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Abstract: In Message Passing (MP) decoding of Low-Density Parity Check (LDPC) codes, extrinsic
information is exchanged between Check Nodes (CNs) and Variable Nodes (VNs). In a practical
implementation, this information exchange is limited by quantization using only a small number of
bits. In recent investigations, a novel class of Finite Alphabet Message Passing (FA-MP) decoders are
designed to maximize the Mutual Information (MI) using only a small number of bits per message
(e.g., 3 or 4 bits) with a communication performance close to high-precision Belief Propagation (BP)
decoding. In contrast to the conventional BP decoder, operations are given as discrete-input discrete-
output mappings which can be described by multidimensional LUTs (mLUTs). A common approach
to avoid exponential increases in the size of mLUTs with the node degree is given by the sequential
LUT (sLUT) design approach, i.e., by using a sequence of two-dimensional Lookup-Tables (LUTs) for
the design, leading to a slight performance degradation. Recently, approaches such as Reconstruction-
Computation-Quantization (RCQ) and Mutual Information-Maximizing Quantized Belief Propaga-
tion (MIM-QBP) have been proposed to avoid the complexity drawback of using mLUTs by using
pre-designed functions that require calculations over a computational domain. It has been shown
that these calculations are able to represent the mLUT mapping exactly by executing computations
with infinite precision over real numbers. Based on the framework of MIM-QBP and RCQ, the
Minimum-Integer Computation (MIC) decoder design generates low-bit integer computations that
are derived from the Log-Likelihood Ratio (LLR) separation property of the information maximizing
quantizer to replace the mLUT mappings either exactly or approximately. We derive a novel criterion
for the bit resolution that is required to represent the mLUT mappings exactly. Furthermore, we
show that our MIC decoder has exactly the communication performance of the corresponding mLUT
decoder, but with much lower implementation complexity. We also perform an objective comparison
between the state-of-the-art Min-Sum (MS) and the FA-MP decoder implementations for throughput
towards 1 Tb/s in a state-of-the-art 28 nm Fully-Depleted Silicon-on-Insulator (FD-SOI) technology.
Furthermore, we demonstrate that our new MIC decoder implementation outperforms previous
FA-MP decoders and MS decoders in terms of reduced routing complexity, area efficiency and energy
efficiency.

Keywords: LDPC code; decoding; finite alphabet message passing; information bottleneck;
implementation efficiency

1. Introduction

Beyond 5G and 6G wireless communication systems, target peak data rates of 100 Gb/s
to 1 Tb/s with processing latencies between 10–100 ns [1]. For such high data rate and low
latency requirements, the implementation of a Forward Error Correction (FEC) decoder,
which is one of the most complex and computationally intense components in the baseband
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processing chain, is a major challenge [2]. Low-Density Parity Check (LDPC) codes [3]
are FEC codes with capacity approaching error correction performance [4] and are part
of many communication standards, e.g., DVB-S2x, Wi-Fi, and 3GPP 5G-NR. In contrast
to other competitive FEC codes, like Polar and Turbo codes, the decoding of LDPC codes
is dominated by data transfers [2] making very high-throughput decoders in advanced
silicon technologies challenging, especially from routing and energy efficiency perspectives.
For example, in a state-of-the-art 14 nm silicon technology, the transfer of 8 bits on a 1 mm
wire costs about 1 pJ, whereas the cost of an 8 bit integer addition is only 10 fJ, which is
two orders of magnitude less than the wiring energy cost. During Message Passing (MP)
decoding, two sets of nodes, the Check Node (CN) and Variable Node (VN), iteratively
exchange messages over the edges of a bipartite graph (Tanner graph of the LDPC code).
High-throughput decoding can be achieved by mapping the Tanner graph one-to-one onto
hardware, i.e., dedicated processing units are instantiated for each node and the edges
of the Tanner graph are hardwired. Unrolling and pipelining the decoding iterations can
further boost the throughput towards 1 Tb/s [5], called unrolled full parallel (FP) decoders
in the following. However, FP decoders imply large routing challenges, since every edge
in the Tanner graph corresponds to 2 · I · nE wires, with I being the number of decoding
iterations and nE being the quantization-width of the exchanged messages. Moreover,
to enable good error correction performance, the Tanner graph exhibits limited locality
and regularity, which makes efficient routing even more difficult. This problem is even
exacerbated in advanced silicon technologies, as routing scales much worse than transistor
density [6].

Finite Alphabet Message Passing (FA-MP) decoding has been investigated as a method
to mitigate the routing challenges in FP LDPC decoders to reduce the bit-width, i.e., the
quantization-width nE, of the exchanged messages and, thus, the number of necessary
wires [7–9]. In contrast to conventional MP decoding algorithms like the Belief Propagation
(BP) and its approximations, i.e., Min-Sum (MS), Offset Min-Sum (OMS) and Normalized
Min-Sum (NMS) [10], FA-MP use non-uniform quantizers and the node operations are
derived by maximizing MI between exchanged messages. Nodes in state-of-the-art FA-MP
decoders have to be implemented as Lookup-Tables (LUTs). Since the size of the LUT
exponentially increases with the node degree and nE, investigations were performed to
decompose this multidimensional LUT (mLUT) into a chain or tree with only two-input
LUTs (denoted as sequential LUT (sLUT) in this paper) yielding only a linear dependency
of the node degree but at the cost of a decreased communications performance [11,12].
The Minimum-LUT (Min-LUT) decoder [13] approximates the CN update by a simple
minimum search and can be implemented as Minimum-mLUT (Min-mLUT) or Minimum-
sLUT (Min-sLUT), i.e., with mLUT or sLUT for VNs, respectively. Other approaches,
e.g., Mutual Information-Maximizing Quantized Belief Propagation (MIM-QBP) [14–16]
and Reconstruction-Computation-Quantization (RCQ) [17,18], are adding non-uniform
quantizers and reconstruction mappings to the outputs and inputs of the nodes, respectively,
and performing the standard functional operations inside the nodes, e.g., additions for
VNs and minimum search for CNs. The reconstruction mappings generally increase the
bit resolution required for node internal representation and processing. It can be shown
that this approach is equivalent in terms of error correction performance compared to the
mLUT, if the internal quantization after the reconstruction mapping is sufficiently large.

Based on the framework of MIM-QBP and RCQ, the proposed MIC decoder [19]
realizes CN updates by a minimum search and VN updates by integer computations that
are designed to realize the information maximizing mLUT mappings either exactly or
approximately. In this paper, we provide more detailed explanations, extend the discussion
to irregular LDPC codes and present a comprehensive implementation analysis. The
new contributions of this paper (Notation: Random variables are denoted by sans-serif
letters x, random vectors by bold sans-serif letters x, realizations by serif letters x and
vector-valued realizations by bold serif letters x. Sets are denoted by calligraphic letters
X . The distribution px(x) of a random variable x is abbreviated as p(x). x → y → z



Entropy 2022, 24, 1452 3 of 19

denotes a Markov chain, and R, Z, F2 denotes the real numbers, integers and Galois field
2, respectively.) are summarized as follows:

• We provide a novel criterion for the resolution of internal node operations to ensure
that the MIC decoder can always replace the information maximizing VN mLUT ex-
actly;

• we show that this MIC decoder has the same communication performance compared
to an MI maximizing Min-mLUT decoder;

• we make an objective comparison between different FA-MP decoder implementations
(Min-mLUT, Min-sLUT, MIC) in an advanced silicon technology and compare them
with a state-of-the-art MS decoder for throughput towards 1 Tb/s;

• we show that our MIC decoder implementation outperforms state-of-the-art FP de-
coders in terms of routing complexity, area efficiency and energy efficiency and enables
the processing of larger block sizes in state-of-the-art FP decoders since the routing
complexity is largely reduced.

The remainder of this paper is structured as follows: Section 2 reviews the system
model, conventional decoding techniques for LDPC codes such as BP and NMS decoding,
and Information Bottleneck (IB) based quantization. Section 3 describes the Min-mLUT and
Min-sLUT decoder design for regular and irregular LDPC codes. In Section 4, we introduce
the proposed MIC decoder and, in Section 5, we discuss the MIC decoder implementation
along with a detailed comparison with state-of-the-art FP MP decoders. Finally, Section 6
concludes the paper.

2. Preliminaries

This section briefly reviews the transmission model, conventional decoding techniques
for LDPC codes, and the quantizer design based on IB.

2.1. Transmission Model

The transmission model is shown in Figure 1. An information word u ∈ FK
2 is encoded

into the codeword c ∈ FN
2 via a binary LDPC code [3] of rate R = K

N . The Binary Phase
Shift Keying (BPSK) modulated vector x = 1− 2c is transmitted over an Additive White
Gaussian Noise (AWGN) channel leading to the received vector y ∈ RN given by y = x+ n
with AWGN n of variance σ2

n. A particular LDPC code is defined via a sparse parity check
matrix H ∈ FM×N

2 . The Tanner graph [20] of an LDPC code is a visual representation of
its parity check matrix H and consists of a CN for each parity check equation χm with
m = 1, ..., M and a VN for each codebit cn with n = 1, ..., N. An edge connects VN n and CN
m if and only if Hm,n = 1. The degree of a node is determined by the number of connected
edges. Furthermore, the fraction of edges that is connected to a node of a specific degree is
characterized by the edge-degree distributions

λ(ξ) = ∑
dV∈DV

λdV ξdV−1 and ρ(ξ) = ∑
dC∈DC

ρdC ξdC−1 (1)

where λdV is the fraction of edges that are connected to VNs of degree dV ∈ DV , and ρdC
denotes the fraction of edges that is connected to CNs of degree dC ∈ DC.

LDPC BPSK AWGN Quantizer Decoder
u ∈ FK

2 c ∈ FN
2 x ∈ X N y ∈ RN z ∈ ZN û ∈ FK

2

Figure 1. Transmission model for transmission of LDPC encoded messages over an AWGN channel
with quantization prior to FEC decoding.

2.2. Iterative Decoding via Belief-Propagation (BP)

LDPC codes are usually decoded by iterative BP, where extrinsic information for each
codebit cn is propagated along the edges of the resulting Tanner graph. Figure 2 shows
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the CN χ1 that generates extrinsic information for the VN cn by processing the incoming
Variable Node to Check Node (VN-to-CN) messages from the other VNs connected to CN
χ1, i.e., c1 and c2. For BP decoding, we define the Variable Node to Check Node (VN-to-CN)
messages as Ln→m ∈ R and the Check Node to Variable Node (CN-to-VN) messages as
Ln←m ∈ R. In the first iteration, all messages are initialized by the channel LLRs

L(0)
n→m = L(yn) =

2
σ2
n

yn . (2)

In iteration i, a CN m generates extrinsic information for the connected VNs n ∈ Mm via the
box-plus operation

L(i)
n←m = 2 arctanh

 ∏
j∈Mm\n

tanh
(

1
2 L(i−1)

j→m

) , ∀n ∈ Mm . (3)

c1

c2

...

cn

...

cN

χ1

χ2

...

χm

...

χM

L1→1

L2→1

Ln←1

Figure 2. Illustrative example of a CN update on a Tanner graph. The CN χ1 generates the CN-to-VN
message Ln←1 for the VN cn based on the VN-to-CN messages L1→1 and L2→1 from VN c1 and c2,
respectively.

In case of Normalized Min-Sum (NMS) decoding, the CN update (3) is approxi-
mated by

L(i)
n←m ≈ γ

 ∏
j∈Mm\n

sign
(

L(i−1)
j→m

) min
j∈Mm\n

∣∣∣L(i−1)
j→m

∣∣∣ , ∀n ∈ Mm . (4)

where γ is the normalization factor. In the case of γ = 1, (4) is the CN update of the MS
decoder.

In similar fashion, a VN n generates extrinsic information for the connected CNs m ∈ Nn
by adding the corresponding LLRs

L(i)
n→m = L(yn) + ∑

v∈Nn\m
L(i)

n←v , ∀m ∈ Nn . (5)

The final bit decision ĉ(i)n,BP at iteration i is determined by

ĉ(i)n,BP =
1
2

(
1− sign

(
L(yn) + ∑

v∈Nn

L(i)
n←v

))
. (6)
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2.3. Information Bottleneck Based Quantizer Design

For the design of our proposed MIC decoder, we utilize MI maximizing quantization
to design an information optimized processing chain that uses only quantizer labels instead
of real valued representations [12]. To that end, we first review the principle idea of
the MI based quantizer design approach. The considered system model is visualized in
Figure 3. The observed signal y ∈ Y is mapped to a compressed representation z ∈ Z
via the scalar quantization function Q : Y → Z . The objective is to find a quantizer
function Q? that maximizes MI I(x; z) between the relevant source x ∈ X and the quantizer
output Q(y) = z ∈ Z under the condition that the three random variables form a Markov
chain x → y → z. Given the joint distribution p(x, y) = p(y|x)p(x), the mapping of the
information maximizing quantizer Q? is determined by solving the optimization problem

Q? = argmax
Q

I(x; z) s.t. |Z| = 2nQ < |Y| (7)

where the number of possible quantizer outputs is set to 2nQ . The optimization problem in
(7) is a special case of the Information Bottleneck Method (IBM) [12,21–23]. The optimal
solution is a deterministic quantization function where the conditional probability of the
quantizer output z given the relevant source x is

p(z|x) = ∑
y∈Yz

p(y|x) (8)

with Yz = {y ∈ Y | Q?(y) = z} as the set of observed signals y that are mapped to one
specific quantizer output z. Since the maximum of (7) depends only on the cardinality of Z ,
we utilize a convenient signed integer based representation Z = {− 2nQ

2 , ...,−1, 1, ..., 2nQ

2 }
that simplifies the MIC decoder processing. For the special case where the relevant source
x is a binary random variable (i.e., |X | = 2), the algorithm that finds the optimal quantizer
via dynamic programming has been derived in [24]. We denote the LLRs of the quantizer
output z ∈ Z by

L(z) = log
(

p(z|x = +1)
p(z|x = −1)

)
. (9)

An important property of the MI maximizing quantizer for binary input is that any two
different sets of LLRs Lz′ = {L(y) | y ∈ Yz′} and Lz′′ = {L(y) | y ∈ Yz′′} for z′, z′′ ∈ Z and
z′ 6= z′′ are separated by a single threshold [19,24,25]. This property will be exploited in
the design of the MIC decoder in Section 4.

source channel quantizer
x ∈ X y ∈ Y z ∈ Z

Figure 3. Considered system model for quantizer design.

3. LUT Decoder Design

This section describes the design of the LUT decoder that is optimized via Discrete
Density Evolution (DDE) [11] to maximize extrinsic information between the codebits and
its messages, under the assumption that the Tanner graph is cycle free. In contrast to the
BP algorithm, the LUT is optimized to process the quantizer labels z in (7) directly and the
bit resolution of the message exchange on the Tanner graph is limited to nE bits, e.g., 3 or
4 bits. Furthermore, we exploit the signed integer-based representation to simplify the CN
update by using the label-based minimum search [13]. In the Min-mLUT decoder design,
the VN update functions are optimized to maximize MI. For the Min-sLUT decoder design,
the VN update is decomposed into a sequence of two-dimensional updates that generally
results in a MI loss compared to the Min-mLUT decoder design.

In the following, we review the calculation of the CN and VN distributions for each
iteration that are required for the design of the MI maximizing VN update. As illustrated
in Figure 4, we omit the iteration index i and consider messages of an arbitrary CN and
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VN for CN degrees dC ∈ DC and VN degrees dV ∈ DV to calculate the distributions that
are required for the Min-mLUT design.

...

...

...

...

t1
...

tdC−1

a

(a) CN update

...

...

...

...

a1
...

adV−1

t

(b) VN update
Figure 4. Illustrative example for generation of extrinsic information in case of LUT decoding using
discrete messages. (a) visualizes a CN that generates the CN-to-VN message a based on incoming
VN-to-CN messages t1, ..., tdC−1. In (b), a VN generates the VN-to-CN message t based on incoming
CN-to-VN messages a1, ..., adV−1.

3.1. Check Node LUT Design

The LUT decoder design is based on discrete alphabets Z , T and A for the channel
information, the VN-to-CN and the CN-to-VN messages, respectively. For the first iteration,
the VN-to-CN messages tj for j = 1, ..., dV − 1 are initialized by the signed integer valued
channel information, i.e., tj = zj ∈ Z . The distribution of the dC − 1 VN-to-CN messages
t = [t1, ..., tdC−1] ∈ T (dC−1) and an arbitrary codebit c of a check equation χ is [11]

pdC (t|c) =
(

1
2

)dC−2

∑
b:
⊕

b=c

dC−1

∏
j=1

p(tj|bj) (10)

with
⊕

b = b1⊕ ...⊕ bdC−1 as the modulo 2 sum of connected codebits. The VN-to-CN mes-
sages tj are processed by a CN update function that generates quantized output messages
a ∈ A that are represented only by nE bits.

Given the distribution in (10), the CN update (We keep the node degrees dC or dV as
index of random variables to indicate that the distribution changes with the correspond-
ing degrees.) fdC (tdC ) = adC that maximizes MI is determined by the solution of the
quantization problem for binary input (c→ tdC → fdC (tdC ) = adC )

f MI
dC

= argmax
fdC

I
(
c; tdC

)
s.t. |A| = 2nE for dC ∈ DC . (11)

As discussed in Section 2.3, the optimal solution of (11) is found via dynamic programming.
However, we utilize the minimum update [13] as a CN update for all iterations as an

approximation of the MI maximizing CN update in (11). We observed that the output of
the minimum update is quite close to the optimal IB update. As visualized for a degree 3
CN in Figure 5, the difference between the optimal IB CN and the minimum update can be
interpreted as an additive correction LUT where only a small fraction of entries are nonzero.
For the label-based minimum search, the CN update rule reads

a = f min
dC

(t)=

(
dC−1

∏
j=1

sign
(
tj
))

min{|t1|, ..., |tdC−1|} . (12)
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If the CN update function is given, the conditional distribution of the CN-to-VN messages
a ∈ A = T is

pdC (a|c) = ∑
t∈T (dC−1) : f min

dC
(t)=a

pdC (t|c) for dC ∈ DC . (13)

In the design via DDE, the connections between VNs and CNs are considered on average
by the degree distribution [26]. Hence, the design considers only the marginal CN-to-VN
message distribution p(a|c) that includes averaging over all possible CN degrees by

p(a|c) = ∑
dC∈DC

pdC (a|c)ρdC . (14)

-8-7-6-5-4-3-2-11 2 3 4 5 6 7 8

-8
-7
-6
-5
-4
-3
-2
-1
1
2
3
4
5
6
7
8

t1

t 2

(a) MI maximizing update

-8-7-6-5-4-3-2-11 2 3 4 5 6 7 8

-8
-7
-6
-5
-4
-3
-2
-1
1
2
3
4
5
6
7
8

t1

t 2

(b) Minimum update

-8-7-6-5-4-3-2-11 2 3 4 5 6 7 8

-8
-7
-6
-5
-4
-3
-2
-1
1
2
3
4
5
6
7
8

t1

t 2

−8
−7
−6
−5
−4
−3
−2
−1
0
1
2
3
4
5
6
7
8

(c) correction LUT

Figure 5. Graphical representation of a discrete CN update using nE = 4 bit input messages t1

and t2 and a color-coded output message a ∈ A = {−4, ...,−1, 1, ..., 4}. Subfigure (a) shows the MI
maximizing update f MI

3 (t1, t2) and subfigure (b) the minimum update f min
3 (t1, t2). The difference

f MI
3 (t1, t2)− f min

3 (t1, t2) in subfigure (c) contains only a few non-zero elemets and can be interpreted
as a correction LUT.

3.2. Variable Node LUT Design

For designing the VN update, we require the joint distribution of the discrete channel
information z ∈ Z together with the CN-to-VN messages am ∈ A combined in a =
[z, a1, ..., adV−1] ∈ Z ×AdV−1 = V and a codebit c [11]

pdV (a|c) = p(z|c)
dV−1

∏
m=1

p(am|c) (15)

where p(am|c) = p(a|c) for m = 1, ..., dV,max − 1 and V is the set of all possible states of
the vector a, i.e., |V| = 2nQ+(dV−1)nE . Given the distribution (15), the individual degree-
dependent VN update gdV (adV ) = tdV that maximizes MI I(c; tdV ) is determined as the
solution of the optimization problem (c→ adV → gdV (adV ) = tdV )

gMI
dV

= argmax
gdV

I
(
c; tdV

)
s.t. |T | = 2nE for dV ∈ DV . (16)

The parameter nE defines the bit-width of the messages exchanged between VN and CN
and controls the complexity of the message exchange. The optimization problem in (16)
is the channel quantization problem for binary input (Section 2.3). The optimal solution
is a deterministic input–output relation that can be stored as a dV dimensional LUT with
2nQ+(dV−1)nE entries, e.g., for dV = 6 and nE = nQ = 4, we have approximately 16.8 million
entries. Furthermore, the communication performance can be increased by considering the
degree distribution in the design of the node updates [13,26]. The gain in communication
performance generally depends on the degree distribution and the message resolution
nE [13]. However, a comparison of the different design approaches in [13,26] is beyond the
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scope of this paper. The distribution of the VN-to-CN messages for the next iteration in
(10) is

pdV (t|c) = ∑
a∈V : gMI

dV
(a)=t

p(a|c) for dV ∈ DV . (17)

Again, the marginal distribution is determined by averaging over all possible VN degrees,
i.e.,

p(tj|cj) = p(t|c) = ∑
dV∈DV

pdV (t|c)λdV , with j = 1, ..., dC,max . (18)

In case of a regular LDPC code, there is only one possible degree for all VNs and CNs, i.e.,
the summation term in (14) and (18) vanishes but all other steps remain the same.

For the design of the MI maximizing Min-mLUT decoder, we start with an initial
VN-to-CN distribution p(tj|cj) and iterate over (10), (13)–(18) and declare convergence
if I(c; t) approaches the maximum value of one bit for binary input after I number of
iterations.

3.3. Sequential LUT Design

For the sequential design approach sLUT, the node update is split into a sequence
of degree two updates that are optimized independently to maximize MI. This approach
serves as an approximation of the mLUT design described in Section 3.2 and reduces the
number of possible memory locations within each update. In general, multidimensional
optimization without decomposition conserves more MI compared to a design that de-
composes the optimization problem into a sequence of two-dimensional updates [11,12] or
more general nested tree decompositions [13].

4. Minimum-Integer Computation Decoder Design

The MI maximizing Min-mLUT decoder realizes the discrete VN updates by LUTs
with 2nQ+(dV−1)nE entries leading to prohibitively large implementation complexity. Nev-
ertheless, determining these multidimensional LUTs in the laboratory is feasible with
sufficient computing resources. Thus, the idea is to search for the MI maximizing mLUTs
but implement the corresponding discrete functions by relatively simple operations in
order to avoid performance degradations. As visualized in Figure 6, the computational
domain framework [14,16] replaces the VN update by an operation that is decomposed
into

(i) mappings φV and φ of the nE-bit CN-to-VN messages am and nQ-bit channel
information z into node internal nR-bit signed integers with nR ≥ nE and nR ≥ nQ,
respectively;

(ii) execution of integer additions for nR-bit signed integers;
(iii) threshold quantization QV to nE bits determining the VN-to-CN message t.

For the MIC decoder design, we derive a criterion for sufficient internal node res-
olution nR such that the mLUT mapping is replaced exactly. Note that the information
maximizing mLUT is generated offline and is replaced by an integer function that replaces
its functionality exactly or approximately during execution.

To keep the notation simple, we omit the dependency on the iteration index i and
node degree in this section.
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φ(z)

φV (a1)

φV (a2)

...

φV (adv−1)

+ QV

z

a1

a2

adv−1

r

r1

r2

rdv−1

Ws t

Figure 6. VN update for computational domain framework [14,16]. The nQ-bit channel information
z ∈ Z and the nE-bit CN-to-VN messages a1, ..., adV−1 ∈ A are transformed to nR-bit signed integers.
This transformation generally increases the required bit resolution for the representation, i.e., nR ≥ nQ

and nR ≥ nE . The internal signed integers are summed and quantized back into a nE-bit VN-to-CN
message t ∈ T .

4.1. Equivalent LLR Quantizer

To motivate the integer calculation of the MIC approach, we review the connection
between the equivalent LLR quantizer and the VN update of the BP algorithm. Analogous
to the VN update of the BP algorithm in (5), the LLR of the combined message vector a ∈ V
equals the addition of the LLRs of the channel output z and of the individual messages am,
i.e., for every possible combination a ∈ V , the LLR of the combined message is

L(a)= log
(

p(a|c = 0)
p(a|c = 1)

)
=L(z)+

dV−1

∑
m=1

L(am) . (19)

The LLRs L(am) of the individual messages are determined by (14) during DDE. As
described in Section 2.3, the information maximizing quantizer for binary input separates
the LLR L(a) by using a |T | − 1 threshold quantizer QL : R→ T , i.e., the relation

t = gMI(a) = QL(L(a)) = QL

(
L(z)+

dV−1

∑
m=1

L(am)

)
(20)

can be determined that achieves the same output as the information optimal mLUT in (16).
However, to ensure that (20) produces the same output as the information optimal mLUT,
calculations over real numbers are required. In the next subsection, we show that we can
exploit (20) to find a calculation that requires only a finite resolution. We also provide a
condition to limit the resolution that is required for exact calculation of the information
optimal mLUT.

4.2. Computations over Integers

The VN update structure using the computational domain framework is visualized in
Figure 6. As suggested by [14,16], a possible choice for the integer mappings φv(m) and
φch(z) is given by scaling and rounding the corresponding LLRs L(m) and L(z), respectively.
In addition to [14,16], we provide further insights on the optimal choice of the scaling factor
based on the relation between the VN update of the BP algorithm and the MI maximizing
quantizer design. More precisely, based on the established relation in (20), we define an
integer mapping for the channel information z and the CN-to-VN messages am in order to
replace the computations over real numbers by computations over signed integers (With
b·e as round to nearest integer (away from 0 if fraction part is .5))

gMIC(a) = QV(Ws(a)) = QV

 bsL(z)e︸ ︷︷ ︸
r=φ(z)∈R

+
dV−1

∑
m=1

bsL(am)e︸ ︷︷ ︸
rm=φV(am)∈RV

=QV

(
r +

dV−1

∑
m=1

rm

)
. (21)
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Compared to (20), the LLRs L(z) and L(am) have been multiplied by a non-negative scaling
factor s and quantized to the next nR-bit signed integer r and rm, respectively. Subsequently,
the sum of integers is limited again to nE bits by threshold quantizer QV . We can interpret
the scaling and rounding operation also directly as a mapping of signed integer messages z
and am to nR-bit signed integer messages

r = φ(z) ∈ R and rm = φV(am) ∈ RV (22)

that requires nR bits for the representation, depending on the scaling factor s.
In the following, we show that we can always find a threshold quantizer QV :W → T

that maps the summation Ws(a) into a VN-to-CN message t ∈ T that is identical to the
VN-to-CN message of the information optimal VN update in (20), i.e., t = gMIC(a) =
gMI(a). First, we consider the set of messages At = {a ∈ V : gMI(a) = t ∈ T } that are
mapped into a specific output t via the information maximizing VN update gMI(a) in (16).
Thus, we can identify a corresponding set of integers Wt = {Ws(a) ∈ W : a ∈ At}. By
varying the scaling factor s, we can always find a scaling value s? ≤ dV

∆min
such that the sets

of integer valuesWt for all t ∈ T are non-overlapping intervals, i.e.,

[Dt′ , Et′ ] ∩ [Dt′′ , Et′′ ] = ∅ ∀t′′, t′ ∈ T , (23)

with Dt = minWt and Et = maxWt. Condition (23) ensures that any two different clusters
t′ and t′′ can be separated by a simple threshold operation. The value ∆min is the minimum
separation between the LLRs L(a) of the elements of any two neighbouring clusters in (20)
and is always larger than zero since QL is a threshold quantizer. If we consider a scaled
version of the LLRs sL(a) with any real valued scaling factor s > 1, we can always find a
threshold quantizers QL,s that achieves the same output as the information optimal mLUT.
Scaling the LLRs L(a) by a factor of dV

∆min
ensures that the minimum separation between

any two neighbouring clusters is dV . Since the influence of the rounding operation can be
bounded by − dV

2 ≤Ws(a)− sL(a) < dV
2 , scaling with a factor of at least dV

∆min
ensures that

any two neighbouring clustersWt andWt+1 are separated by at least one integer and, thus,
condition (23) is satisfied. Hence, we can always find a corresponding integer function
gMIC(a) in (21) that generates exactly the same output as gMI(a) in (20).

Furthermore, an approximate integer calculation is found if the integer valued range
of φ and φV are limited to nR-bits

max
z
|φ(z)| < 2nR < 2n?

R , max
a
|φV(a)| < 2nR < 2n?

R (24)

where n?
R = dlog2(bs?Lmaxe)e+ 1 is the bit resolution that is required for exact representa-

tion if the largest magnitude of the individual LLRs in (20) is Lmax. If condition (23) is not
fulfilled, we select the output cluster that maximizes MI. If (24) is satisfied, the required bit
resolution of the summation Ws(a) in (21) is limited by

nW = dlog2

(
dV(2(nR−1) − 1)

)
e+ 1 . (25)

To consider the influence of this new mapping in the design of subsequent iterations, we
also update the VN-to-CN distribution in (17).

We note that the MIC design approach can also be applied for the design of CN
operations and can also be used to generate exact or approximate representations of
nested tree decompositions similar to the sLUT method. However, the corresponding
investigations are beyond the scope of this paper.

Illustrative Example for MIC Calculations

To illustrate the proposed MIC approach, we consider the design of a VN node update
for a (dV=3, dC=6) regular LDPC codes at iteration i = 1 with design Eb/N0 = 2.5 dB.
Figure 7a shows the equivalent LLR quantizer (20) with 2nE non-overlapping clusters on the
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real number line, i.e., T = {−4, ...,−1, 1, ..., 4}. E.g. all LLRs L(a) between 0 and 1.1 are
mapped into cluster t = 1. The threshold values are shown by dashed lines in Figure 7a.
Additionally, Figure 7b–d show the output of the integer addition in (21) on the x-axis and
the output clusters of the optimal mLUT on the y-axis if the scaling factor is set to s = 10,
s = 3, and s = 1, respectively.
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(a) Equivalent LLR quantizer
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Figure 7. Visualization of the relationship between the result of the calculation in the computational
domain and the assignment to mutual information maximizing mLUT mapping. Subfigure (a) shows
the addition the real valued LLRs of (20) on the x-axis and the mutual information maximizing mLUT
assignment of (16) on the y-axis. In Subfigure (b)–(d), the values on the x-axis are replaced by the
corresponding integer additions of (21) for different scaling factors s ∈ {1, 3, 10}.

In the case of s = 10, all output clusters are separated by using seven integer thresholds,
which are indicated by dashed lines in Figure 7b. In this case, the integer computation fully
replaces the original mLUT functionality by using only signed integers of low-range. To
clarify the example, the numeric values of the corresponding LLRs and integer mappings of
(19) and (21) for s = 10 are shown in Table 1. For example, the quantized receive message
z = 2 corresponds to an LLR of L(z) = 1.56 leading to the nR-bit signed integer message
r = φ(z) = b15.6e = 16. After summation of r and rm, all results 12 ≤ W10(a) ≤ 23 are
again mapped back to the nE message t = 2.
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Table 1. Numeric values of integer based VN update gMIC
10 with scaling parameter s = 10.

Cluster index z, a, t ±4 ±3 ±2 ±1

Channel LLR L(z) ±5.07 ±2.90 ±1.56 ±0.49

Integer mapping φ(z) ±51 ±29 ±16 ±5

Message LLR L(a) ±3.46 ±2.08 ±1.02 ±0.25

Integer mapping φV(a) ±35 ±21 ±10 ±3

IntervalWt ±[121, 42] ±[41, 25] ±[23, 12] ±[11, 1]

For s = 3 and s = 1, the integer range is further reduced, but the original mLUT
functionality cannot be represented exactly since some integer additions are mapped to
more than one output cluster of the original mLUT (e.g., some values of Ws(a) are mapped
into cluster t = 1 and t = 2 as highlighted in Figure 7c). If some values of Ws(a) are
assigned to more than one cluster of the information maximizing mLUT mapping, a
merging of these values into a single cluster is required. This merging generally leads to an
inevitable loss of information. In order to find a corresponding threshold quantizer for this
case, we select the output cluster that minimizes the information loss under the condition
that (23) is fulfilled.

4.3. FER Results

In this section, we discuss the communication performance of the proposed MIC
decoder for an irregular LDPC code from the 802.11n standard [27] of length N = 648 with
rate R = 0.75 and edge degree distributions λ(ξ) = 0.2083ξ1 + 0.3333ξ2 + 0.25ξ3 + 0.2083ξ5

and ρ(ξ) = 1
3 ξ13 + 2

3 ξ15. The realization of the MIC decoder is characterized by three
quantization parameters and specified by MIC(nE, nQ, nR). In contrast, the Min-mLUT
decoder with label based minimum operation as CN update has only two parameters
and is denominated by Min-mLUT(nE, nQ). Figure 8 shows the Frame Error Rate (FER)
performance of Min-mLUT and MIC for nE = nQ = 3 and I = 10 iterations, but varying
resolution of internal messages nR ∈ {4, 5, 6, 7, 11} for MIC.

2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4
10−3

10−2

10−1

100

Eb/N0

FE
R

BP(double)
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MIC(3,3,11)
MIC(3,3,7)
MIC(3,3,6)
MIC(3,3,5)
MIC(3,3,4)
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MIC(3,3,4)

Figure 8. FER performance of nE = nQ = 3 bit Min-mLUT and MIC decoders using different internal
message resolutions nR for VN update.
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The BP decoder with double precision serves as our benchmark simulation. The
Min-mLUT decoder with nE = nQ = 3 bit quantization for the message exchange and
channel information results in a minor performance degeneration of only 0.2 dB at a FER
of 10−3 w.r.t. the benchmark simulation. In comparison, the proposed MIC decoder that
replaces the VN update of the Min-mLUT decoder by using the computational domain
framework with internal messages of size nR = 4 results in a loss of 0.25 dB compared to the
Min-mLUT decoder. The performance gain of the MIC decoder by using nR = 5 compared
to nR = 4 is around 0.1 dB. The MIC decoder with nR = 7 has basically identical FER
performance compared to the Min-mLUT decoder. If nR = 11, the MIC decoder represents
the mLUT functionality exactly by meeting the criterion (23), but the gain in communication
performance compared to the MIC decoder with nR = 7 is negligible. Additionally, MIC
decoding does not require LUTs with up to 262k entries for each iteration.

5. Finite Alphabet Message Passing (FA-MP) Decoder Implementation

In this section, we investigate the implementation complexity of different LUT-based
FA-MP decoders in terms of area, throughput, latency, power, area efficiency, and energy
efficiency and compare them with a state-of-the-art Normalized Min-Sum (NMS) decoder.
As already stated, we focus on unrolled full parallel (FP) decoder architectures that enable
throughput towards 1 Tb/s. The architecture template is shown in Figure 9. Input to
the decoder are compressed messages z from the channel quantizer. The decoder uses
two-phase decoding. Hence, each iteration consists of two stages: one stage comprises M
Check Node Functional Units (CFUs) and the second stage N Variable Node Functional
Units (VFUs). The stages are connected by hardwired routing networks, which implement
the edges of the Tanner graph. Since the decoding iterations are unrolled, the decoder
consists of 2 · I stages. Deep pipelining is applied to increase the throughput. For more
details on this architecture, the reader is referred to [5].

Figure 9. Unrolled full-parallel decoding architecture.

In FP decoders that use the NMS algorithm, node operations are implemented as
additions and minimum searches on uniformly quantized messages [5]. In contrast, node
functionality in Finite Alphabet (FA) decoders is implemented as LUTs. Implementing
a single LUT as memory is impractical in Application-Specific Integrated Circuit (ASIC)
technologies since the area and power overhead would be too large. Hence, a single LUT is
transformed into nE Boolean functions b : Binp → B with inp being the number of inputs
of the LUT, which is the node degree multiplied by nE. b can consist of up to 2inp product
terms if b is represented in sum-of-product form. State-of-the-art logic synthesis tools try
to minimize b such that it can be mapped onto a minimum number of gates. Despite this
optimization, the resulting logic can be very large for higher node degrees and/or nE,
making this approach unsuitable for efficient FP decoder implementation. It was shown
in [7] that the mLUT can be decomposed into a set of two-input sLUTs arranged in a tree
structure, which largely reduces the resulting logic at the cost of a small degradation in
error correction performance. To compare these approaches with our new decoder, we
implemented four different types of FP decoders:
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• NMS decoder with extrinsic message scaling factor of 0.75;
• Two LUT-based decoders: in these decoders, we implemented the VN operation

by LUTs and the CN operations by a minimum search on the quantized messages.
The latter corresponds to the CN Processor implementation of [7]. The LUTs are
implemented either as a single LUT (mLUT), or as a tree of two-input LUTs (sLUT);

• Our new MIC decoder in which the VN is replaced by the new update algorithms,
presented in the previous section.

For MIC and LUT based decoders, we investigated message quantization nE = 3 and
nE = 4. The reference is an NMS decoder with nE = 4 and nE = 5, respectively. For all
decoders, the channel and message quantization were set to be identical, i.e., nE = nQ. We
used a different code for our implementation investigation than in the previous sections.
This code has a larger block size, which implies increased implementation complexity.
The code is a (816, 406) regular LDPC code with dV = 3 and dC = 6 and the number of
decoding iterations is I = 8.

We applied a Synopsys Design Compiler and IC Compiler II for implementation in a
28 nm Fully-Depleted Silicon-on-Insulator (FD-SOI) technology under worst-case Process,
Voltage and Temperature (PVT) conditions (125 °C, 0.9 V for timing, 1.0 V for power). A
process with eight metal layers was chosen. Metal layers 1 to 6 are used for routing, with
metals 1 and 2 mainly intended for standard cells. The metal layers 7 and 8 are only used
for power supply. Power numbers were calculated with back-annotated wiring data and
input data for a FER of 10−4. All designs were optimized for high throughput with a target
frequency of 1 GHz during synthesis and back-end. To assess the routing congestion, we
fixed the utilization to 70 % for all designs as a constraint. The utilization specifies the ratio
between logic cell area and total area (=logic cell area plus routing area). Thus, by fixing
this parameter, all designs have the same routing area available in relation to their logic
cell area.

5.1. FER Performance of Implemented FA-MP Decoders

Figures 10 and 11 show the FER performance for the different decoders. We compare
the NMS decoder with the MIC decoder and the two LUT-based decoders. The LUTs of
the FA-MP decoders are elaborated to a design Signal-to-Noise-Ratio (SNR) optimized at
an FER of 10−4. It should be noted that this may result in an error floor behavior below the
target FER. This phenomenon can be mitigated by selecting a larger design SNR at the cost
of decreased performance in the waterfall region [13]. For comparison, we also added the
BP performance with double precision floating point number representation.

In the previous section, we showed that, for the (648, 486) code, the MIC decoder
achieves the same error correction performance as the Min-mLUT decoder for nR = 7.
A similar observation was made for the (816, 406) code considered here. In our imple-
mentation comparison, we reduced nR such that the MIC’s FER stays below that of the
NMS at the target FER of 10−4. In this way, we obtained an nR = 5, which yields a small
degradation in the MIC FER compared to the Min-sLUT and Min-mLUT decoders, but
outperforms the NMS decoder. We observe that the MIC and Min-mLUT decoders with
one bit smaller message quantization nE have better error correction capability than the
NMS decoder at the target FER. In addition, due to the low message quantization and the
resulting low dynamic range, the NMS runs into an error floor below FER 10−4.
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Figure 10. Communication performance of nE = 3 bit FA-MP decoders.
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Figure 11. Communication performance of nE = 4 bit FA-MP decoders.

5.2. FD-SOI Implementation Results

Table 2 shows the implementation results for MIC(3,3,5), Min-mLUT(3,3), Min-sLUT(3,3)
and NMS(4,4) decoders, whereas Table 3 shows the implementation results for MIC(4,4,5),
Min-mLUT(4,4), Min-sLUT(4,4) and NMS(5,5) decoders. As already stated, we fixed the
target frequency to 1 GHz and the utilization to 70% for all decoders. Maximum achievable
frequency f , final utilization, area A and power consumption P were extracted from the
final layout data. From these data, we can derive the important implementation metrics:
throughput, latency, area efficiency and energy efficiency. Since the decoders are pipelined,
the coded decoder throughput T is f · N. The latency is 1/ f · 26 (each iteration consists of
three pipeline stages, decoder input and output are also buffered, yielding 8 · 3 + 2 = 26
pipeline stages in total). The area efficiency is defined as T/A and the energy efficiency as
P/T.
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The Min-mLUT decoder has the largest area, the worst area efficiency, and the worst
energy efficiency. We see an improvement in these metrics for the Min-sLUT at the cost of
a slightly decreased error correction performance. The difference in the implementation
metrics largely increases when nE = 3 changes to nE = 4. The area increases by a factor
of 10 for the Min-mLUT(4,4), but only by a factor of 2.7 for the Min-sLUT(4,4) decoder.
Moreover, we had to reduce the utilization to 50 % to achieve a routing convergence for the
Min-mLUT(4,4) decoder. The large area increase is explainable with the increase of the LUT
sizes from 512 to 4096 entries per LUT when increasing nE from 3 to 4. Moreover, the fre-
quency largely breaks down, yielding a very low area efficiency and energy efficiency. The
Min-sLUT decoders scale better with increasing nE. Both Min-sLUT decoders outperform
the corresponding NMS decoders in throughput and efficiency metrics.

The MIC decoder has the best implementation metric numbers in all cases. It outper-
forms all other decoders in throughput, area, area efficiency and energy efficiency while
having the same or even slightly improved error correction performance compared to the
other decoders. It can also be seen that the MIC decoder has a lower routing complexity
compared to the Min-sLUT and the NMS decoder. We observe a large drop in the frequency
from 595 MHz down to 183 MHz (70 % decrease) when comparing NMS(4,4) with NMS(5,5)
under the utilization constraint of 70 %. The large drop in the frequency is explainable with
the increased routing complexity for the given routing area constraint that yields longer
wires and corresponding delays. This problem is less severe for the Min-sLUT, where the
frequency drops from 670 MHz to 492 MHz (27 % decrease). The MIC achieves the highest
frequency for all cases and drops from 775 MHz to 633 MHz (18% decrease), only. This
shows that the MIC scales much better with increasing nE.

It should be noted that the CFU implementation is identical for the MIC, Min-mLUT
and Min-sLUT decoders. Compared to the corresponding NMS, the CFU implementation
is less complex [19] due to: (i) a 1 bit smaller message quantization, (ii) the omission of the
scaling unit, and (iii) the omission of the sign-magnitude to two’s complement conversion.
Hence, the CFU complexity of the FA-MP is always lower than that of the NMS independent
of the respective CN degree. Moreover, in contrast to the NMS decoder, the messages from
the CFUs to the VFUs are transmitted in sign-magnitude representation via the routing
network which reduces the toggling rate and thus the average power consumption.

Table 2. Post-layout results of FA-MP decoders with nE = nQ = 3, nR = 5.

MIC Min-mLUT Min-sLUT NMS

nE, nQ 3 3 3 4
Eb/N0 @ FER 10−4 [dB] 4.20 4.16 4.35 4.26

Utilization [%] 70 68 71 71
Frequency [MHz] 775 662 670 595
Coded Throughput [Gb/s] 633 540 547 486
Area [mm2] 2.73 4.23 2.86 3.04
Area Efficiency [Gb/s/mm2] 231.6 128 190 159.7
Latency [ns] 33.5 39.3 35.8 43.7
Power [W] 4.49 5.07 4.38 4.39
Energy Efficiency [pJ/bit] 7.10 9.4 8.0 9.0
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Table 3. Post-layout results of FA-MP decoders with nE = nQ = 4, nR = 5.

MIC Min-mLUT Min-sLUT NMS

nE, nQ 4 4 4 5
Eb/N0 @ FER 10−4 [dB] 3.94 3.87 3.93 4.01

Utilization [%] 69 49 66 69
Frequency [MHz] 633 267 492 183
Coded Throughput [Gb/s] 516 218 401 149
Area [mm2] 3.66 40.51 7.82 3.99
Area Efficiency [Gb/s/mm2] 141.1 5.4 51.3 37.4
Latency [ns] 41.1 97.2 48.0 142.0
Power [W] 5.61 11.85 8.68 2.25
Energy Efficiency [pJ/bit] 10.9 54.3 21.6 15.1

Figure 12 shows the layout of the MIC and the NMS decoder in the same scale. Each
color represents one iteration stage, which is composed of CFUs, VFUs, and the routing
between the nodes (see also Figure 9). When comparing the same iteration stages (same
color) of the two decoders, we can observe that the iteration stages in the MIC decoder are
smaller than the corresponding iteration stages in the NMS decoder, although the frequency
of the MIC decoder is more than three times higher compared to the NMS decoder. This
shows once again that the MIC has a lower implementation complexity, especially from a
routing perspective.

(a) NMS(5,5), (3.99 mm2) (b) MIC(4,4,5), (3.66 mm2)
Figure 12. Layout of decoders in the same scale; each color indicates one iteration stage from dark
red (first iteration) to dark blue (eighth iteration).

Our analysis shows that the new MIC approach largely improves the implementation
efficiency and exhibits better scaling compared to the state-of-the-art sLUT and NMS
implementations of FP decoder architectures. This enables the processing of larger block
sizes, which is mainly due to the reduced routing complexity. Larger block sizes improve
the error correction capability and further increase the throughput of FP architectures.

6. Conclusions

This paper provides a detailed investigation of the Minimum-Integer Computation
(MIC) decoder for regular and irregular Low-Density Parity Check (LDPC) codes. The
MIC decoder utilizes the computational domain framework to realize Variable Node
(VN) updates by an equivalent low-range signed integer computation and Check Node
(CN) updates by a minimum search. For the VN update, we provide further insights for
the design of an Mutual Information (MI) maximizing signed integer computation. To
discuss implementation issues on FA-MP decoding architectures, we exemplified this on
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different LUT-based decoder designs. Furthermore, we compared MIC to state-of-the-art
Normalized Min-Sum (NMS) decoder implementations to show the improvement in area
efficiency and energy efficiency.
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