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Abstract—Rate splitting multiple access (RSMA) is a promising
non-orthogonal transmission strategy for next-generation wireless
networks. It has been shown to outperform existing multiple
access schemes in terms of spectral and energy efficiency
when suboptimal beamforming schemes are employed. In this
work, we fill the gap between suboptimal and truly optimal
beamforming schemes and conclusively establish the superior
spectral and energy efficiency of RSMA. To this end, we propose
a successive incumbent transcending (SIT) branch and bound
(BB) algorithm to find globally optimal beamforming solutions
that maximize the weighted sum rate or energy efficiency
of RSMA in Gaussian multiple-input single-output (MISO)
broadcast channels. Numerical results show that RSMA exhibits
an explicit globally optimal spectral and energy efficiency gain
over conventional multi-user linear precoding (MU-LP) and power-
domain non-orthogonal multiple access (NOMA). Compared to
existing globally optimal beamforming algorithms for MU-LP,
the proposed SIT BB not only improves the numerical stability
but also achieves faster convergence. Moreover, for the first
time, we show that the spectral/energy efficiency of RSMA
achieved by suboptimal beamforming schemes (including weighted
minimum mean squared error (WMMSE) and successive convex
approximation) almost coincides with the corresponding globally
optimal performance, making it a valid choice for performance
comparisons. The globally optimal results provided in this work
are imperative to the ongoing research on RSMA as they serve
as benchmarks for existing suboptimal beamforming strategies
and those to be developed in multi-antenna broadcast channels.

Index Terms—Rate splitting multiple access (RSMA), rate
splitting, global optimization, spectral efficiency, energy efficiency,
multiple-input single-output (MISO), broadcast channel (BC),
interference networks, next generation multiple access, non-
orthogonal transmission
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I. INTRODUCTION

Over the past few years, rate splitting multiple access
(RSMA), built upon the concept of rate splitting (RS), has
emerged as a promising non-orthogonal physical-layer transmis-
sion paradigm for interference management and multiple access
in modern multi-antenna communication networks [2]–[4]. The
key design principle of RSMA is to partially decode the multi-
user interference and partially treat it as noise. This is done
by splitting user messages into common and private parts, re-
spectively, and then transmitting them employing superposition
coding [5]. The common message is decoded by multiple users,
while the private message is only decoded by the corresponding
user employing successive interference cancellation (SIC).
By flexibly adjusting the message splits according to the
interference level, RSMA allows arbitrary combinations of joint
decoding and treating interference as noise. Therefore, RSMA
is a powerful interference management and multiple access
strategy that softly bridges and subsumes existing schemes such
as space division multiple access, which fully treats interference
as noise, non-orthogonal multiple access (NOMA), which fully
decodes interference, and orthogonal multiple access, which
completely avoids interference by allocating orthogonal radio
resources among users [3], [6].

The concept of RS was introduced forty years ago for the
two-user single-input single-output interference channel [7],
[8]. However, the use of RS as a building block of RSMA is
motivated by the recent progress of RS-based network design in
multi-antenna wireless networks: RS was first shown to achieve
the optimal degrees of freedom (DoF) region of underloaded
multiple-input single-output (MISO) broadcast channels (BCs)
with partial channel state information at the transmitter (CSIT)
in [9] and of overloaded MISO BCs with heterogeneous CSIT
in [10]. The DoF benefits of RS subsequently motivated
investigations of RSMA precoder design at finite signal-to-
noise ratios (SNRs) [3], [6], [11]–[16]. There are two general
lines of research for RSMA resource allocation, namely, low-
complexity beamforming design [6], [17]–[19], [19]–[23] and
beamforming optimization [3], [10]–[12], [14]–[16], [20], [24]–
[29] mainly with respect to maximizing the spectral efficiency
(SE) or energy efficiency (EE). Low-complexity beamforming
approaches such as using random beamforming (RBF) [17]–
[19], [30], matched beamforming (MBF) [6], [19]–[22], [31],
or singular value decomposition (SVD) [11] for the common
stream together with zero-forcing (ZF) [17], [18], [30] or
reguralized-zero forcing beamforming (RZF)/minimum mean
square error (MMSE) [19], [21], [22], [31] for the private
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TABLE I
SURVEY OF EXISTING RSMA BEAMFORMING DESIGN APPROACHES.

Beamforming approach Maximize SE Maximize EE

Low RBF + ZF [17], [18], [30] —
complexity RBF + RZF [19] —

MBF + ZF [6] [20]
MBF + RZF [19], [21], [22], [31] —
SVD + ZF [11] —
MBF + BD [23] —

Suboptimal WMMSE-based [3], [10], [11], [13], [24] —
SCA-based [13]–[16], [20], [29] [12], [25], [32]
ADMM-based [26], [33], [34] —
SDR-based [16], [29] —

Globally SIT BB This work This work
optimal

streams have been widely studied in RSMA-aided MISO BC.
Block diagonalization [18], [23] has been further investigated
when the receivers are equipped with multiple antennas. Instead,
precoder optimization strives to find optimal beamformers that
maximize achievable performance regions of RSMA. Existing
beamforming design algorithms such as weighted minimum
mean squared error (WMMSE) [3], [10], [11], [13], [24],
successive convex approximation (SCA) [12]–[16], [20], [25],
[25], [29], [32], alternating direction method of multipliers
(ADMM) [26], [33], [34], and semidefinite relaxation (SDR)
[16], [27]–[29] have been investigated for RSMA. SCA-based
algorithms follow the classical idea of successively approximat-
ing the original non-convex problem with a sequence of convex
approximations. WMMSE and ADMM-based algorithms are
the block-wise alternative optimization where the variables
are divided into blocks and the original problem is optimized
alternatively with respect to a single block of variables while
the rest of the blocks are held fixed. All of them could only
guarantee a locally optimal point of the original problem [35].
Though SDR has the potential to find the global optimum,
existing works all focus on combining SDR with other efficient
approaches such as SCA [16], [29], gradient-based approach
[27], particle swarm optimization [28], heuristic approaches
[36] in order to reduce the computational complexity. Therefore,
the solutions obtained in these works cannot ensure global
optimality. Table I summarizes the state-of-the-art beamforming
design approaches that have been proposed for RSMA. None
of them exhibits strong optimality guarantees. Hence, all
performance analyses based on these approaches are incapable
of conclusively establishing the superiority of RSMA over the
previously mentioned multiplexing schemes. To the best of
the authors knowledge, there is no existing work focusing on
the globally optimal beamforming design of RSMA, and the
maximum SE and EE performance achieved by RSMA remains
unknown.

The goal of this paper is to bridge this gap and derive
an algorithm to determine a globally optimal beamforming
solution for RSMA with respect to weighted sum rate (WSR)
and EE maximization. The corresponding optimization problem
is related to joint multicast and unicast precoding that is
known to be NP-hard [37], [38]. While several globally optimal
algorithms for unicast beamforming [39], [40] and multicast

beamforming [41] exist, joint solution methods are scarce. In
particular, the procedure in [42] solves the power minimization
problem and [43] maximizes the WSR for joint multicast and
unicast beamforming. All these methods are based on branch
and bound (BB) in combination with the second-order cone
(SOC) transformation in [44]. However, as this transformation
moves the complexity into the feasible set, pure BB methods
are prone to numerical problems, see Section III. Instead, in this
paper we design a successive incumbent transcending (SIT) BB
algorithm to solve this beamforming problem with improved
numerical stability and faster convergence. To the best of the
authors knowledge, this is the first globally optimal solution
algorithm for an instance of the joint unicast and multicast
problem with respect to EE maximization.

To summarize, the contributions of this paper are:
1) We develop a numerical solver for the WSR and EE beam-

forming problem in RSMA with guaranteed convergence
to a globally optimal solution. We emphasize the novelty
of the globally optimal EE maximization method for an
instance of the joint unicast and multicast beamforming
problem.

2) We apply the successive incumbent transcending (SIT)
principle to a MISO beamforming problem. The proposed
algorithm incorporates multi-user linear precoding (MU-
LP) and 2-user NOMA beamforming as special cases.
It exhibits faster practical convergence and improved
numerical stability over state-of-the-art solution methods
for MU-LP beamforming.

3) From a theoretical perspective, we establish finite con-
vergence to the optimal solution. This property does not
hold for most BB-based beamforming algorithms.

4) Extensive numerical verification is done, both to assess
the numerical properties of the proposed algorithm and
to evaluate the performance of suboptimal state-of-the-
art methods. In particular, we show that these methods,
including WMMSE and SCA, are often close to the true
optimum solution.

The paper organization continues as follows. In the next
section, we define the system model, formally state the
optimization problem and transform it into an equivalent
form more suitable for numerical solution. In Section III,
the mathematical fundamentals of the proposed algorithm are
reviewed. These are applied in Section IV to derive the solution
algorithm and prove its convergence. We close the paper with
numerical experiments in Section V and a short discussion.

Notation: Scalars and functions are typeset in normal font
x. The absolute value of · is | · | and v(n) is the optimal value
of the optimization problem in equation (n). ℜ{·} and ℑ{·}
are the real and imaginary parts of a complex number, j is
the imaginary unit, and ∠· is the argument of (·). A vector x
has components [x1, x2, . . . ]

T and is a column vector unless
noted otherwise. The all-zero and all-ones vectors are denoted
as 0 and 1, respectively. The operators (·)T , (·)H , and ∥ · ∥
are the transpose, the conjugate transpose and the Euclidean
norm, respectively. Scalar operators are applied element-wise
to vectors, where relational operators evaluate to true if they
hold element-wise for all elements. A set is written as X and
a family of sets as X . The sets of real and complex numbers
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Fig. 1. 1-layer RS model for K users, where the common stream sc is shared
by all users.

are denoted as R and C. The notation X \ x is a shorthand
for X \ {x}. Let X and (x,y) ∈ X . Then, projx X = {x :
(x,y) ∈ X for some y}, i.e., the projection of A onto the x
coordinates.

II. SYSTEM MODEL & PROBLEM STATEMENT

Consider the downlink in a wireless network where an M
antenna base station (BS) serves K single-antenna users. The
received signal at user k, k ∈ K = {1, . . . ,K}, for each
channel use is yk = hH

k x + nk, where the transmit signal
x ∈ CM×1 is subject to an average power constraint P , hk is
the complex-valued channel from the BS to user k, and nk is
circularly symmetric complex white Gaussian noise with unit
power at user k. We assume perfect channel state information
at the transmitter and receivers.

The transmitter employs 1-layer RS [3], [11] as illustrated
in Fig. 1, i.e., it splits the message Wk intended for user k
into a common part Wc,k and a private part Wp,k. Then, the
common messages Wc,1, . . . ,Wc,K are combined into a single
message Wc and the K + 1 resulting messages are encoded
into independent Gaussian data streams sc, s1, . . . , sK , each
having unit power. These symbols are combined with linear
precoding into the transmit signal x = pcsc +

∑
k∈K pksk,

where pc,p1, . . . ,pK ∈ CM are the precoding vectors. Due
to the average transmit power constraint, they need to satisfy
∥pc∥2 +

∑
k∈K ∥pk∥2 ≤ P .

Each receiver k ∈ K uses SIC to first recover sc and then
sk from its received signal yk. In particular, sc is decoded first
by treating interference from all other streams as noise. This
allows user k to recover its desired common part Wc,k. Then,
sc is cancelled from the received signal and user k proceeds
to decode sk to recover the desired private part Wp,k. These
two messages are combined to obtain Wk.

Given a precoding scheme pc,p1, . . . ,pK , asymptotic error
free decoding of Wc and Wp,k is possible if the rates of these
messages satisfy

Rc ≤ log(1 + γc,k),∀k ∈ K, Rp,k ≤ log(1 + γp,k) (1)

with signal to interference plus noise ratios (SINRs)

γc,k =
|hH

k pc|2∑
j∈K

|hH
k pj |2 + 1

, γp,k =
|hH

k pk|2∑
j∈K\k

|hH
k pj |2 + 1

. (2)

The rate Rc is shared across the users, where user k is allocated
a portion Ck corresponding to the rate of Wc,k, such that∑

k∈K Ck = Rc. The total rate of user k is Rk = Ck +Rp,k.
Observe that this system model can be interpreted as

an instance of the joint multicast and unicast beamforming
problem. It includes several notable special cases. With pc = 0,
we obtain MU-LP and for pk = 0, k ∈ K, it is the multicast
beamforming problem. It also includes 2-user NOMA [6].

A. Problem Statement

We consider WSR maximization under minimum rate Quality
of Service (QoS) constraints, i.e.,

max
p1,...,pK ,pc,

C,Rc,Rp,γc,γp

∑
k∈K

uk (Ck +Rp,k) (3a)

s.t. Rc, Rp,k, γc,k and γp,k as in (1)–(2) (3b)∑
k′∈K

Ck′ ≤ Rc (3c)

Ck ≥ 0, k ∈ K (3d)

Ck +Rp,k ≥ Rth
k , k ∈ K (3e)

∥pc∥2 +
∑
k∈K

∥pk∥2 ≤ P (3f)

with nonnegative weight vector u = [u1, . . . ,uK ]T ̸= 0, where
(3b) includes the rate constraints and SINR definition from the
system model, (3b) ensures that the common rate allocations Ck

are feasible, (3c) implements the non-negativity of the common
rates, (3e) is the minimum rate constraint with threshold Rth

k

for user k, and (3f) is the maximum power constraint at the
BS. We also consider EE maximization

max
p1,...,pK ,pc,

C,Rc,Rp,γc,γp

∑
k∈K Ck +Rp,k

µ
(
∥pc∥2 +

∑
k∈K ∥pk∥2

)
+ Pc

(4a)

s.t. (3b)–(3f), (4b)

where µ ≥ 0 is the power amplifier inefficiency and Pc > 0 is
the static circuit power consumption. For notational simplicity,
we define C = [C1, . . . ,Ck]

T , γp = [γ1, . . . , γK ]T , γc =
[γc,1, . . . , γc,K ]T , Rp = [Rp,1, . . . , Rp,K ]T . Both problems
can be combined into the equivalent optimization problem

max
p1,...,pK ,
pc,C,γc,γp

∑
k∈K uk (Ck + log(1 + γp,k))

µ
(
∥pc∥2 +

∑
k∈K ∥pk∥2

)
+ Pc

(5a)

s.t. γc,k and γp,k as in (2) (5b)∑
k′∈K

Ck′ ≤ log(1 + γc,k), k ∈ K (5c)

Ck ≥ max
{
0, Rth

k − log(1 + γp,k)
}
, k ∈ K (5d)

∥pc∥2 +
∑
k∈K

∥pk∥2 ≤ P, (5e)

where (5d) combines (3d) and (3e) into a single constraint.
Clearly, we obtain WSR maximization for µ = 0, Pc = 1 and
EE maximization for u = 1.
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A globally optimal solution of (5) can be obtained by solving

max
pc,p1,...,pK ,
C,γp,s,d,e

∑
k∈K uk (Ck + log(1 + γp,k))

µ
(
∥pc∥2 +

∑
k∈K ∥pk∥2

)
+ Pc

(6a)

s.t.
√
γp,k

(∑
j∈K\k

|hH
k pj |2 + 1

)1/2

≤ hH
k pk (6b)

√
s
(∑

j∈K
|hH

1 pj |2 + 1
)1/2

≤ hH
1 pc (6c)

√
s
(∑

j∈K
|hH

k pj |2 + 1
)1/2

≤ dk,∀k > 1 (6d)

(ek, dk) ∈ C,∀k > 1 (6e)

ℜ{hH
k pk} ≥ 0, ℑ{hH

k pk} = 0 (6f)

ℜ{hH
1 pc} ≥ 0, ℑ{hH

1 pc} = 0 (6g)

∀k > 1 : dk ≥ 0, ek = hH
k pc (6h)∑

k∈K

Ck ≤ log(1 + s) (6i)

(5d) and (5e) (6j)

with
(e, d) ∈ C = {e ∈ C, d ∈ R : d ≤ |e|} (7)

instead of (5). A crucial observation is that this problem is a
second-order cone program (SOCP) for fixed s, γp except for
constraint (6h). Hence, the nonconvexity of (5) is only due to
the SINR expressions and not due to the beamforming vectors.
We will exploit this partial convexity in the final algorithm to
limit the numerical complexity.

The transformation from (5) to (6) relies on the observation
that, for all other variables except the beamforming vectors
fixed, the nonconvexity in (5) stemming from pk is only due to
the product |hH

k pk|2. This can be seen from considering (8b)
below and multiplying it with the denominator of its right-hand
side (RHS). Then, for fixed γp,k, one almost obtains the SOC
(6b), except for |hH

k pk|2. Further observing that the solution
of (6) is rotationally invariant in pk, one can select the solution
that results in |hH

k pk| being nonnegative and real valued. This
is achieved by introducing constraint (6f) [44].

Unfortunately, this transformation is not sufficient to elimi-
nate pc as a nonconvex variable. This is because there is not a
single product |hH

k pc|2 that needs to be made real but K, one
for each user. Our approach is to first replace γc,1, . . . , γc,K by
a single nonconvex variable s = mink γc,k and then apply the
same transformation as for the precoders p1, . . . ,pK for only
one of the products |hH

k pc|2 (here for k = 1). This results in
the constraints (6c) and (6g). The remaining K − 1 “almost”-
SOC-constraints are then addressed using the argument cuts
approach from [41]. In particular, real valued auxiliary variables
dk are introduced together with the relaxation that these must
be within the circle |hH

k pc|. These considerations will be made
rigorous in Proposition 1.

Another equivalent variant of (5) that is interesting in its
own right is

max
pc,p1,...,pK ,

C,γp,s

∑
k∈K uk (Ck + log(1 + γp,k))

µ
(
∥pc∥2 +

∑
k∈K ∥pk∥2

)
+ Pc

(8a)

s.t. γp,k ≤ |hH
k pk|2∑

j∈K\k |hH
k pj |2 + 1

(8b)

s ≤ |hH
k pc|2∑

j∈K |hH
k pj |2 + 1

, k ∈ K (8c)

(5d), (5e) and (6i). (8d)

This problem is obtained as a side product when showing the
equivalence of (5) and (6), which is established next.

Proposition 1: Let x⋆ = (p⋆
c ,p

⋆
1, . . . ,p

⋆
K ,C⋆,γ⋆

p). A point
(x⋆, s⋆) solves (8) if (x⋆,γ⋆

c ) solves (5) and s⋆ = mink γ
⋆
c,k.

Conversely, the point (x⋆,γ⋆
c ) solves (5) if (x⋆, s⋆) solves

(8) and γ⋆
c,k =

|hH
k p⋆

c |
2∑

j∈K |hH
k p⋆

j |2+1
for all k ∈ K. Moreover, if

(x⋆, s⋆,d⋆, e⋆) solves (6), then (x⋆, s⋆) solves (8) and (x⋆,γ⋆
c )

solves (5), where s⋆ and γ⋆
c are as before.

Proof: See Appendix A.
Corollary 1: Problems (5), (6), (8) have the same optimal

value.
In the next section, we introduce some mathematical pre-

liminaries before we develop a solution algorithm for (6) in
Section IV.

III. MATHEMATICAL BACKGROUND

Problem (6) is an NP-hard nonconvex optimization problem.
To see this, consider problem (8) for µ = 0, uk = 1, and fix
all variables except pc, C and s. Then, it is equivalent to

max
pc

min
k

{|h̃H
k pc|2} s. t. ∥pc∥2 ≤ P̃. (9)

This is known as multicast beamforming and shown to be
NP-hard in [37]. Our solution approach for this part of the
problem relies on the so-called “argument cuts” proposed in
[41]. The introduction of the auxiliary variables dk and ek
in (6) is motivated by this approach and collects most of the
nonconvexity due to pc in (6e). The idea is to add a box
constraint on arg(ek) to C and then optimize over its convex
envelope to obtain a bound on (6) suitable for a BB procedure.

The remaining nonconvexity in (6) stems from γp,k and s
in (6b)–(6d). Previous global optimization algorithms for such
problems rely on BB procedures with SOCP bounding [39],
[40], [42], [43]. However, this leads to an infinite algorithm
where the convergence to the global optimal solution cannot
be guaranteed in a finite number of iterations.1 This is because
the difficulty in solving (6) is due to the feasible set, while BB
works best if the nonconvexity is mostly due to the objective.
Please refer to [46]–[48] for a detailed discussion of this topic.
For the solution of (6), finite convergence can be obtained by
adding a line search procedure to every iteration of the BB
procedure that recovers a feasible point and requires the solution
of several SOC feasibility problems [39, Alg. 3]. Hence, finite
convergence in BB procedures comes at the cost of increased
computational complexity. Moreover, the auxiliary SOCP that
is solved in every iteration of the BB procedure is numerically
challenging as the feasible set can become very small. This
leads to numerical problems even with commercial state-of-the-
art solvers like Mosek [49]. A computationally more tractable

1While this often does not lead to problems in practice, slower convergence
might be observed in infinite algorithms. In addition, finiteness is an important
theoretical aspect that differentiates a “computational method” from an
“algorithm” [45].
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modification is proposed in [39, §2.2.2] that comes at the price
of much harder feasible point acquisition in the BB procedure.

Instead, we design an algorithm based on the SIT scheme
[47], [48], [50], [51] and combine it with a branch reduce and
bound (BRB) procedure. The resulting algorithm is numerically
stable, has proven finite convergence, solves EE maximization
and is the first global optimization algorithm specifically
designed for RSMA. Practically, it outperforms algorithms
for similar problems as will be verified in Section V. To
better illustrate the core principles of SIT, we first consider
the following general optimization problem

max
(x,ξ)∈D

f(x, ξ) s. t. gi(x, ξ) ≤ 0, i = 1, . . . , n (10)

with continuous, real-valued functions f, g1, . . . , gn and
nonempty feasible set. Further, assume that f is concave,2

g1, . . . , gn are convex in ξ for fixed x, and D is a closed
convex set. Depending on the structure of g1, . . . , gn in x this
problem might be quite hard to solve for BB methods [47],
[52].3 By exchanging the objective and constraints of (10), we
obtain the so-called SIT dual

min
(x,ξ)∈D

max
i

{gi(x, ξ)} s. t. f(x, ξ) ≥ δ. (11)

Observe that the optimal value of (10) is greater than or equal
to δ if the optimal value of (11) is less than or equal to zero.
Conversely, if the optimal value of (11) is greater than zero,
the optimal value of (10) is less than δ. Hence, the optimal
solution of (10) can be obtained by solving a sequence of (11)
with increasing δ. Since the feasible set of (11) is closed and
convex, it can be solved much easier by BB than (10).

Obtaining the exact optimal solution to continuous real-
valued optimization problems is often computationally infeasi-
ble, even for linear or convex problems. A widely employed
practice is to accept any feasible point with objective value
within a prescribed tolerance η of the exact optimal value as a
solution. That is, a point (x̄, ξ̄) is called an η-optimal solution
of (10) if, for all feasible points (x, ξ),

f(x̄, ξ̄) ≥ f(x, ξ)− η. (12)

Likewise, the constraints in (10) can be hard to satisfy
numerically. The most common approach is to relax them
by ε. However, for nonconvex feasible sets this can lead to
completely wrong solutions [47], [50], [52]. Instead, for the
SIT scheme, the constraints are tightened by ε, i.e., the problem
to be solved is

max
(x,ξ)∈D

f(x, ξ) s. t. gi(x, ξ) ≤ −ε, i = 1, . . . , n (13)

for some ε > 0. Any point in this feasible set is denoted as
ε-essential feasible and a solution of this problem satisfying
(12) is called essential (ε, η)-optimal solution of (10). This
constraint tightening removes numerically instable points from
the feasible set and is necessary to ensure finite convergence
of the SIT scheme.

2Although this assumption does not hold for (6), it will be established later
that the SIT approach is still applicable. This is because the sole purpose of
this convexity assumption is to obtain a convex feasible set in (11).

3This is also true for outer approximation methods like the Polyblock
algorithm [52].

The outlined duality between (10) and (11) is formalized in
the following lemma.

Lemma 1: For every ε > 0, the ε-essential optimal value
of (10) is less than δ if and only of the optimal value of (11)
is greater than or equal to −ε.

Proof: Direct consequence of [50, Prop. 1].
We refer to (10) as the primal problem and (11) as the dual
problem.4

A. Successive Incumbent Transcending Algorithm

The discussion above leads to the SIT algorithm as stated in
Algorithm 1. The core problem is Step 1, which is implemented
by solving (11) with a modified rectangular BB procedure.
Such a procedure has exponential computational complexity in
the number of optimization variables. Since (11) is a convex
optimization problem for fixed x, the SIT BB procedure should
only operate on the nonconvex variables x and employ a convex
solver for ξ to limit the computational complexity.

Algorithm 1 SIT Algorithm [52, §7.5.1].

Step 0 Initialize (x̄, ξ̄) with the best known nonisolated feasible
solution and set δ = f(x̄, ξ̄) + η; otherwise do not set
(x̄, ξ̄) and choose δ ≤ f(x, ξ) ∀(x, ξ) ∈ D.

Step 1 Check if (10) has a nonisolated feasible solution (x, ξ)
satisfying f(x, ξ) ≥ δ; otherwise, establish that no such
ε-essential feasible (x, ξ) exists and go to Step 3.

Step 2 Update (x̄, ξ̄)← (x, ξ) and δ ← f(x̄, ξ̄)+η. Go to Step 1.
Step 3 Terminate: If (x̄, ξ̄) is set, it is an essential (ε, η)-optimal

solution; else Problem (10) is ε-essential infeasible.

The general idea of BB is to relax the feasible set and then
subsequently partition this relaxed set in such a way that upper
and lower bounds on the objective value in each partition
can be computed efficiently. As the partition is successively
refined, these bounds approach each other until the optimal
value is found. For a rectangular BB procedure, the feasible
set is relaxed into an initial box

M0 = [r0, s0] = {x : r0i ≤ xi ≤ s0i } (14)

satisfying M0 ⊇ projx D. Further, a bounding function β(M),
M ⊆ M0, with β(M) = ∞ if projx F ∩M = ∅ and

β(M) ≤ min
(x,ξ)∈F,x∈M

max
i

{gi(x, ξ)}, (15)

otherwise is required, where F = {(x, ξ) ∈ D : f(x, ξ) ≥ δ}
is the feasible set of (11). The algorithm subsequently partitions
the relaxed feasible set M0 into smaller boxes and stores the
current partition of M0 in a set Rk. In iteration k, the algorithm
uses best-first selection to determine the next branch, i.e.,

Mk ∈ argmin{β(M) |M ∈ Rk}, (16)

and then replaces Mk = [rk, sk] by two new subrectangles

M− = {x : rj ≤ xj ≤ vj , ri ≤ xi ≤ si (i ̸= j)} (17a)

M+ = {x : vj ≤ xj ≤ sj , ri ≤ xi ≤ si (i ̸= j)} (17b)

4In this paper, the concept of duality is used with respect to the SIT dual
as discussed in this section and not in terms of Lagrange duality theory.
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with v = 1
2 (s+r) and j ∈ argmaxj sj−rj . For each of these

new boxes, a lower bound on the objective value is computed
using the bounding function β(M). To ensure convergence,
the bounding needs to be consistent with branching, i.e., β(M)
has to satisfy

β(M)− min
(x,ξ)∈F,
x∈M

max
i

{gi(x, ξ)} → 0 as max
x,y∈M

∥x−y∥ → 0,

(18)
and a dual feasible point xk ∈ projx F ∩ Mk is required
if β(Mk) < ∞. Suitable pruning and termination rules that
ensure convergence can be obtained from the following lemma
that is adapted from [52, Prop. 7.14] and [48, Prop. 5.9].

Lemma 2: Let ε > 0 be given and define g(x, ξ) =
maxi{gi(x, ξ)}. Let β(M) satisfy (15) and (18) and Mk be as
in (16). Then, as maxx,y∈Mk

∥x−y∥ → 0 for k → ∞, either
g(xk, ξ∗) < 0 for some k and (xk, ξ∗) ∈ F or β(Mk) > −ε
for some k. In the former case, (xk, ξ∗) is a nonisolated
feasible solution of (10) satisfying f(xk, ξ∗) ≥ δ. In the latter
case, no ε-essential feasible solution (x, ξ) of (10) exists such
that f(x, ξ) ≥ δ.

Proof: Please refer to [48, Prop. 5.9].
This suggests a BB procedure with pruning criterion

β(M) < −ε and termination criterion

0 > minξ g(xk, ξ) s. t. (xk, ξ) ∈ F . (19)

In the following section, we apply this approach to find the
solution of (6) and explicitly incorporate the outlined BB
procedure into Algorithm 1.

IV. GLOBALLY OPTIMAL BEAMFORMING

We design a globally optimal solution algorithm for (6)
based on the fundamentals in the previous section. There,
we have seen that the SIT algorithm requires a bounding
function, a feasible point in each iteration and an initial box
M0. These aspects will be discussed after identifying and
discussing the SIT dual. At the end of this section, we state
the complete algorithm and establish its convergence. We also
derive a reduction procedure in Section IV-D that is essential
for practical convergence, although it is not strictly necessary
from a theoretical perspective.

The SIT dual should contain all of the problem’s noncon-
vexity in the objective function. Following the discussion in
Section II-A, the nonconvexity in (6) is due to (6b)–(6e) and
we obtain the SIT dual as

min
pc,p1,...,pK ,
C,γp,s,d,e

max

[√
s
(∑

j∈K
|hH

1 pj |2 + 1
)1/2

− hH
1 pc,

max
k>1

{√
s
(∑

j∈K
|hH

k pj |2 + 1
)1/2

− dk

}
,

max
k∈K

{
√
γp,k

(∑
j∈K\k

|hH
k pj |2 + 1

)1/2

− hH
k pk

}
,

max
k>1

{
dk − |ek|

}]
(20a)

s.t.
∑

k∈K uk (Ck + log(1 + γp,k))

µ
(
∥pc∥2 +

∑
k∈K ∥pk∥2

)
+ Pc

≥ δ (20b)

(5d), (5e), (6f)–(6i). (20c)

Observe that (20b) is equivalent to the SOC∑
k∈K

uk (Ck + log(1 + γp,k))

≥ δ

(
µ

(
∥pc∥2 +

∑
k∈K

∥pk∥2
)
+ Pc

)
(21)

since the denominator in (20b) is positive. First, smoothen the
objective by using the epigraph form with auxiliary variable t,
and successively convert the pointwise maximum expressions
to smooth constraints. Then, the new constraints dk − |ek| ≤ t,
for k > 1, are equivalent to (ek, dk − t) ∈ C. Introducing
auxiliary variables αk ∈ [0, 2π] and constraints αk = ∠ek for
k > 1 leads to the equivalent optimization problem

min
p1,...,pk,
pc,C,γp,
s,d,e,t,α

t (22a)

s.t.
√
s
(∑
j∈K

|hH
1 pj |2 + 1

)1/2 − hH
1 pc ≤ t (22b)

√
s
(∑
j∈K

|hH
k pj |2 + 1

)1/2 − dk ≤ t, k > 1 (22c)

√
γp,k

( ∑
j∈K\k

|hH
k pj |2 + 1

)1/2− hH
k pk, k ∈ K (22d)

(ek, dk − t, αk) ∈ C̃, k > 1 (22e)
(5d), (5e), (6f)–(6i), (21) (22f)

with

C̃ = {e ∈ C, d ∈ R, α ∈ R : d ≤ |e|, ∠e = α}. (23)

Note that this is a convex optimization problem for fixed
(γp, s,α). Hence, we design the BRB procedure to operate on
these variables.

Relating this to the previous section, we can identify the
nonconvex variables x = (γp, s,α), the convex variables ξ =
(pc,p1, . . . ,pK ,C,γp,d, e), the dual feasible set F as{

γp, s,α,pc,p1, . . . ,pK ,C,γp,d, e : ∠e = α,

α ∈ [0, 2π]K−1, and (5d), (5e), (6f)–(6i), (21)
}
.

(24)

and the dual objective g̃(x, ξ) = maxi{gi(x, ξ)} as the
function

g̃ : (γp, s,α) 7→ min
p1,...,pK ,
pc,C,d,e,t

t s. t. (22b)–(22f). (25)

A. Bounding Procedure

A bounding function β(M) that satisfies (18) is required.
We obtain it by adding suitable box constraints to (22) and
then relaxing it adequately. First, observe that the objective
of (20) is increasing in (γp, s). Hence, a lower bound on
[
¯
γp, γ̄p]× [

¯
s, s̄] is obtained by setting γp =

¯
γp and s =

¯
s. This

leaves the nonconvexity in C̃. Consistent bounding over this
set is achieved by using argument cuts [41], i.e., we introduce
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box constraints on α, i.e., α ∈ [
¯
α, ᾱ], and replace C̃ by its

convex envelope. For ᾱk −
¯
αk ≤ π, this envelope is

sin(
¯
αk)ℜ{ek} − cos(

¯
αk)ℑ{ek} ≤ 0 (26a)

sin(ᾱk)ℜ{ek} − cos(ᾱk)ℑ{ek} ≥ 0 (26b)

akℜ{ek}+ bkℑ{ek} ≥ (dk − t)(a2k + b2k) (26c)

and (ek, dk) ∈ C × R otherwise [41, Prop. 1], where
ak = 1

2 (cos(¯
αk) + cos(ᾱk)), and bk = 1

2 (sin(¯
αk) + sin(ᾱk)).

Then, the bounding problem for a box M = [
¯
γp, γ̄p]× [

¯
s, s̄]×

[
¯
α, ᾱ] is

min
pc,p1,...,pK ,
C,γp,s,d,e,t

t (27a)

s.t.
√
¯
s
(∑
j∈K

|hH
1 pj |2 + 1

)1/2 − hH
1 pc ≤ t (27b)

√
¯
s
(∑
j∈K

|hH
k pj |2 + 1

)1/2 − dk ≤ t, k > 1

(27c)√
¯
γp,k

( ∑
j∈K\k

|hH
k pj |2 + 1

)1/2− hH
k pk, k ∈ K

(27d)
(26a)–(26c), k ∈ IM (27e)
γp ∈ [

¯
γp, γ̄p], s ∈ [

¯
s, s̄], (27f)

(5d), (5e), (6f)–(6i), (21), (27g)

where, with a slight abuse of notation,

IM =
{
k ∈ K : k > 1 ∧ max

¯
α,ᾱ∈M

|ᾱk −
¯
αk| ≤ π

}
. (28)

Define the bounding function β(M) such that it takes the
optimal value of (27) if (27) is feasible and ∞ otherwise.
This is a suitable bounding function to solve (20) with a BB
procedure over the nonconvex variables γp, s,α.

Lemma 3: The bounding function β(M) computed from
(27) is consistent with respect to (22), i.e., it satisfies (18) with
gi(x, ξ) and F as identified in (24) and (25).

Proof: We need to show that β(M) asymptotically
approaches the optimal value of (27) on M as M shrinks to
a singleton, i.e., M → {z∗} with z∗ = (γ∗

p , s,α
∗). Observe

that these problems only differ in the constraints (22b)–(22e)
and (27b)–(27e). Asymptotically, (22b)–(22d) and (27b)–(27d)
are equivalent since

¯
γp,γp → γ∗

p and
¯
s, s → s∗.

For the remaining constraints, note that IM = {k ∈ K :
k > 1} as

¯
α, ᾱ → α∗. Further, (26a) and (26b) asymptotically

evaluate to

sin(α∗
k)ℜ{ek} = cos(α∗

k)ℑ{ek} (29)

and (26c) to

cos(α∗
k)ℜ{ek}+ sin(α∗

k)ℑ{ek} ≥ dk − t. (30)

Recall that constraint (22e) is dk − t ≤ |ek| and ∠ek = α∗
k.

The second equation is equivalent to

|ek| =
ℜ{ek}
cos(α∗

k)
=

ℑ{ek}
sin(α∗

k)
(31)

and, hence, asymptotically the same as (29). Finally, with
ℜ{ek} = |ek| cos(α∗

k) and ℑ{ek} = |ek| cos(α∗
k), the left-

hand side of (30) is

cos2(α∗
k)|ek|+ sin2(α∗

k)|ek| = |ek|. (32)

This establishes the lemma.
Observe that problem (27) depends on γp and s only

through constraints (5d), (6i), (21), (27f). These are (convex)
exponential cone constraints that can be transformed into
affine functions of (γp, s) by substituting s′ = log(1 + s) and
γ′
p,k = log(1 + γp,k). This leads to an equivalent optimization

problem with considerably reduced computational complexity.
In particular, we can solve the following SOCP

min
p1,...,pK ,pc,
C,γ′

p,s
′,d,e,t

t (33a)

s.t. Ck ≥ max
{
0, Rth

k − γ′
p,k

}
, k ∈ K (33b)∑

k∈K
Ck ≤ s′ (33c)∑

k∈K
uk

(
Ck + γ′

p,k

)
≥ δ

(
µ
(
∥pc∥2 +

∑
k∈K

∥pk∥2
)
+ Pc

)
(33d)

γ′
p,k∈ [log(1 +

¯
γp,k), log(1 + γ̄p,k)], k ∈ K (33e)

s′ ∈ [log(1 +
¯
s), log(1 + s̄)], (33f)

(5e), (6f)–(6h), (27b)–(27e) (33g)

instead of (27) to compute the bounding function β(M).

B. Feasible Point

In every iteration, a dual feasible point xk is required that
satisfies xk ∈ projx F ∩Mk whenever projx F ∩Mk ̸= ∅
(or, equivalently, β(Mk) < ∞). If this point satisfies (19), it
is nonisolated primal feasible according to Lemma 2 and can
be used to update δ in Algorithm 1. Such a point (γk

p , s
k,αk)

can be obtained from the optimal solution (γ⋆
p , s

⋆, e⋆, . . . ) of
the bounding problem (33) as

γk
p,i = 2γ

⋆
p,i − 1, i ∈ K, sk = 2s

⋆

− 1 (34a)

and αk ∈ projα Mk = [
¯
αk, ᾱk]. At first glance, a sensible

choice for α seems to be αk
i = ∠e⋆i . However, preliminary

numerical experiments show that this point leads to very slow
convergence. Much better results are obtained by using the
corner point of projα Mk closest to ∠e⋆, i.e.,

αk
i = argmin

α∈{
¯
αk

i ,ᾱ
k
i }

|α− ∠e⋆i |. (34b)

It is easily verified that this point satisfies (γk
p , s

k,αk) ∈
proj(γp,s,α) F ∩Mk. If further g̃(γk

p , s
k,αk) ≤ 0, it is primal

feasible and the solution of (25) achieves a primal objective
value greater than or equal to δ.

Lemma 4: Let z be a solution of (33) for some δ. Obtain
xk = (γk

p , s
k,αk) from z as in (34). Compute g̃(γk

p , s
k,αk)

as in (25) and let (t⋆,y⋆) = (t⋆,p⋆
1, . . . ,p

⋆
K ,p⋆

c ,C
⋆,d⋆, e⋆)

be a solution of the accompanying optimization problem. If
t⋆ ≤ 0, (xk,y⋆) is a primal feasible point with primal objective
value greater than or equal to δ. Then, (y⋆,γ⋆

p , s
⋆) with γ⋆

p,k =
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|hH
k p⋆

k|
2∑

j∈K\k
|hH

k p⋆
j |2+1

for all k ∈ K and s⋆ = mink∈K
|hH

k p⋆
c |

2∑
j∈K

|hH
k p⋆

j |2+1

is a feasible point of (6) and achieves a primal objective
value greater than or equal to that of (xk,y⋆). The primal
objective value can be further improved (while preserving
primal feasibility) by updating C⋆ to a solution of

max
C

∑
k∈K

ukCk (35a)

s.t.

∑
k∈K uk

(
Ck + log(1 + γ⋆

p,k)
)

µ
(
∥p⋆

c∥2 +
∑

k∈K ∥p⋆
k∥2

)
+ Pc

≥ δ (35b)∑
k∈K

Ck ≤ log(1 + s⋆) (35c)

Ck ≥ max
{
0, Rth

k − log(1 + γ⋆
p,k)

}
,∀k ∈ K. (35d)

Proof: Observe that γk
p and sk are such that the set defined

by (5d), (5e), (6f)–(6i), (21) is nonempty. Further, if t ≤ 0,
every point satisfying (22b)–(22d) also meets (6b)–(6d). Since
C̃ ⊆ C, (22e) implies that (ek, dk) ∈ C if t ≤ 0. Hence,
(y⋆,γk

p , s
k) is a feasible solution of (6) if t⋆ ≤ 0.

From the proof of Proposition 1, we know that every point
that satisfies (6b)–(6h) also satisfies (8b) and (8c). This implies
γk
p ≤ γ⋆

p , sk ≤ s⋆ and, hence, (γ⋆
p , s

⋆) satisfies (5d), (6b)–(6i).
Thus, (y⋆,γ⋆

p , s
⋆) is a feasible point of (6).

Clearly, (xk,y⋆) satisfies (21). Hence,

δ ≤
∑

i∈K ui(C
⋆
i + log(1 + γk

p,i))

µ
(
∥p⋆

c∥2 +
∑

i∈K ∥p⋆
i ∥2

)
+ Pc

≤
∑

i∈K ui(C
⋆
i + log(1 + γ⋆

p,i))

µ
(
∥p⋆

c∥2 +
∑

i∈K ∥p⋆
i ∥2

)
+ Pc

. (36)

Clearly, any C that is feasible in (35) is also feasible in (6)
and maximizes (36) in C (with all other variables fixed).

C. Initial Box

The BB procedure requires an initial box M0 = [
¯
γ0
p , γ̄

0
p ]×

[
¯
s0, s̄0]× [

¯
α0, ᾱ0] that contains the nonconvex dimensions of

the dual feasible set proj(γp,s,α) F . As α is already constrained
by box constraints, we have [

¯
α0, ᾱ0] = [0, 2π]K−1. For γ̄0

p ,
observe that γ̄0

p,k ≥ maxγp,s,α∈F γp,k but also

γ̄0
p,k ≥ max

pc,p1,...,pK ,C,γc,γp

γp,k s. t. (5b)–(5e). (37)

This nonconvex optimization problem can be relaxed to

max
pk

|hH
k pk|2 s. t. ∥pk∥2 ≤ P. (38)

The solution to (38) is p⋆
k =

√
P hk

∥hk∥ [53, §5.3.2] and, hence,
γ̄0
p,k = P∥hk∥2. Likewise, the upper bound s̄0 for s needs to

satisfy

s̄0 ≥ max
pc

min
k∈K

|hH
k pc|2 s. t. ∥pc∥2 ≤ P. (39)

This is an NP-hard optimization problem as discussed in
Section III. Exchanging maximum and minimum leads to the
relaxed problem

s̄0 = min
k∈K

max
∥pc∥2≤P

|hH
k pc|2 = min

k∈K
P∥hk∥2. (40)

An obvious lower bound on γp and s is 0. For γp, we can
exploit the QoS constraints to obtain a possibly tighter initial
box. Similar to the upper bound,

¯
γp,k needs to be less than

or equal to the minimum of γp,k over (5b)–(5e). The optimal
solution to this problem either meets (5d) with equality or is
zero. In the first case, this is equivalent to

min
pc,p1,...,pK ,C

2R
th
k −Ck − 1 (41a)

s.t.
∑
k′∈K

Ck′ ≤ log

(
1 + min

k∈K

|hH
k pc|2∑

j∈K
|hH

k pj |2 + 1

)
(41b)

C ≥ 0, ∥pc∥2 +
∑
k∈K

∥pk∥2 ≤ P. (41c)

Clearly, the optimal solution to this problem is equivalent to
the solution of

max
pc,p1,...,pK ,C

log

(
1 + min

k∈K

|hH
k pc|2∑

j∈K
|hH

k pj |2 + 1

)
(42a)

s.t. ∥pc∥2 +
∑
k∈K

∥pk∥2 ≤ P. (42b)

The optimal choice for p1, . . . ,pK is 0. Optimizing over pc

is equivalent to (39). Thus, an upper bound to the optimal Ck

is log(1 + s̄) and a lower bound on the optimal value of (41)
is 2R

th
k −log(1+s̄) − 1. Hence,

¯
γp,k = max

{
0,

2R
th
k

1 + s̄
− 1

}
. (43)

D. Reduction Procedure

The convergence criterion (18) implies that the quality of
the bound β(M) improves as the diameter of M shrinks.
Since tighter bounds lead to faster convergence, it is beneficial
to reduce the size of M prior to bounding if possible at
reasonable computational cost. It is important that such a
reduced box M′ ⊆ M still contains all solution candidates,
i.e., M∩ F̃ = M′ ∩ F̃ or, equivalently, (M\M′) ∩ F̃ = ∅,
where F̃ = proj(γp,s,α) F .

A suitable reduction is derived in the lemma below. Prelim-
inary numerical experiments have shown that this procedure is
essential to ensure convergence within reasonable time.

Lemma 5: Let M = [
¯
γp, γ̄p] × [

¯
s, s̄] × [

¯
α, ᾱ], M′ =

[
¯
γ′
p, γ̄

′
p] × [

¯
s′, s̄′] × [

¯
α, ᾱ], and F̃ = proj(γp,s,α) F . Then,

M∩ F̃ = M′ ∩ F̃ if

¯
γ′
p,k = max{

¯
γp,k,

¯
γ′′
p,k}

γ̄′
p,k = min

{
γ̄p,k,

¯
γ′
k,p +

∥hk∥2

δµ
(U − δW ′)

}
¯
s′ = max

{
¯
s, 2

max
{

Wδ−U
maxk∈K{uk} , V

}
(1 + s̄)− 1

}
s̄′ = min

{
s̄,

¯
s′ +

mink ∥hk∥2

δµ
(U − δW ′)

}
with

¯
γ′′
p,k =

{
2
max{Wδ−U

uk
, V }

(1 + γ̄p,k)− 1, k ∈ I
max{ 2

Wδ−U
uk (1 + γ̄p,κ), 2

V+Rth
k } − 1, k /∈ I
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and

I = {k ∈ K : Rth
k − log(1 + γ̄p,k) > 0}

U = max
k∈K

{uk} log(1 + s̄) +
∑
k∈K

uk log(1 + γ̄p,k)

V =
∑
k∈I

(
Rth

k − log(1 + γ̄p,k)
)
− log(1 + s̄)

W = µ
(
¯
smax

k
∥hk∥−2 +

∑
k∈K ¯

γp,k∥hk∥−2
)
+ Pc

W ′ = µ
(
¯
s′ max

k
∥hk∥−2 +

∑
k∈K ¯

γ′
p,k∥hk∥−2

)
+ Pc.

Proof: Due to monotonicity, a necessary condition for
M ∩ F̃ ≠ ∅ is that (5d), (6i), (21) hold when evaluated at
(γ̄p, s̄, ᾱ). For (21), this implies

max
k∈K

∑
k∈K

ukCk +
∑
k∈K

uk log(1 + γ̄p,k) (44a)

≥ δ

(
µ

(
∥pc∥2 +

∑
k∈K

∥pk∥2
)
+ Pc

)
(44b)

≥ δ min
pc,p1,...,pK

{
µ

(
∥pc∥2 +

∑
k∈K

∥pk∥2
)
+ Pc

}
(44c)

≥ δ

(
µ

(
min ∥pc∥2 +

∑
k∈K

min ∥pk∥2
)
+ Pc

)
(44d)

where the minimum in (44c) and (44d) is such that γp ∈ M,
i.e., for all κ = 1, . . . ,K,

min
pc,...,pK

∥pκ∥2 s. t. ∀k :
¯
γp,k ≤ |hH

k pk|2∑
j∈K\k

|hH
k pj |2 + 1

≤ γ̄p,k.

This can be relaxed to

min
pc,...,pK

∥pk∥2 s. t.
¯
γp,k ≤ |hH

k pk|2. (45)

After transforming (45) into a SOCP, an optimal solution can
be readily obtained from the Karush-Kuhn-Tucker conditions as
p⋆
κ =

√
¯
γp,κ

hκ

∥hκ∥2 with optimal value ¯
γp,κ

∥hκ∥2 . Likewise, a lower
bound for ∥pc∥2 is obtained as ¯

s
mink ∥hk∥2 . Combining this

with (44) and (6i), we get the necessary condition U ≥ Wδ.
Let M′′ = [

¯
γ′
p, γ̄p]× [

¯
s′, s̄]× [

¯
α, ᾱ]. It follows from U ≥

Wδ, that every dual feasible γp,κ in M satisfies

Wδ ≤ U − uκ log(1 + γ̄p,κ) + uκ log(1 + γp,κ). (46)

This is equivalent to

γp,κ ≥ 2
Wδ−U

uκ (1 + γ̄p,κ)− 1. (47)

Hence, every γp,κ ∈ projγp,κ
(M∩ F̃) needs to satisfy (47).

From the initial remark, we further observe that (5d) and (6i)
can only hold if V ≤ 0. Thus, every γp,κ ∈ M∩F̃ with κ ∈ I
satisfies

log(1 + γp,κ) ≥ V + log(1 + γ̄p,κ) (48)

⇔ γp,κ ≥ 2V (1 + γ̄p,κ)− 1, (49)

and every γp,κ ∈ projγp,κ
(M∩ F̃) with κ /∈ I satisfies

log(1 + γp,κ) ≥ V +Rth
κ (50)

⇔ γp,κ ≥ 2V+Rth
κ − 1. (51)

This establishes
¯
γ′
p. The lower bound

¯
s′ for s is obtained

analogously.
Further, every γp,κ ∈ projγp,κ

(M′′ ∩ F) satisfies

δ
(
W ′ +

µ

∥hκ∥2
(
γκ,p −

¯
γ′
κ,p

) )
≤ U (52)

⇔ γk,p ≤
¯
γ′
κ,p +

∥hκ∥2

δµ
(U − δW ′). (53)

Similarly, every s ∈ projs(M′′ ∩ F) satisfies

δ
(
W ′ +

µ

mink ∥hκ∥2
(s−

¯
s′)

)
≤ U (54)

⇔ s ≤ s′ +
mink ∥hκ∥2

δµ
(U − δW ′). (55)

Hence, the upper bounds on γp and s can be reduced to γ̄′
p

and s̄′, respectively.
Corollary 2: Let M, F̃ , U , V , and W be as in Lemma 5.

Then, M is infeasible, i.e., M∩F̃ = ∅, if V > 0 or U < Wδ.
Proof: From the proof of Lemma 5, we know that every

M∩ F̃ ̸= ∅ satisfies V ≤ 0 and U ≥ Wδ.

E. Algorithm and Convergence

The complete algorithm is stated in Algorithm 2. It is
essentially a BRB procedure [48], [52] that solves the SIT
dual of (6) and updates the constant δ whenever a primal
feasible point is encountered.

The algorithm is initialized in Step 0. The initial box M0 is
computed as discussed in Section IV-C. The set Rk holds the
current partition of the feasible set, δk is the current best value
adjusted by the tolerance η, and x̄k is the current best solution
(CBS). If a primal feasible solution y0 is known, it can be
used to hot start the algorithm where the variables γ0

p and s are
initialized from y0 as in Lemma 4. Observe that y0 needs to
satisfy (6f) and (6g). In Step 1, the box most likely to contain a
good feasible solution is selected as Mk and bisected. The new
boxes are stored in Pk and reduced according to Lemma 5 in
Step 2. The reduced boxes replace the original boxes in Pk. In
Step 3, bounds for each box in Pk are computed, infeasibility
is detected, and dual feasible points are obtained from the
bounding problem (cf. Sections IV-A and IV-B). For each of
these dual feasible points, primal feasibility is checked in Step 4.
If true, a primal feasible point is recovered as established in
Lemma 4 and the corresponding primal objective value is
computed. Should any of these feasible points achieve a higher
objective value than the CBS, the CBS and δk are updated in
Step 5. Boxes that cannot contain primal ε-essential feasible
solutions are pruned in Step 6. If the partition Rk contains
undecided boxes, the algorithm is continued in Step 7.

Convergence of the algorithm follows from the previous
discussion and is formally established next.

Theorem 1: Algorithm 2 converges in finitely many steps
to the (ε, η)-optimal solution of (6) or establishes that no such
solution exists.

Proof: Lemma 5 ensures that no feasible solution
candidates with objective values greater than δk are lost in
Step 2. The bisection in Step 1 is exhaustive [52, Cor. 6.2].
Hence, maxx,y∈Mk

∥x − y∥ → 0 as k → ∞. Then, by
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Algorithm 2 SIT Algorithm for (6)
Step 0 (Initialization) Set ε, η > 0. Let k = 1 and R0 = {M0}

with M0 as in Section IV-C. If an initial feasible solution
y0 = (p0

c , . . . ,p
0
K) is available, set δ0 = η+ v(5)|y0 and

initialize x̄0 = (γ0
p , s

0,α0) with (2), s0 = mini∈K γ0
c,i,

and α0
i = ∠hH

i p0
c , i > 1. Otherwise, do not set x̄0 and

choose δ0 = 0.
Step 1 (Branching) Let

Mk = [rk, sk] = argmin{β(M) |M ∈ Rk−1}.
BisectMk via (vk, jk) where jk ∈ argmaxj s

k
j −rkj and

vk = 1
2
(sk + rk) as in (17) and set Pk = {Mk

−,Mk
+}.

Step 2 (Reduction) Replace each box M ∈Pk with M′ as in
Lemma 5.

Step 3 (Bounding) For each reduced box M ∈ Pk, perform
a preliminary feasibility check with Corollary 2 and, if
necessary, solve (33). If infeasible, set β(M) = ∞.
Otherwise, set β(M) to the optimal value of (33) and
obtain a dual feasible point x(M) as in (34).

Step 4 (Feasible Point) For each M ∈ Pk, if β(M) ≤ 0
compute g̃(x(M)) as in (25). If g̃(x(M)) ≤ 0, x(M) is
primal feasible. Recover x′(M) from the solution of (25)
with γ′

p, s′ as in Lemma 4 and α′
i = ∠e∗i , i > 1, with

e∗ as in Lemma 4. Compute the primal objective value
f(M) =

∑
j∈K uk(C̃

⋆
j +log(1+γ′

p,j)), where C̃∗ is the
optimal solution of (35). If β(M) > 0 or g̃(x(M)) > 0,
set f(M) = −∞.

Step 5 (Incumbent) Let M′ ∈ argmax{f(M) : M ∈ Pk}.
If f(M′) > δk−1 − η, set x̄k = x′(M′) and δk =
f(M′) + η. Otherwise, set x̄k = x̄k−1 and δk = δk−1.

Step 6 (Pruning) Delete every M∈Pk with β(M) > −ε. Let
P ′

k be the collection of remaining sets and set Rk =
P ′

k ∪ (Rk−1 \ {Mk}).
Step 7 (Termination) Terminate if R = ∅: If x̄k is not set, then

(6) is ε-essential infeasible; else x̄k is an essential (ε, η)-
optimal solution of (6). Otherwise, update k ← k + 1 and
return to Step 1.

virtue of Lemma 3 and the observation that (27) and (33)
are equivalent, Step 3 satisfies the convergence criterion in
Lemma 2. Lemma 4 establishes that the point in Step 4 is primal
feasible and suitable with respect to Lemma 3. It follows that,
for fixed δk, after a finite number of iterations, either a primal
feasible point is found or all boxes are pruned in Step 6 and the
algorithm is terminated in Step 7. Hence, from Lemma 1, δk
is, upon termination, either a (ε, η)-optimal solution of (6) or,
if δk was not set with some primal feasible point, the problem
is ε-essential infeasible.

It is established in [47, App. C] that updating δk with
encountered primal feasible points does not invalidate the
bounds in Rk. Hence, restarting the procedure upon updating δk
in Step 4 is not necessary to ensure correct convergence. Finally,
observe that the primal objective is bounded above by the global
optimum and below by zero. Hence, the initialization of δ0 in
Step 0 is valid. Moreover, the sequence {δk}k converges to a
value between v(6) and v(6) + η. For η > 0, this sequence is
clearly finite.

V. NUMERICAL EVALUATION

In this section, we employ the developed algorithm to
compare RSMA with MU-LP and NOMA in terms of achiev-
able rate region, maximum sum rate and EE. Further, the

performance of first-order optimal solution methods for these
problems is measured against the global solution and some
numerical properties of Algorithm 2 are examined.

A. System Performance

Consider a BS with M = 2 transmit antennas that serves
K = 2 single antenna users on the same spectrum as described
in Section II. We employ Algorithm 2 to solve the beamforming
problem (5) for RSMA and its special cases MU-LP and 2-user
NOMA. The goal of the experiments in this subsection is to
evaluate the performance gap between these schemes based
on the strong optimality guarantees provided by Algorithm 2.
In addition, we also obtain beamforming solutions using state-
of-the-art first-order optimal algorithms and compare them to
the results of Algorithm 2. This will give an indication of
the usability of those faster algorithms for practical system
evaluation.

The channels of user k are chosen randomly using circularly
symmetric complex Gaussian distribution with zero mean
and variance σ2

k. A set of 100 independent and identically
distributed (i.i.d.) feasible channel realizations is generated
for each simulation separately. Computation time and memory
consumption per problem instance were limited. This leads
to results being averaged over less than 100 samples per
simulation. Two different channel statistics are considered: one
where both users’ channels are generated with equal variances
and one with roughly 10 dB disparity in the variances.

1) Rate Region: We start with the achievable rate region
for RSMA, MU-LP and NOMA. The boundary points for
each strategy are calculated by setting Rth

k = 0 and u1 = 1
in (3). Following [54], we vary the weight u2 ∈ {10x|x =
−3,−1,−0.95,−0.8, · · · , 0.95, 1, 3}. The resulting rate region
is obtained from the convex hull over the computed boundary
points. Results for a SNR of 20 dB are displayed in Fig. 2.
Figure 2a was averaged over 63 channel realizations, while
Fig. 2b was obtained from 61 realizations. It can be observed
that the achievable rate region of RSMA is strictly larger than
that of MU-LP and NOMA. In case of equal channel statistics,
MU-LP also strictly outperforms NOMA, while in the case
with disparate statistics neither MU-LP nor NOMA is superior
to the other. However, as RSMA includes both strategies as
special cases and allows arbitrary combinations of them, its
rate region is strictly larger. These observations are in line with
previous evaluations [3] but are scientifically more reliable
since they rely on proven globally optimal solutions to (5).

The first-order optimal solutions are computed using the
WMMSE algorithm from [3] for RSMA and NOMA, and MU-
LP. For each parameter combination, a single initialization was
used. In particular, the common and private stream precoders
are initialized using SVD and maximum ratio transmission,
respectively, as in [10]. The results are displayed as black
dashed lines. While the WMMSE algorithm does not always
achieve the optimal solution, as can be seen in the MU-LP
performance in Fig. 2b, its solution is sufficiently close to the
true solution to allow drawing conclusions based on the results.
Moreover, the obtained solution is well suited for practical
system design.

This article has been accepted for publication in IEEE Transactions on Signal Processing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSP.2022.3214376

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.



11

0 2 4 6
0

2

4

6

8

C1 +Rp,1 [bpcu]

C
2
+

R
p
,2

[b
pc

u]

RSMA
MU-LP
NOMA

(a) σ2
1 = σ2

2 = 1

0 2 4 6
0

1

2

3

4

C1 +Rp,1 [bpcu]

C
2
+

R
p
,2

[b
pc

u]

RSMA
MU-LP
NOMA

(b) σ2
1 = 1, σ2

2 = 0.09

Fig. 2. Achievable rate regions for RSMA, MU-LP and NOMA at an SNR of
20 dB. Colored lines are globally optimal results obtained from Algorithm 2
and dashed lines are the corresponding results from a WMMSE algorithm.
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Fig. 3. Maximum achievable sum rate for RSMA, MU-LP and NOMA
with increasing QoS constraints (see text for details). Colored lines are
globally optimal results obtained from Algorithm 2 and dashed lines are
the corresponding results from a WMMSE algorithm.

2) Sum Rate Maximization: We maximize the sum rate
under QoS constraints, i.e., we solve (3) with uk = 1, k = 1, 2.
A SNR range from 5 dB to 30 dB with 5 dB increments is
considered. The corresponding QoS constraints Rth

k are chosen
as 0.1, 0.2, 0.4, 0.6, 0.8, and 1 (all in bpcu), respectively. The
results are displayed in Fig. 3. Both plots were obtained by
averaging over 90 i.i.d. channel realizations. When there is no
channel strength disparity, as in Fig. 3a, NOMA achieves the
worst sum rate performance among the considered schemes.
This is not unexpected as NOMA exploits channel strength
disparities among users. When there is a 10 dB channel strength
difference between the two users, NOMA slightly outperforms
MU-LP in the low SNR regime. This is likely caused by the
minimum rate constraints, which move the operating point
towards a solution that plays to the strengths of NOMA, as
can be seen from the rate region in Fig. 2b. Starting from
approximately 17 dB, MU-LP clearly outperforms NOMA. A
likely reason for this is that the additional decoding constraint
in NOMA results in a reduced spatial multiplexing gain at
high SNRs [55]. Thanks to the ability of partially decoding
interference and partially treat interference as noise, RSMA
combines the strengths of NOMA and MU-LP and, thus,
outperforms them in both cases. Again, the WMMSE algorithm
performs quite well compared to the global solution and appears
to be a good practical choice.

3) Energy Efficiency: The third problem type supported by
Algorithm 2 is EE maximization. We solve problem (4) for
maximum transmit powers ranging from 4 dBm to 30 dBm in
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Fig. 4. Energy efficiency of RSMA, MU-LP and NOMA with Rth
k = 1bpcu.

Colored lines are globally optimal results obtained from Algorithm 2 and
dashed lines are the corresponding results from an SCA algorithm.

steps of 2 dBm, with power amplifier inefficiency µ = 0.35,
noise variance 0.0001, and static circuit power consumption
Pc = MPdyn + Psta, where M is the number of transmit
antennas, Pdyn = 27dBm, and Psta = 1mW. Potentially
suboptimal solutions are computed with the SCA approach
[56] as in [12] for RSMA, NOMA, and MU-LP. Again a single
initialization per parameter combination is used, following the
same methodology as in [12]. Results are shown in Figs. 4a
and 4b and were obtained by averaging over 29 and 32 i.i.d.
channel realizations, respectively. The results follow the usual
shape of EE maximization, where the EE first increases and
then saturates at some point. Interestingly, while RSMA clearly
outperforms the other two schemes, MU-LP has always higher
EE than NOMA when the transmit power budget is large
enough, while for constrained transmit powers, NOMA has
slightly higher efficiency than MU-LP. This is because the EE
follows the sum rate performance until it saturates. As before,
the first-order optimal results, this time obtained with SCA,
are very close to the globally optimal solution and we can
conclude that in most cases such an algorithm will be sufficient
for performance analysis.

B. Numerical Performance

We have evaluated Algorithm 2 and two state-of-the-art
first-order optimal methods in a real world setting. The key
observation is that the WMMSE and SCA methods without
proven convergence to the global solution perform very well
and, on average, are virtually equal to the globally optimal
solution. In this subsection, we first take a closer look at the
numerical accuracy of the first-order optimal methods and then
study the numerical stability and complexity of Algorithm 2.

1) Numerical Accuracy: The results in Section V-A were
obtained from Algorithm 2 with tolerances η = 0.02 and
ε = 10−7. The numerical tolerances of the first-order optimal
methods were chosen small enough not to be relevant. Figure 5
shows the empirical cumulative distribution function (CDF)
of the difference between the globally optimal solution and
the first-order optimal solution computed for the analyses in
Section V-A with both metrics, WSR and EE. Accordingly, a
total of 11 520 computed data points for RSMA, 12 600 points
for MU-LP and 24 880 for NOMA form the basis of Fig. 5.
A negative value indicates that the solution of Algorithm 2
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Fig. 5. Empirical CDF of the difference between the optimal values returned
by Algorithm 2 and the first-order optimal baseline algorithm, where f(x̄)
is the optimal value returned by Algorithm 2 and f(x̃) is the corresponding
objective value for the solution returned by the first-order optimal solver.

achieves a larger objective value than that computed by
the WMMSE or SCA approach. Instead, a positive value
indicates that the first-order optimal solution is better than
the one obtained by Algorithm 2. Recalling the definition of
η-optimality in (12), it is apparent that this is not an unexpected
outcome.

There exists a small amount of solutions returned by
Algorithm 2 that is not within an η-region around the global
optimal solution. This is indicated by a deviation of more than
η from the first-order optimal solution. In particular, this affects
98 of the RSMA solutions (0.85 %), 40 of the NOMA solutions
(0.16 %), and none of the MU-LP solutions. The reason for this
is the tightening of nonconvex constraints necessary for the SIT
approach. Reducing the size of ε will resolve this numerical
issue but also leads to slower convergence. The fact that the
MU-LP solutions are unaffected indicates that the likely reason
is in the tightening of (6d)–(6f).

A relevant question is whether this virtually optimal behavior
of first-order optimal methods continues for more than two
users. To this effect, we have considered sum rate maximization
for a scenario with three users and four antennas. Parameters
are selected as in Section V-A2. Channels are generated with
unit variance as before. The CDF of the absolute error between
the result from Algorithm 2 and the WMMSE algorithm from
[3] is shown in Fig. 6. For each algorithm, 1005 data points
have been considered, each with random channel initialization
and one of the (SNR, Rth) combinations from Section V-A2.
The performance of the WMMSE algorithm is similar to the
2-user case for RSMA. Interestingly, this behavior is not shown
for MU-LP precoding, where a relevant number of WMMSE
results is considerably worse than the globally optimal solution.

2) Numerical Stability: Next, we evaluate the numerical
stability of Algorithm 2 in comparison to conventional BB
based methods. We focus on multiple unicast beamforming,
i.e., where pc = 0, as this special case of the more general
problem is already quite difficult to solve with BB. As baseline
comparison, we implemented two methods. The first is a
straightforward BB solution of (6) with pc = 0 as published in
[39], [40]. We denote this algorithm as “BB” in the results. The
bounding problem in this algorithm is often difficult to solve
for state-of-the-art convex solvers (e.g., Mosek [49]) since the
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Fig. 6. Empirical CDF of the difference between globally optimal and first-
order optimal solution for 3-user sum rate maximization. Same display style
as in Fig. 5. Complete value range on the left, relevant value range around
zero on the right.

TABLE II
MEAN AND MEDIAN RUN TIMES TO OBTAIN THE OPTIMAL SOLUTION FOR

MU-LP PRECODING. INSTANCES WHERE NOT ALL ALGORITHMS
CONVERGED ARE IGNORED.

K = 2 K = 3 K = 4

Alg. 2 0.175 s / 0.099 s 4.579 s / 1.959 s 334.8 s / 126.3 s
BB 0.173 s / 0.091 s 7.605 s / 2.606 s —
BB2 42.41 s / 2.380 s 158.5 s / 12.42 s 704.1 s / 265.8 s

feasible region can become extremely small. Following [39,
§2.2.2], the feasible set can be relaxed such that the bounding
problem always has good numerical properties. Interestingly,
the resulting problem is similar to the SIT bounding problem
in Section IV-A. The downside of this approach is that feasible
point acquisition for the BB procedure becomes much harder.
We denote this algorithm as “BB2”.

The numerical evaluation is based on 100 random i.i.d.
channel realizations. We solved (5) for uk = 1, pc = 0,
µ = 0, Pc = 0, Rth

k = 0, P
dB = −10,−5, . . . , 20, and K =

M ∈ {2, 3, 4}. This results in 700 problem instances per K.
For K = 2, BB2 stalled in 364 problem instances, while the

other algorithms solved all problems. For K = 3, BB2 stalled
in 146 instances and BB failed 13 times due to numerical
problems of the convex solver. Finally, for K = 4, BB did
not solve a single problem instance due to numerical issues
and BB2 stalled in 27 instances. Moreover, Algorithm 2 and
BB2 did not solve the problem within 60 minutes in 4 and 60
instances, respectively. Average computation times on a single
core of an Intel Cascade Lake Platinum 9242 CPU are reported
in Table II. It can be observed that the proposed Algorithm 2 is
more efficient than the two baseline algorithms especially when
more users are in the system. Moreover, the joint beamforming
problem, i.e., with pc ̸= 0, was solved by Algorithm 2 for
K = 2 with mean and median run times of 942 s and 2786 s.
However, 23 instances were not solved within 12 hours and in
the simulations presented in Section V-A, we observed some
parameter combinations with very slow convergence speed,
especially in EE maximization problems.

3) Numerical Complexity: Finally, we discuss the numerical
complexity of Algorithm 2. As mentioned in Section III, the
SIT framework has exponential complexity in the number
of variables. Algorithm 2 applies this SIT approach to the
variables γp, s,α, while all other variables of (6) are treated
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in the subproblems for bounding, feasible point determination,
etc. The number of “SIT variables” scales as 2K, while the
dimension of the subproblems scales as O(KM). Since all
subproblems are convex optimization problems that can be
solved in polynomial time, the complexity of solving each
subproblem is polynomial in the number of antennas M and
the number of users K. Thus, Algorithm 2 scales polynomially
in M and exponentially in K. This theoretical behavior is
verified numerically in [47] for a similar algorithm.

This establishes that Algorithm 2 is not applicable to
scenarios with a large number of users K, but scales well with
the number of antennas M . However, it remains to evaluate
how many users are actually manageable with Algorithm 2.
For the MU-LP case, a partial answer is provided in Table II
in so far that at least four users are feasible with reasonable
average run time of a few minutes. Unfortunately, this behavior
does not carry over to the RSMA case.

The run time for the sum rate maximization in Section V-A2
was, on average, 3.28 h with standard deviation 11.61 h and
median 0.37 h for the 2-user case. For three users, the mean
run time was 54.72 h with standard deviation 26.42 h and
median 54.12 h. In both cases, the computation was terminated
prematurely for some channel instances after a maximum run
time of 173.76 h and 102.98 h, respectively. The implications
of this early termination are twofold. First, the reported values
would be higher if computation for all channel realizations
would have been completed. Second, the spread between the
two and three users cases would be even larger, as the three
user results were terminated earlier than the two users case.
For the rate region results, similar numbers can be reported,
while the EE maximization ran significantly longer.

Clearly, computing precoding solutions for RSMA has a
considerably higher effective numerical complexity than the
MU-LP scenario. We can only speculate on the reasons for this.
One is, for sure, that RSMA has twice as many nonconvex
variables, i.e., 2K instead of K for the MU-LP scenario.
However, this does not completely account for the larger run
times, as the reported times for four variables in Table II are
still much lower than for the 2-user RSMA scenario. This
leaves only the conclusion that the multicast precoding part
of the RSMA solution is much harder to compute than the
unicast part. Potential approaches to improve the performance
of this part are replacing/improving the argument cut strategy
and additional reduction steps for the argument cut variables.
Similarly, our hypothesis for improving the performance of EE
maximization is a different reduction approach. These potential
performance improvements are left open for future work.

VI. CONCLUSIONS

We have developed a globally optimal beamforming al-
gorithm for WSR and EE maximization in MISO downlink
systems with RSMA. The algorithm exhibits finite convergence
and is the first method to solve this optimization problem. It
is also the first beamforming algorithm based on the SIT-BB
approach. Two user NOMA and MU-LP beamforming are
incorporated as special cases. We have shown numerically that
the proposed algorithm outperforms state-of-the-art globally

optimal beamforming algorithms for the MU-LP problem, both
in terms of numerical stability and practical convergence speed.
Extensive numerical experiments establish that contemporary
suboptimal solution methods for RSMA beamforming often
obtain a solution very close to the global optimum. In particular,
there is virtually no difference between the suboptimal solution
and the true optimum when evaluating the average performance
over a large number of channel realizations. Hence, this paper
establishes that WMMSE and SCA-based methods are suitable
choices for such performance comparisons, at least in the 2-user
case. This effectively strengthens the results of many earlier
studies in this area, as it retrospectively validates the numerical
approach taken to compare the performance of RSMA against
NOMA and MU-LP.

APPENDIX A
PROOF OF PROPOSITION 1

Let (x⋆,γ⋆
c ) be a solution of (5) and set s⋆ = mink γ

⋆
c,k.

Constraints (5d) and (5e) are part of both problems. Con-
straint (5c) is equivalent to∑

k∈K

Ck ≤ log(1 + min
k∈K

γc,k). (56)

Since (x⋆,γ⋆
c ) satisfies (56), (x⋆, s⋆) satisfies (6i). Finally,

(6c) is a relaxed version of (5b) and (6d) is equivalent to the
definition of s⋆.

For the converse, let (x⋆, s⋆) be a solution of (6) and set
γ⋆
c,k =

|hH
k p⋆

c |
2∑

j∈K |hH
k p⋆

j |2+1
for all k ∈ K. Since the objective is

increasing in γp, constraint (8b) is always active in the optimal
solution if uk > 0. Otherwise, i.e., for uk = 0, relaxing
(5b) does not relax (5d). Hence, (8b) is equivalent to the
γp,k part of (5b) (and the γc,k part is satisfied by definition).
Constraint (5c) is equivalent to (56). With an auxiliary variable
s = mink γc,k, the RHS of (56) can be replaced by log(1+ s).
Due to monotonicity, the relaxed version s ≤ mink γc,k is
active in the optimal solution. Observing that (8c) is the smooth
variant of this constraint completes this part of the proof.

For the last part of the proposition, it suffices to show that
every solution of (6) solves (8). Observe that (8b) is equivalent
to

√
γp,k

(∑
j∈K\k

|hH
k pj |2 + 1

)1/2

≤ |hH
k pk| (57)

and that the solution is invariant to rotations of pk, k ∈ K, i.e.,
if p⋆

k solves (8), then p⋆
ke

jϕ also solves (8) for all real-valued
ϕ [44]. Hence, constraint (6f) can be added to (8) without
reducing the optimal value. Then, (57) is equivalent to (6b).

Similarly, (8c) is equivalent to

√
s
(∑

j∈K
|hH

1 pj |2 + 1
)1/2

≤ |hH
k pc| (58)

for all k ∈ K and the solution is invariant to rotations in pc.
However, except for degenerate cases, only one RHS of (58)
can be made real-valued. Without loss of generality, this is
done for k = 1 by adding (6g) to (8). For the remaining K−1
constraints, introduce auxiliary variables dk = |hH

k pc| and
observe that relaxing 0 ≤ dk ≤ |hH

k pc| does not decrease
the optimal value of (8). However, it also does not increase
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the optimal value since it is increasing in s and, hence, also
increasing in dk. Finally, introducing the constraint ek = hH

k pc

results in (6).
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