for other recipients, e.g., humans or tasks/applications, i.e., in other semantic
contexts. Imagine a child, i.e., a person with different characteristics (personality, expertise,
knowledge, goals, and intentions) than the biologist, who is only interested if he/she can
climb up this tree or whether the tree provides shade. Thus, we include the characteristics
of the sender and receiver in RV z and consider it directly in compression and encoding.

Compared to [16], we, therefore, argue that we also include level C by semantic source
and channel since context can be included on increasing layers of complexity. First, a RV z1
might capture the interpretation, like the classification of images or sensor data. Moving
beyond the first semantic layer, then a RV z2 might expand this towards a more general
goal, like keeping a constant temperature in power plant control. In fact, we can add
or remove context, i.e., semantics and goals, arbitrarily often according to the human or
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application behind, and we can optimize the overall (communication) system with regard
to z1, z2, . . . , zi, respectively.

As a last remark, we note that we basically defined probabilistic semantic relationships,
and it remains the question of how exactly they might look. In our example, the meaning
of the images needs to be labeled into real-world data pairs {si, zi} by experts/humans,
since image recognition lacks precise mathematical models. This is also true for NLP [21];
how can we measure if two sentences have the same meaning, i.e., how does the semantic
space look like? In contrast, in [17], the authors are able to solve their well-defined tech-
nical problem (motion detection) by a model-driven approach. We can thus distinguish
between model and data-driven semantics, which both can be handled within Shannon’s
information theory.

4.2.2. Semantic Channel Encoding

After the semantic source and channel in Figure 1, we extend upon [16] by differenti-
ating between “message”/source signal s and transmit signal x ∈ MNTx×1

x . Our challenge
is to encode the source signal s onto the transmit signal vector x for reliable semantic com-
munication through the physical communication channel p(y|x), where y ∈ MNRx×1

y is the
received signal vector. We assume the encoder pθ(x|s) to be parametrized by a parameter
vector θ ∈ RNθ×1. Note that pθ(x|s) is probabilistic here, but assumed to be deterministic
in communications with pθ(x|s) = δ(x− µθ(s)) and encoder function µθ(s).

In summary, in contrast to both [16,17], we consider the complete Markov chain
z ↔ s ↔ x ↔ y including semantic source z, communications source s, transmit signal
x and receive signal y. By this means, we distinguish from [17] which only deals with
semantic compression, and [16] which is about joint semantic compression and channel
coding (Level B). In [16], the authors consider the classic transmission system (Level A)
as the (semantic) channel (not to be confused with the definition of the semantic channel
in [17] which we make use of in this publication).

At the receiver side, one approach is maximum a posteriori decoding with regard to
RV s that uses the posterior pθ(s|y), being deduced from prior p(s) and likelihood pθ(y|s)
by application of Bayes law. Based on the estimate of s, then the receiver interprets the
actual semantic content z by p(z|s).

Another approach we propose is to include the semantic hidden target RV z into the
design by processing pθ(z|y). If the calculation of the posterior is intractable, we can replace
pθ(z|y) by the approximation qϕ(z|y), i.e., the semantic decoder, with parameters ϕ ∈ RNϕ×1.
We expect the following benefit: We assume the entropyH(z) = Ez∼p(z)[− ln p(z)] of the
semantic RV z, i.e., the actual semantic uncertainty or information content, to be less or
equal to the entropy H(s) of the source s, i.e., H(z) ≤ H(s). There, Ex∼p(x)[ f (x)] denotes
the expected value of f (x) with regard to both discrete or continuous RVs x. Consequently,
since we would like to preserve the relevant, i.e., semantic, RV z rather than s, we can
compress more s.t. preserving z conveyed in s. Note that in semantic communication the
relevant variable is z, not s. Thus, processing pθ(s|y) without taking z into consideration
resembles the classical approach. Instead of using (and transmitting) s for inference of z, we
now want to find a compressed representation y of s containing the relevant information
about z.

4.3. Semantic Communication Design via InfoMax Principle

After explaining the system model and the basic components, we are able to approach
a semantic communication system design. We first define an optimization problem to
obtain the encoder pθ(x|s) following the Information Maximization (InfoMax) principle
from an information theoretic perspective [35]. Thus, we like to find the distribution pθ(x|s)
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that maps s to a representation x such that most information of the relevant RV z is included
in y, i.e., we maximize the Mutual Information (MI) I(z; y) with regard to pθ(x|s) [36]:

arg max
pθ(x|s)

Iθ(z; y) (1)

= arg max
pθ(x|s)

Ez,y∼pθ(z,y)

[
ln

pθ(z, y)
p(z)pθ(y)

]
(2)

= arg max
pθ(x|s)

H(z)−H(pθ(z, y), pθ(z|y)) (3)

= arg max
pθ(x|s)

Ez,y∼pθ(z,y)[ln pθ(z|y)] . (4)

There,H(p(x), q(x)) = Ex∼p(x)[− ln q(x)] is the cross entropy between two pdfs/pmfs p(x)
and q(x). Note independence from θ in H(z) and dependence in pθ(z|y) and pθ(z, y)
through the Markov chain z→ s→ y. Problem (1) is concave with regard to the encoder
pθ(x|s) for fixed p(s) [37], but not necessarily concave with regard to the encoder parame-
ters θ. For example, it is non-concave if the encoder function is non-convex with regard to
its parameters being typically the case with DNN encoders. It is worth mentioning that
we so far have not set any constraint on the variables we deal with. Hence, the form of
pθ(y|s) has to be constrained to avoid learning a trivial identity mapping y = s. We indeed
constrain the optimization by our communication channel p(y|x) we assume to be given.

If the calculation of the posterior pθ(z|y) in (4) is intractable, we are able to replace
it by a variational distribution qϕ(z|y) with parameters ϕ. Similar to the transmitter,
DNNs are usually proposed [21,38] for the design of the approximate posterior qϕ(z|y)
at the receiver. To improve the performance complexity trade-off, the application of deep
unfolding can be considered, a model-driven learning approach that introduces model
knowledge of pθ(s, x, y, z) to create qϕ(z|y) [8,39]. With qϕ(z|y), we are able to define a
Mutual Information Lower Bound (MILBO) [36] similar to the well-known Evidence Lower
Bound (ELBO) [7]:

Iθ(z; y) ≥ Ez,y∼pθ(z,y)
[
ln qϕ(z|y)

]
(5)

= Ey∼pθ(y)

[
Ez∼pθ(z|y)

[
ln qϕ(z|y)

]]
(6)

= −Ey∼pθ(y)
[
H
(

pθ(z|y), qϕ(z|y)
)]

(7)

= −LCE
θ,ϕ . (8)

The lower bound holds since−H(pθ(z, y), pθ(z|y)) itself is a lower bound of the expression
in (3) and Ez,y∼pθ(z,y)

[
ln pθ(z|y)/ ln qϕ(z|y)

]
≥ 0. Now, we can calculate optimal values of

θ and ϕ of our semantic communication design by minimizing the amortized cross entropy
LCE

θ,ϕ in (7), i.e., marginalized across observations y [8].
Thus, the idea is to learn parametrizations of the transmitter discriminative model

and of the variational receiver posterior, e.g., by AEs or reinforcement learning. Note that,
in our semantic problem (1), we do not auto-encode the hidden z itself, but encode s to
obtain z by decoding. This can be seen from Figure 1 and by rewriting the amortized cross
entropy (7) and (8):

LCE
θ,ϕ = Ey∼p(y)

[
H
(

pθ(z|y), qϕ(z|y)
)]

(9)

= Es,x,y,z∼pθ(s,x,y,z)
[
− ln qϕ(z|y)

]
(10)

= Es,z∼p(s,z)

[
Ex∼pθ(x|s)

[
Ey∼p(y|x)

[
− ln qϕ(z|y)

]]]
.
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We can further prove the amortized cross entropy to be decomposable into

LCE
θ,ϕ =Ey∼pθ(y)

[
Ez∼pθ(z|y)[− ln qϕ(z|y) + ln pθ(z|y)− ln pθ(z|y)]

]
(11)

=Ey∼pθ(y)
[
DKL

(
pθ(z|y) ‖ qϕ(z|y)

)]
+ H(z|y)︸ ︷︷ ︸

=−Iθ(z;y)+H(z)

(12)

=H(z)− Iθ(z; y)︸ ︷︷ ︸
enc. objective

+Ey∼pθ(y)
[
DKL

(
pθ(z|y) ‖ qϕ(z|y)

)]︸ ︷︷ ︸
dec. objective

. (13)

In the end, maximization of the MILBO with regard to θ and ϕ balances maximization of
the mutual information Iθ(z; y) and minimization of the Kullback–Leibler (KL) divergence
DKL

(
pθ(z|y) ‖ qϕ(z|y)

)
. The former objective can be seen as a regularization term that

favors encoders with high mutual information, for which decoders can be learned that are
close to the true posterior.

4.4. Classical Design Approach

If we consider classical communication design approaches, we would solve the problem

arg max
pθ(x|s)

I(s; y) (14)

which relates to Joint Source-Channel Coding (JSCC). There, the aim is to find a representation
x that retains a significant amount of information about the source signal s in y. Again, we can
apply the lower bound (8). In fact, bounding (14) by (8) shows that approximate maximization
of the mutual information justifies the minimization of the cross entropy in the AutoEncoder
(AE) approach [6], often seen in recent wireless communication literature [6,19,28].

4.5. Information Bottleneck View

It should be stressed that we have not set any constraints on the variables in the
InfoMax problem so far. However, in many applications, compression is needed because of
the limited information rate. Therefore, we can formulate an optimization problem where
we like to maximize the relevant information Iθ(z; y) subject to the constraint to limit the
compression rate Iθ(s; y) to a maximum information rate IC:

arg max
pθ(x|s)

Iθ(z; y) s.t. Iθ(s; y) ≤ IC . (15)

Problem (15) is an important variation of the InfoMax principle and called the Informa-
tion Bottleneck (IB) problem [10,29,40,41]. The IB method introduced by Tishby et al. [29]
has been the subject of intensive research for years and has proven to be a suitable
mathematical/information-theoretical framework for solving numerous problems—as
well as in wireless communications [30,31,42,43]. Note that we aim for an encoder that com-
presses s into a compact representation x for discrete RVs by clustering and for continuous
RVs by dimensionality reduction.

To solve the constrained optimization problem (15), we can use Lagrangian optimiza-
tion and obtain

arg max
pθ(x|s)

Iθ(z; y)− βIθ(s; y) (16)

with Lagrange multiplier β ≥ 0. The Lagrange multiplier β allows the defining of a trade-
off between the relevant information Iθ(z; y) and compression rate Iθ(s; y), which indicates
the relation to rate distortion theory [30]. With β = 0, we have the InfoMax problem (1)
whereas for β→ ∞ we minimize compression rate. Calculation of the mutual information
terms may be computationally intractable, as in the InfoMax problem (1). Approximation
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approaches can be found in [44,45]. Notable exceptions include if the RVs are all discrete or
Gaussian distributed.

We note that in [10,26] the authors already introduced the IB problem to task-oriented
communications. But [10,26] do not address our viewpoint or classification. We compress
and channel encode the messages/communications source s for given entailment p(s|z), in
the sense of a data-reduced and reliable communication of the semantic RV z. Basically, we
implement joint source-channel coding of s s.t. preserving the semantic RV z, and we do not
differentiate between Levels A and B, as indicated by Weaver’s notion outlined in Section 2.
Indeed, we draw a direct connection to IB compared to related semantic communication
literature [19,21,38] that, so far, only included optimization with terms reminiscent of the
IB problem.

4.5.1. Semantic Information Bottleneck

This article does not only distinct itself on a conceptual, but also on a technical level
from [26,34]. We follow a different strategy to solve (15).

First, using the data processing inequality [46], we see that the compression rate
is upper bounded by the mutual information of the encoder Iθ(s; x) and that of the
channel I(x; y):

Iθ(s; y) ≤ min{Iθ(s; x), I(x; y)} . (17)

In case of negligible encoder compression Iθ(s; x) > I(x; y), the channel becomes the
limiting factor of information rate. For example, with a deterministic continuous mapping
x = µθ(s), this is true since Iθ(s; x)→ ∞. Using the chain rule of mutual information [46],
we see that this upper bound on compression rate grows with the dimension of x, i.e., the
number of channel uses NTx:

Iθ(s; y) ≤ I(x; y) =
NTx

∑
n=1

I(xn; y|xn−1, . . . , x1)︸ ︷︷ ︸
≥0

. (18)

Assuming y to be conditional dependent on xn given xn−1, . . . , x1, i.e., p(y|xn, . . . , x1) 6=
p(y|xn−1, . . . , x1) being, e.g., true for an AWGN channel, it is I(xn; y|xn−1, . . . , x1) > 0 [46]
and the sum in (18) indeed strictly increases. Replacing y in I(x; y) of (18) by s, the result also
holds for encoder compression Iθ(s; x), respectively. Hence, increasing the encoder output
dimension NTx, we can increase the possible compression rate Iθ(s; y). Interchanging x and
y in (18), we see that the same holds for the receiver input dimension NRx.

Furthermore, the mutual information of the channel and, thus, the compression rate
are upper bounded by channel capacity:

Iθ(s; y) ≤ I(x; y) ≤ max
p(x);E[|xn |2]≤1

I(x; y) = C . (19)

For example, with an AWGN channel with noise standard deviation σn, we have C =
NTx/2 · ln

(
1 + 1/σ2

n
)

again increasing with NTx.
Now, let us assume the RVs to be discrete so thatH(x|s) ≥ 0. Indeed, this is true if the

RVs are processed discretely with finite resolution on digital signal processors, as in the
numerical example of Section 5. As long as Iθ(s; x) < C, all information of the discrete RVs
can be transmitted through the channel with arbitrary low error probability according to
Shannon’s channel coding theorem [1]. Then, we can upper bound encoder compression
Iθ(s; x) and thus compression rate Iθ(s; y) by the sum of entropies of any output xn [46] of
the encoder pθ(x|s)—each with cardinality |Mx|:

Iθ(s; x) = H(x)−H(x|s)︸ ︷︷ ︸
≥0

≤ H(x) ≤
NTx

∑
n=1
H(xn) ≤ NTx · log2(|Mx|) . (20)
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Note that the entropy sum in (20) grows again with NTx for discrete RVs since
0 ≤ H(xn) ≤ log2(|Mx|). Moreover, we can define an encoder capacity Cθ analogous
to channel capacity C in (19) that upper bounds encoder compression Iθ(s; x). It may be
restricted by the chosen (DNN) model pθ(x|s) and optimization procedure with regard to
θ, i.e., the hypothesis class [7].

In summary, we have proven by (19) and (20) that there is an information bottleneck
when maximizing the relevant information Iθ(z; y) either due to the channel distortion
I(x; y) or encoder compression Iθ(s; y).

To fully exploit the available resources, we set constraint IC to be equal to the upper
bound, i.e., channel capacity C or the upper bound on encoder compression rate NTx ·
log2(|Mx|). In both cases, the upper bound grows (linearly) with the encoder output
dimension NTx, and, thus, we can set the constraint IC higher or lower by choosing NTx.

With fixed constraint IC, we maximize the relevant information Iθ(z; y). By doing
so, we derive an exact solution to (15) that maximizes Iθ(z; y) for a fixed encoder output
dimension that bounds the compression rate. As in the InfoMax problem, we can exploit
the MILBO to use the amortized cross entropy LCE

θ,ϕ in (9) as the optimization criterion.

4.5.2. Variational Information Bottleneck

In [26], however, the authors solve the variational IB problem of (16) and require
tuning of β. Albeit also using the MILBO as a variational approximation to the first term
in (16), they introduce a KL divergence term as an upper bound to compression rate
Iθ(s; y) derived by DKL(pθ(y) ‖ qϑ(y)) ≥ 0 with some variational distribution qϑ(y) with
parameters ϑ [44]. Then, the variational IB objective function reads [44]:

Iθ(z; y)− βIθ(s; y) ≥ Ez,y∼pθ(z,y)
[
ln qϕ(z|y)

]
− β · Es∼p(s)[DKL(pθ(y|s) ‖ qϑ(y))] . (21)

Moreover, the authors use a log-uniform distribution as the variational prior qϑ(y) in [26]
to induce sparsity on y so that the number of outputs is dynamically determined based
on the channel condition or SNR, i.e., pθ(y|s, σ2

n). The approach additionally necessitates
approximation of the KL divergence term in (21) and estimation of the noise variance σ2

n.
With our approach we avoid the additional approximations and tuning of the hy-

perparameter β in (21) possibly enabling better semantic performance as well as reduced
inference and training complexity at the cost of full usage of NTx channels even when the
channel capacity C enables its reduction. We leave a numerical comparison to [26] for
future research as this is out of the scope of this paper.

4.6. Implementation Considerations

Now, we will provide important implementation considerations for optimization of
(8)/(10) and (15). We note that computation of the MILBO leads to similar problems as
for the ELBO [35]; if calculating the expected value in (10) cannot be solved analytically or
is computationally intractable—as typically the case with DNNs—we can approximate it
using Monte Carlo sampling techniques with N samples {zi, si, xi, yi}N

i=1.
For Stochastic Gradient Descent (SGD)-based optimization like, e.g., in the AE ap-

proach, the gradient with regard to ϕ can then be calculated by

∂LCE
θ,ϕ

∂ϕ
=

∂

∂ϕ
Ez,s,y∼pθ(y|s)p(s|z)p(z)

[
− ln qϕ(z|y)

]
(22)

=− Ez,s,y∼pθ(y|s)p(s|z)p(z)

[
∂ ln qϕ(z|y)

∂ϕ

]
(23)

≈− 1
N

N

∑
i=1

∂ ln qϕ(zi|yi)

∂ϕ
(24)
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with N being equal to the batch size Nb and by application of the backpropagation algorithm
to ∂

∂ϕ ln qϕ(zi|yi) =
∂

∂ϕqϕ(zi|yi)/qϕ(zi|yi) in Automatic Differentiation Frameworks (ADF),
e.g., TensorFlow and PyTorch. Computation of the so-called REINFORCE gradient with
regard to θ leads to a high variance of the gradient estimate since we sample with regard to
the distribution pθ(y|s) dependent on θ [35].

Reparametrization Trick

Leveraging the direct relationship between θ and y in ln qϕ(z|y) can help reduce
the estimator’s high variance. Typically, e.g., in the Variational AE (VAE) approach, the
reparametrization trick is used to achieve this [35]. Here, we can apply it if we can decompose
the latent variable y ∼ pθ(y|s) into a differentiable function y = fθ(s, n) and a RV n ∼ p(n)
independent of θ. Fortunately, the typical forward model of a communication system
pθ(y|s) fulfills this criterion. Assuming a deterministic DNN encoder x = µθ(s) and
additive noise n with covariance Σ, we can thus rewrite y into fθ(s, n) = µθ(s) + Σ1/2 · n
and, accordingly, the amortized cross entropy gradient into:

∂LCE
θ,ϕ

∂θ
=− ∂

∂θ
Ez,s,y∼pθ(y|s)p(s,z)

[
ln qϕ(z|y)

]
(25)

=− Ez,s,n∼p(n)p(s|z)p(z)

[
∂ fθ(s, n)

∂θ
·

∂ ln qϕ(z|y)
∂y

]
(26)

≈− 1
N

N

∑
i=1

∂ fθ(si,ni)

∂θ
·

∂ ln qϕ(zi|yi)

∂y

∣∣∣∣
y= fθ(si ,ni)

. (27)

The reparametrization trick can be easily implemented in ADFs by adding a noise
layer—typically used for regularization in ML literature—after (DNN) function x = µθ(s).
Then, our loss function (10) amounts to

LCE
θ,ϕ ≈ −

1
N

N

∑
i=1

ln qϕ(zi|yi = fθ(si,ni)) . (28)

This enables the joint optimization of both θ and ϕ, as demonstrated in recent works [6],
treating unsupervised optimization of AEs as a supervised learning problem.

5. Example of Semantic Information Recovery

In this section, we provide one numerical example of data-driven semantics to explain
what we understand under a semantic communication design and to show its benefits: It
is the task of image classification. In fact, we consider our example of the biologist from
Section 4.2 who wants to know what type of tree it is.

For the remainder of this article, we will thus assume the hidden semantic RV to
be a one-hot vector z ∈ {0, 1}M×1 where all elements are zero except for one element
representing one of the M image classes. Then, the semantic channel p(s|z) (see Figure 1)
generates images belonging to this class, i.e., the source signal s.

Note that for point-to-point transmission, as in [26], we could first classify the image
based on the posterior qϕ(z|s), as shown in Figure 2 and transmit the estimate ẑ (encoded
into x) through the physical channel since this would be most rate or bandwidth efficient.

But if the image information is distributed across multiple agents, all (sub) im-
ages may contribute useful information for classification. We could thus lose informa-
tion when making hard decisions on each transmitter’s side. In the distributed setting,
transmission and combination of features, i.e., soft information, is crucial to obtain high
classification accuracy.

Further, we note that transmission of full information, i.e., raw image data s, through
a wireless channel from each agent to a central unit for full image classification would
consume a lot of bandwidth. This case is also shown in Figure 2 assuming perfect com-
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munication links between the output of the semantic channel and the input of the ResNet
Feature Extractor.

z

Sem. Chan.
p(s|z)

ResNet Feature
Extractor

Image:
s ∈ RNx×Ny×Nc

Classifier

ẑ

ResNet classifier:
qϕ(z|s) r ∈ RNFeat×1

Figure 2. Central image processing: Based on the images, ResNet extracts semantics by classification.

Therefore, we investigate a distributed setting shown in Figure 3. There, each of four
agents sees its own image s1, . . . , s4 ∼ p(si|z) being generated by the same semantic RV
z. Based on these images, a central unit shall extract semantics, i.e., perform classification.
We propose to optimize the four encoders pθi (xi|si) with i = 1, . . . , 4, each consisting
of a bandwidth efficient feature extractor (ResNet Feature Extractor i) and transmitter
(Tx i) jointly with a decoder qϕ(z|y = [y1, y2, y3, y4]

T), consisting of a receiver (Rx) and
concluding classifier (Classifier), with regard to cross entropy (10) of the semantic labels (see
Figure 3). Hence, we maximize the system’s overall semantic measure, i.e., classification
accuracy. Note that this scenario is different from both [33,34]; we include a physical
communication channel (Comm. Channel i) since we aim to transmit and not only compress.
For the sake of simplicity, we assume orthogonal channel access. The IB is addressed by
limiting the number of channel uses, which defines the constraint IC in (15).

As a first demonstration example, we use the grayscale MNIST and colored CIFAR10
datasets with M = 10 image classes [47]. We assume that the semantic channel generates
an image that we divide into four equally sized quadrants and each agent observes one
quadrant s1, . . . , s4 ∈ RNx×Ny×Nc , where Nx and Ny is the number of image pixels in the x-
and y-dimension, respectively, and Nc is the number of color channels. Albeit this does not
resemble a realistic scenario, note that we can still show the basic working principle and
ease implementation.

5.1. ResNet

For the design of the overall system, we rely on a famous DNN approach for feature
extraction, breaking records at the time of invention: ResNet [47,48]. The key idea of ResNet
is that it consists of multiple residual units. Each unit’s input is fed directly to its output
and if the dimensions do not match, a convolutional layer is used. This structure enables
fast training and convergence of DNNs since the training error can be backpropagated to
early layers through these skip connections. From a mathematical point of view, usual
DNNs have the design flaw that using a larger function class, i.e., more DNN layers, does
not necessarily increase the expressive power. However, this holds for nested functions
like ResNet which contain the smaller classes of early layers.

Each residual unit itself consists of two Convolutional NNs (CNNs) with subsequent
batch normalization and ReLU activation function, i.e., ρ1(·) = max(·, 0), to extract transla-
tion invariant and local features across two spatial dimensions Nx and Ny. Color channels,
like in CIFAR10, add a third dimension Nc = 3 and additional information. The idea
behind stacking multiple layers of CNNs is that features tend to become more abstract
from early layers (e.g., edges and circles) to final layers (e.g., beaks or tires).
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z

Encoder

Sem. Chan.
p(s1|z)

ResNet Feature
Extractor 1

Tx 1

pθ1(x1|s1)

Comm.
Channel 1

Image 1:
s1 ∈ RNx×Ny×Nc

x1 ∈ RNTx×1

Sem. Chan.
p(s2|z)

ResNet Feature
Extractor 2

Tx 2

pθ2(x2|s2)

Comm.
Channel 2

Image 2:
s2

r2

x2

Sem. Chan.
p(s3|z)

ResNet Feature
Extractor 3

Tx 3

pθ3(x3|s3)

Comm.
Channel 3

Image 3:
s3

r3

x3

Sem. Chan.
p(s4|z)

ResNet Feature
Extractor 4

Tx 4

pθ4(x4|s4)

Comm.
Channel 4

Image 4:
s4

r4

x4

r1 ∈ RNFeat×1

Rx

Classifier

ẑ

Central Unit:
Decoder qϕ(z|y)

y1 ∈ RNRx×1 y2 y3 y4

Figure 3. Semantic INFOrmation traNsmission and recoverY (SINFONY) for distributed agents. Each
agent extracts features for bandwidth-efficient transmission. Based on the received signal, the central
unit extracts semantics by classification.

In this work, we use the preactivation version of ResNet without bottlenecks from [47,48]
implemented for classification on the dataset CIFAR10. In Table 1, we show its structure for
the distributed scenario from Figure 3. There, ResNetBlock is the basic building block of
the ResNet architecture. Each block consists of multiple residual units (res. un.) and we
use 2 for the MNIST dataset and 3 for the CIFAR10 dataset, which means we use ResNet14
and ResNet20, respectively. We arrive at the architecture of central image processing from
Figure 2 by removing the components Tx, (physical) Channel, and Rx and increasing
each spatial dimension by 2 to contain all quadrants of the original image. For further
implementation details, we refer the reader to the original work [48].
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Table 1. Semantic INFOrmation traNsmission and recoverY (SINFONY)—DNN architecture for
distributed image classification.

Component Layer Dimension

Input Image (MNIST, CIFAR10) (14, 14, 1), (16, 16, 3)

4× Conv2D (14, 14, 14), (16, 16, 16)

Feature ResNetBlock (2/3 res. un.) (14, 14, 14), (16, 16, 16)

Extractor ResNetBlock (2/3 res. un.) (7, 7, 28), (8, 8, 32)

ResNetBlock (2/3 res. un.) (4, 4, 56), (4, 4, 64)

Batch Normalization (4, 4, 56), (4, 4, 64)

ReLU activation (4, 4, 56), (4, 4, 64)

GlobalAvgPool2D (56), (64)

4× Tx ReLU NTx

Linear NTx

Normalization (dim.) NTx

4× Channel AWGN NTx

Rx ReLU (4× shared) (2, 2, Nw)

GlobalAvgPool2D Nw

Classifier Softmax M = 10

5.2. Distributed Semantic Communication Design Approach

Our key idea here is to modify ResNet with regard to the communication task by
splitting it at a suitable point where a representation r ∈ RNFeat×1 of semantic information
with low-bandwidth is present (see Figures 2 and 3). ResNet and CNNs in general can be
interpreted to extract features; with full images, we obtain a feature map of size 8× 8×NFeat
after the last ReLU activation (see Table 1). These local features are aggregated by the
global average pooling layers across the 2 spatial dimensions into r. Based on these
NFeat global features in r, the softmax layer finally classifies the image. We note that the
features contain the relevant information with regard to the semantic RV z and are of low
dimension compared to the original image or even its sub-images, i.e., 64 compared to
16× 16× 3 = 768 for CIFAR10.

Therefore, we aim to transmit each agent’s local features ri ∈ RNFeat×1 (i = 1, . . . , 4)
instead of all sub-images si and add the component Tx in Table 1 to encode the features
ri into xi ∈ RNTx×1 for transmission through the wireless channel (see Figure 3). We note
that xi ∈ RNTx×1 is analog and that the output dimension NTx of xi defines the number of
channel uses per agent/image. Note that the less often we use the wireless channel (NTx),
the less information we transmit but the less bandwidth we consume, and vice versa. Hence,
the number of channel uses defines the IB in (15). We implement the Tx module by DNN
layers. To limit the transmission power to one, we constrain the Tx output by the norm
along the training batch or the encoding vector dimension (dim.), i.e., xn = x̃n/

√
E[x̃2

n] or
xi =

√
NTx · x̃i/‖x̃i‖2 where x̃i ∈ RNTx×1 is the output of the layer Linear from Table 1. For

numerical simulations, we choose all Tx layers to have width NTx.
At the receiver side, we use a single Rx module only with shared DNN layers and

parameters ϕRx for all inputs yi. This setting would be optimal if any feature is reflected in
any sub-image and if the statistics of the physical channels are the same. Exploiting the
prior knowledge of location-invariant features and assuming Additive White Gaussian
Noise (AWGN) channels, this design choice seems reasonable. In our experiments, all
layers of the Rx module have width Nw. A larger layer width Nw is equivalent to more
computing power.
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The output of the Rx module can be interpreted as a representation of the image
features ri with index i indicating the spatial location. Thus, we have a representation of a
feature map of size (2, 2, Nw) that we aggregate across the spatial dimension according to
the ResNet structure. Based on this semantic representation, a softmax layer with 10 units
finally computes class probabilities qϕ(z|y) whose maximum is the maximum a posteriori
estimate ẑ. In the following, we name our proposed approach Semantic INFOrmation
traNsmission and recoverY (SINFONY).

5.3. Optimization Details

We evaluate SINFONY in TensorFlow 2 [49] on the MNIST and CIFAR10 datasets.
The source code is available in [50] and the default simulation and training parameters are
summarized in Table 2. We split the dataset into Ntrain = 60 k/50 k training data and 10 k
validation data samples, respectively. For preprocessing, we normalize the pixel inputs to
range [0, 1], but we do not use data augmentation, in contrast to [47,48], yielding slightly
worse accuracy. The ReLU layers are initialized with uniform distribution according to He
and all other layers according to Glorot [51].

Table 2. Default simulation and training parameters.

Parameter Name Variable Value (MNIST, CIFAR10)

Batch size Nb 64

Epoch number Ne 20, 200

Learning rate ε Schedule: ε = {0.1, 0.01, 0.001}
with Ne = {3, 6}, {100, 150}

Optimizer SGD with momentum= 0.9

Preprocessing Input normalization to [0, 1]

Training SNR range SNRtrain [−4, 6] dB

Training dataset size Ntrain 60 k, 50 k

Validation dataset size 10 k

Weight decay 0.0001

Weight initialization Glorot uniform, ReLU: He uniform

Encoder normalization dim. Batch dimension

Rx layer width Nw 56, 64

In the case of CIFAR10 classification with central image processing and original ResNet,
we need to train Nθ + Nϕ = 273,066 parameters. We like to stress that although we divided
the image input into four smaller pieces, this number grows more than four times to
4Nθ + Nϕ = 1,127,754 with NTx = NFeat = 64 for SINFONY. The reason lies in the ResNet
structure with minor dependence on the input image size and that we process at four agents
with an additional Tx module. Only Nϕ = 4810 parameters amount to the Rx module and
classification, i.e., the central unit. We note that the number of added Tx and Rx parameters
of 33,560 and 3192 is relatively small. Since the number of parameters only weakly grows
with Rx layer width Nw in our design, we choose Nw = NFeat as the default.

For optimization of the cross entropy (10) or the loss function (28), we use the
reparametrization trick from Section 4.6 and SGD with a momentum of 0.9 and a batch
size of Nb = 64. We add l2-regularization with a weight decay of 0.0001 as in [47,48]. The
learning rate of ε = 0.1 is reduced to 0.01 and 0.001 after Ne = 100 and 150 epochs for
CIFAR10 and after 3 and 6 epochs for MNIST. In total, we train for Ne = 200 epochs with
CIFAR10 and for 20 with MNIST. In order to optimize the transceiver for a wider SNR
range, we choose the training SNR to be uniformly distributed within SNRtrain ∈ [−4, 6] dB
where SNR = 1/σ2

n with noise variance σ2
n.
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5.4. Numerical Results and Discussion

In the following, we will investigate the influence of specific design choices on our
semantic approach SINFONY. Then, we compare a semantic with a classical Shannon-based
transmission approach. The design choices are as follows:

• Central: Central and joint processing of full image information by the ResNet classifier,
see Figure 2. It indicates the maximum achievable accuracy.

• SINFONY - Perfect com.: The proposed distributed design SINFONY trained with
perfect communication links and without channel encoding, i.e., Tx and Rx module,
but with Tx normalization layer. Thus, the plain and power-constrained features
are transmitted with NTx = NFeat channel uses. It serves as the benchmark since it
indicates the maximum performance of the distributed design.

• SINFONY - AWGN: SINFONY Perfect com. evaluated with AWGN channel.
• SINFONY - AWGN + training: SINFONY Perfect com. trained with AWGN channel.
• SINFONY - Tx/Rx (NTx = NFeat): SINFONY trained with channel encoding, i.e., Tx

and Rx module, and NTx = NFeat channel uses.
• SINFONY - Tx/Rx (NTx < NFeat): SINFONY trained with channel encoding and

NTx < NFeat channel uses for feature compression.
• SINFONY - Classic digital com.: SINFONY - Perfect com. with classic digital com-

munications (Huffman coding, LDPC coding with belief propagation decoding, and
digital modulation) as additional Tx and Rx modules. For details, see Section 5.4.4.

• SINFONY - Analog semantic AE: SINFONY - Perfect com. with ML-based analog
communications (AE with regard to r) as additional Tx and Rx modules. It is basically
the semantic communication approach from [19,21,28,32]. For details, see Section 5.4.5.

Since meaning is expressed by the RV z, we use classification accuracy to measure
semantic transmission quality. For illustration in logarithmic scale, we show the opposite
of accuracy in all plots, i.e., classification error rate.

5.4.1. MNIST Dataset

The numerical results of our proposed approach SINFONY on the MNIST validation
dataset are shown in Figure 4 for Nw = 56. To obtain a fair comparison between transmit
signals xi ∈ RNTx×1 of different length NTx, we normalize the SNR by the spectral efficiency
or rate η = NFeat/NTx. First, we observe that the classification error rate of 0.5% of the
central ResNet unit with full image information (Central) is smaller than that of 0.9% of
SINFONY - Perfect com. Note that we assume ideal communication links. However, the
difference seems negligible considering that the local agents only see a quarter of the full
images and learn features independently based on it.

With noisy communication links (SINFONY - AWGN), the performance degrades
especially for SNR < 10 dB, and we can avoid degradation just partly by training with
noise (SINFONY - AWGN + training). Introducing the Tx module (SINFONY - Tx/Rx
NTx = 56), we further improve classification accuracy at low SNR. If we encode the features
from NFeat = 56 to only NTx = 14 in the Tx module (SINFONY - Tx/Rx NTx = 14) to have
less channel uses/bandwidth (stronger bottleneck), the error rate is lowest compared to
other SINFONY examples with non-ideal links for low normalized SNR. At high SNR,
we observe a small error offset, which indicates lossy compression. In fact, our system
SINFONY learns a reliable semantic encoding to improve the classification performance of
the overall system with non-ideal links. Every design choice in Table 1 is well-motivated.
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Figure 4. Classification error rate of different SINFONY examples (distributed setting) and central
image processing on the MNIST validation dataset as a function of normalized SNR.

5.4.2. CIFAR10 Dataset

Comparing these results to the classification accuracy on CIFAR10 shown in Figure 5,
we observe a similar behavior. But a few main differences become apparent. Central
performs much better with a 12% error rate than SINFONY - Perfect com. with 20%. We
expect the reason to lie in the more challenging dataset with more color channels. Further,
SINFONY - AWGN + training with NTx = NFeat = 64 channel uses runs into a rather high
error floor. Notably, even SINFONY - Tx/Rx (NTx = 16) with fewer channel uses performs
better than both SINFONY - AWGN and SINFONY - AWGN + training over the whole
SNR range and achieves channel encoding with negligible loss. This means adding more
flexible channel encoding, i.e., Tx/Rx module, is crucial for CIFAR10.

−20 −15 −10 −5 0 5 10 15 2010−1

100

SNR
η [dB]

C
la

ss
ifi

ca
ti

on
er

ro
r

ra
te

on
C

IF
A

R
10 Central

SINFONY
Perfect com.
AWGN
AWGN + training
Tx/Rx NTx = 64
Tx/Rx NTx = 16

Figure 5. Classification error rate of different SINFONY examples (distributed setting) and central
image processing on CIFAR10 as a function of normalized SNR.
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5.4.3. Channel Uses Constraint

Since one of the main advantages of semantic communication lies in savings of in-
formation rate, we also investigate the influence of the number of channel uses NTx on
MNIST classification error rate shown in Figure 6. From a practical point of view, we fix the
information bottleneck by the output dimension NTx and maximize the mutual information
Iθ(z; y). Decreasing the number of channel uses from NTx = 14 to 2 and accordingly the
upper bound IC on the mutual information Iθ(s; y), i.e., compression rate, from (19) or (20),
we observe that the error floor at high SNR increases. We assume that, since the channel
capacity decreases with SNR and NTx, higher compression is required for reliable transmis-
sion through the channel in the training SNR interval. For NTx = 56, almost no error floor
occurs at the cost of a smaller channel encoding gain. This means compression and channel
coding are balanced based on the channel condition, i.e., training SNR region, to find the
optimal trade-off to maximize Iθ(z; y), which we can also observe in unshown simulations.
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Figure 6. Classification error rate of SINFONY on the MNIST validation dataset for different
rate/channel uses constraints as a function of normalized SNR.

5.4.4. Semantic vs. Classic Design

Finally, we compare semantic and classic communication system designs. For the
classic digital design, we first assume that the images are compressed lossless and protected
by a channel code for transmission and reliable overall image classification by the central
unit based on qϕ(z|s) (Central image com.). We apply Huffman encoding to a block
containing 100 images si where each RGB color entry contains 8 bits.

For fairness, we also compare to a SINFONY version where Tx and Rx modules of
Table 1 are replaced by a classic design (SINFONY - Classic digital com.). We first compress
each element of the feature vector ri that is computed in 32-bit floating-point precision in
the distributed setting SINFONY - AWGN to 16-bit. Then, we apply Huffman encoding to
a block containing 100 feature vectors of length NFeat.

Further, we use a 5G LDPC channel code implementation from [52] with interleaver,
rate RC = {0.25, 0.5, 0.25} and long block length of {15360, 16000, 15360}, and modu-
late the code bits with {BPSK, BPSK, 16-QAM} such that we have, e.g., parameter set
{0.25, 15360, BPSK} in one simulation. For digital image transmission, we use a rate
of RC = 0.25 with a block length of 15360 and BPSK modulation. At the receiver, we
assume belief propagation decoding, where the noise variance is perfectly known for
LLR computation.



Sensors 2023, 23, 6347 19 of 23

The results in Figure 7 reveal tremendous information rate savings for the semantic
design with SINFONY. We observe an enormous SNR shift of roughly 20 dB compared to
the classic digital design with regard to to both image (Central image com.) and feature
transmission (SINFONY - Classic digital com.). Note that the classic design is already near
the Shannon limit and even if we improve it by ML we are only able to shift its curve by a
few dB. The reason may lie in overall system optimization with SINFONY with regard to
semantics and analog encoding of x.
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Figure 7. Classification error rate of SINFONY with different kinds of optimized Tx/Rx modules
and central image processing with digital image transmission on the MNIST validation dataset as a
function of normalized SNR.

5.4.5. SINFONY vs. Analog “Semantic” Autoencoder

To distinguish both influences, we also implemented the approach of (14) according
to Shannon by analog AEs. The analog AE has been introduced by O’Shea and Hoydis
in [6]. From the viewpoint of semantic communication, it resembles the semantic approach
from [19,21,28,32] without differentiating between semantic and channel coding, and the
mutual information constraint I(x; y) like in [21]. We trained the AE matching the Tx and
Rx module in Table 1 with mean square error criterion for reliable transmission of the
feature vector r with SINFONY training settings. The Rx module consists of one ReLU layer
of width Nw = NTx providing the estimate of r. We provide results (SINFONY - Analog
semantic AE) in Figure 7. Indeed, most of the shift is due to analog encoding. By this
means, we further avoid the typical thresholding behavior of a classic digital system seen
at 14 dB.

In conclusion, this surprisingly clear result justifies an analog “semantic” commu-
nications design and shows its huge potential to provide bandwidth savings. However,
introducing the semantic RV z by SINFONY, we can further shift the curve by 2 dB and
avoid a slightly higher error floor compared to the analog “semantic” AE. With expect a
larger performance gap with more challenging image datasets, such as CIFAR10. More
importantly, the main benefit of SINFONY lies in lower training complexity. We avoid
separate and possibly iterative semantic and communication training procedures where in
the first step we need to train SINFONY with ideal links hard to achieve in practice.



Sensors 2023, 23, 6347 20 of 23

6. Conclusions

Motivated by the approach of Bao, Basu et al. [16,17] and inspired by Weaver’s
notion of semantic communication [2], we brought the terminus of a semantic source to
the context of communications by considering its complete Markov chain. We defined the
task of semantic communication in the sense of a data-reduced and reliable transmission of
communications sources/messages over a communication channel such that the semantic
Random Variable (RV) at a recipient is best preserved. We formulated its design either
as an Information Maximization or as an Information Bottleneck optimization problem
covering important implementations aspects like the reparametrization trick and solved the
problems approximately by minimizing the cross entropy that upper bounds the negative
mutual information. With this article, we distinguish from related literature [16,17,21,26,32]
in both classification and perspective of semantic communication and a different ML-based
solution approach.

Finally, we proposed the ML-based semantic communication system SINFONY for a
distributed multipoint scenario: SINFONY communicates the meaning behind multiple
messages that are observed at different senders to a single receiver for semantic recovery. We
analyzed SINFONY by processing images as an example of messages. Notably, numerical
results reveal a tremendous rate-normalized SNR shift up to 20 dB compared to classically
designed communication systems.

Outlook

In this work, we contributed to the theoretical problem description of semantic commu-
nication and data-based ML solution approaches with DNNs. There remain open research
questions such as:

• Numerical Comparison to Variational IB: It remains unclear if solving the variational
IB problem (21) holds benefits compared to our proposed approach.

• Implementation: Optimization with the reparametrization trick requires a known
differential channel model and training at one location with dedicated hardware
such as graphics processing units [53]. In addition, large amounts of labeled data
are required with data-driven ML techniques, which can be expensive and time-
consuming to acquire and process. Hence, further research is required to clarify how a
semantic design can be implemented efficiently in practice.

• Semantic Modeling: Developing effective models of semantics is crucial, and thus we
proposed the usage of probabilistic models. If the underlying problem can be described
by a well-known model, e.g., a physical process to be measured and processed by
a sensor network [32], a promising idea is to apply model-based approaches based
on Bayesian inference for encoding and decoding—potentially combined with the
technique of deep unfolding. In the context of NLP, design of knowledge graphs such
as ontologies or taxonomies is a promising modeling approach for human language.

• Inconsistent Knowledge Bases: We assumed that sender and recipient share the
same background knowledge base: How does performance deteriorate if there is a
mismatch and how to deal with this problem [27]?
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