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Abstract—This paper considers channel quantization of memo-
ryless channels with N -ary input x and Mutual Information (MI)
as fidelity criterion. We make use of an equivalent formulation
of the quantization problem that transforms the channel output
y into a N − 1 dimensional probability-simplex by using the
posterior-distribution p (x|y). By using Burshtein’s optimality
theorem, it is possible to show that there exist an optimal
solution that is obtained by separating hyperplane cuts in this
probability-simplex. We show that for practically relevant real
valued input/output channels, the posterior-distribution p (x|y) is
located on a smooth curve in the N − 1 dimensional probability-
simplex. Under mild conditions, the optimality theorem provides
the existence of an optimal solution that is obtained by separating
connected segments of this curve. For this case, we provide
further insights into the underlying optimization problem and
motivate a Dynamic Programming (DP) approach for finding the
global optimal quantizer mapping that maximizes the end-2-end
MI for the given cardinality of the quantizer output. Numerical
investigation with N -ASK input and real valued Additive White
Gaussian Noise (AWGN) show that this approach is superior
to common design approaches which only converge to a local
optimal quantizer mapping.

Index Terms—Quantization, mutual information, dynamic pro-
gramming, memoryless channels

I. INTRODUCTION

Quantization plays a significant role in digital communi-
cations, signal processing, lossy data compression and infor-
mation theory [1]. In lossy data compression, quantization is
commonly used to minimize a predefined distortion measure
between the input and the output of the quantizer (e.g. mean
square error (MSE) [2]). In this case, the fundamental Rate-
Distortion (RD) theory [3] quantifies the trade-off between
compression and distortion. In digital communications, the
received signals are corrupted (noisy) versions of the original
source signal(s) and transformed via analog-to-digital convert-
ers (ADCs) into discrete amplitude signals for further pro-
cessing. Reducing the bit-resolution of the resulting amplitude
quantizer limits the power consumption and hardware costs of
the communication system [4], but sacrifices the communica-
tion performance. In terms of the ADC bit-resolution, common
figure of merits assume that each added bit at least doubles
the power dissipation [5] of the ADC.

To minimize the impact on the communication performance,
quantization schemes with low bit-resolution require optimiza-
tion of the quantization thresholds [6] to maximize the e2e
Mutual Information (MI) I(x; z) between the source signal x

and quantizer output z. Jointly maximizing MI in both, the
input distribution and the quantizer mapping is a concave-
convex optimization problem that is known to be NP-hard in
general, i.e., polynomial time algorithms to find the solution
only exist for special cases [7]. However, if the source distri-
bution is fixed, finding the quantizer that maximizes the e2e
MI I(x; z) will give the highest achievable rate. The relation
between MI maximizing quantization and the Information
Bottleneck Method (IBM) has been pointed out in [8]. A
detailed investigation on the connection of the IBM to coding
and learning theory is provided in [9]. A comprehensive study
of heuristic algorithms to tackle the underlying optimization
problem is provided in [10]. In the recent literature, MI
maximizing quantization has been successfully applied for the
design of discrete receivers [11], [12] and discrete decoders
with very low bit resolution for Low Density Parity Check
(LDPC) codes [13]–[15] as well as polar codes [16].

For the special case of binary-input discrete memoryless
channels (DMCs), Yagi and Kurkoski proposed an algorithm
based on Dynamic Programming (DP) with the random coding
exponent as design criteria, which includes the cut-off rate
and the MI as special cases [17]. In [18], the optimality proof
of this approach for the design of quantizers for the general
DMC with binary-input maximizing the MI was given. The
algorithmic approach has been generalized to maximize α-
MI with an efficient implementation based on the SMAWK
algorithm [19], [20]. Furthermore, He et al. extended this
approach to non-binary input DMCs and even more general
concave cost functions [21]. As already mentioned in [21],
finding a general condition on the DMC to ensure that the
DP approach will find the global optimal solution is an open
problem.

In this paper1, we investigate the problem of quantizing
DMCs with N -ary input. We show that for real valued N -ary
sources and friendly communication channels, the Sequential
Deterministic Quantizer (SDQ) design via DP delivers a global
optimal solution with low run time complexity. In contrast to
previous works, we deduce the optimality of the DP approach
by the relation to an equivalent centroid based clustering
problem.

1Notation: Random variables are denoted by sans-serif letters x, random
vectors by bold sans-serif letters x, realizations by serif letters x and vector
valued realizations by bold serif letters x. Sets are indicated by calligraphic
letters X and the distribution of a random variable x is given by p(x).



The remainder of this paper is structured as follows: Sec-
tion II introduces the system model. The quantizer design
problem is discussed in Section III and its relation to statistical
learning in Section IV. Section V describes the SDQ design
approach for N -ask input and real valued communication
channels and provides numerical evaluations of the perfor-
mance. Finally, Section VI concludes this work.

II. SYSTEM MODEL
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Fig. 1: System model for quantizer design

The system model for the quantizer design is shown in
Fig. 1. The source x takes realizations x on a discrete set
x ∈ X = {x1, x2, ..., xN} of N symbols with probability
distribution p (x). Transmitting the source x over a physical
channel results in a continuous channel output. Without loss
of generality, a fine ADC converts the channel output into a
discrete random variable y that takes realizations y on the
discrete set Y = {y1, y2, ..., yNy} of finite cardinality Ny.
The transition probability distribution of the resulting DMC
is denoted as p (y|x). The DMC output y is quantized into Nz

clusters z ∈ Z = {z1, z2, ..., zNz} via a quantizer mapping
Q(y) that is uniquely determined by the transition probability
distribution p (z|y). Thus, the quantizer optimization yields
also quantization regions for the continuous output channel.
The successive blocks in Fig. 1 induce a Markov chain
x → y → z, i.e., x and z are conditionally independent given
y.

III. INFORMATION MAXIMIZING QUANTIZER DESIGN

The objective of the quantizer is to maximize the e2e
MI I(x; z). The resulting optimization problem is to find
the distribution p?(z|y) which maximizes the e2e MI I(x; z)
between the source x and the quantizer output z, i.e.

p?(z|y)=argmax
p(z|y)∈Q

I(x; z) s.t. |Z| = Nz < Ny . (1)

In contrast to MSE based quantizer design, it is important
to notice that (1) is independent of the numerical values in
the set Z since MI depends only on distribution functions,
i.e., we can define the values in Z by any convenient choice
(e.g. integers) without limitations on the e2e MI I(x; z).
Since, the probability of an individual pair z, y ∈ Z × Y
is p (z = z|y = y) ∈ [0, 1], the conditional probability distri-
bution p (z|y = y) for an individual realization y ∈ Y is a
point in the Nz − 1 dimensional probability simplex2, since∑

z∈Z p (z = z|y = y) = 1. The resulting search set Q in (1)
for the distribution p (z|y) is the Ny fold Cartesian product of
the Nz − 1 dimensional probability simplex.

2The N − 1 dimensional probability simplex is defined by
∆N−1 = {θ ∈ RN |

∑N
i=1 θi = 1 and 0 ≤ θi ≤ 1 for i = 1, ..., N}.

The maximization problem in (1) belongs to class of con-
cave programming problems. This implies the existence of
a global optimal solution at an extreme point of the set Q
[18], i.e., a globally optimal deterministic quantizer mapping
p?(z|y) ∈ {0, 1} for all z, y ∈ Z × Y exist. However,
finding the global optimal solution via a naive brute force
search over all possible Deterministic Quantizers (DQs) QDQ
has exponential complexity in the number of output values,
since |QDQ| = N

Ny
z possible DQs exist. Common algorithmic

approaches converge only to a local optimal solution [10] and
the quality of the resulting solution is often difficult to interpret
since the performance loss compared to the global optimal
solution might be very large. For a DQ, the set of output
values y that are mapped into a cluster z ∈ Z is denoted as
pre-image

Yz = {y ∈ Y | Q(y) = z} . (2)

IV. QUANTIZER DESIGN VIA CENTROID BASED
CLUSTERING

A. Reformulation of the Quantizer Design Problem

The optimization problem in (1) can be interpreted as a clus-
tering problem [22] with Kullback-Leibler (KL) divergence3

as similarity measure. The equivalent interpretation exploits
the Markov chain condition and relies on the property that the
e2e MI I(x; z) is expressed as [22]

I(x; z) = I(x; y)− Ey,z {DKL(p (x|y) ‖p (x|z))}︸ ︷︷ ︸
L(Q)

. (3)

Since I(x; y) is fixed, maximizing the e2e MI I(x; z) in (1) is
equivalent to finding the DQ Q? that minimizes the expected
KL loss

L(Q) = Ey,z {DKL(p (x|y) ‖p (x|z))} , (4)

between the two A Posteriori Probability (APP) distributions
p (x|y) and p (x|z). The data processing inequality [3] implies
that the KL loss L(Q) is always non-negative, i.e., L(Q) ≥ 0.
Hence, we can define an APP vector in the posterior proba-
bility space for each observation y ∈ Y as

fy = [p (x1|y) , ..., p (xN |y)] ∈ ∆N−1 , (5)

and an APP vector for each quantizer output z ∈ Z by

gz = [p (x1|z) , ..., p (xN |z)] ∈ ∆N−1 . (6)

Notice that the transformations in (5) and (6) results in
two vector valued random variables f y and gz, both taking
realizations in the N − 1 dimensional probability simplex
∆N−1. Using the representation fy for the observations y,
we can define an equivalent quantizer Q̃ that maps each APP
vector fy to one APP vector gz . The pre-images for z ∈ Z
of this equivalent quantizer are

Fz = {fy | Q̃(fy) = z} . (7)

3The relative entropy or KL divergence between two distributions p and q
is defined as DKL(p‖q) =

∑
x∈X p(x) log2

p(x)
q(x)



The quantizer Q̃ has always a corresponding quantizer Q in
a sense that Q(y) = Q̃(fy) = z for all y, z ∈ Y × Z . The
following theorem is based on the result for minimum impurity
partitions from statistical learning theory [23].

Theorem 1 (Separating Hyperplane): [18] There exist a
Deterministic Quantizer (DQ) Q̃? : ∆N−1 → Z , where every
pair of different pre-images Fz and Fz′ are separated by a
hyperplane in the posterior probability simplex ∆N−1 and the
corresponding Deterministic Quantizer (DQ) Q? maximizes
I(x; z) in (1).

This theorem implies the existence of a DQ Q̃? where
the convex hulls of every pair of different pre-images have
an empty intersection. However, finding the globally optimal
solution in a general setting, i.e., without any restrictions on
the input or the DMC, is an NP-hard problem [24].

B. KL-Means Algorithm

A popular approach for centroid based clustering is the KL-
means algorithm [25]. It starts with a random initialization of
cluster centroids gz and iterates between clustering points fy

into bins with the same nearest centroid (assignment step)

Fz = {fy | DKL
(
fy‖gz

)
≤ DKL

(
fy‖gz′

)
, z 6= z′} (8)

and recalculation of the mean per cluster (update step)

gz =

∑
fy∈Fz

fy · p
(
fy

)∑
fy∈Fz

p
(
fy

) (9)

until either a maximum number of iterations is reached or a
convergence criterion is fulfilled. The KL-means algorithm is
equivalent to the Information Bottleneck (IB) algorithm for
β →∞ [22].

Fig. 2 visualizes the clustering result in case of a 3-PSK
source x with uniform input distribution p (x) transmitted
over a complex Additive White Gaussian Noise (AWGN)
channel. The black line ( ) represents the boundary of the 2-
dimensional probability simplex ∆2 and the three black dots
are its extreme points. The color of a point fy indicates that
it belongs to a cluster z = Q̃(fy) with centroid gz (red dot).

C. Binary Input with General DMC

If the input is binary, the probability simplex ∆1 is a line.
Furthermore, we can assume that the elements in Y satisfy

p (x2|y1) < p (x2|y2) < ... < p
(
x2|yNy

)
. (10)

This assumption is without loss of generality, since the output
y ∈ Y can always be re-labeled such that (10) holds. Strict
inequality can always be ensured since if two elements have
the same posterior probability, they have the same coordinates
in the simplex (as defined in (5)) and hence they can be merged
into one single element without any influence on the e2e MI
I(x; z). The condition (10) implies that the likelihood-ratios
satisfy

p (yi|x2)

p (yi|x1)
<
p (yi+1|x2)

p (yi+1|x1)
∀i ∈ {1, ..., Ny − 1} . (11)

fy = [1 0 0] fy = [0 1 0]

fy = [0 0 1]

Fig. 2: Clustering result of the KL-Means algorithm with
Nz = 8 clusters in case of a 3-PSK source transmitted over a
Quantized Additive White Gaussian Noise (QAWGN) channel
with noise variance σ2

n = 1

For N = 2, the APP vector of each realization yi is given
fyi

= [p (x1|yi) 1− p (x1|yi)] such that all points fy are
located on a straight line between fy = [1 0] and fy = [0 1].
Inequality (10) ensures that neighbouring points fy on that
line have a similar meaning w.r.t. the source signal x.

Based on Theorem 1 the global optimal DQ clusters points
fy with similar meaning and for N = 2 the corresponding
hyperplanes that separate two different pre-images are given
by simple thresholds (points) on the straight line. With ybz−1

and ybz denoting theses quantizer boundaries for a specific
cluster z ∈ Z , the corresponding pre-image Fz contains the
sequentially indexed elements fy , i.e.,

Fz =
{
fybz−1+1

,fybz−1+2
, ...,fybz

}
. (12)

Obviously, it is sufficient to search for all boundaries ybz in
order to find the global optimal quantizier. Such quantizer
with sequentially labeled elements per pre-image is denoted as
Sequential Deterministic Quantizer (SDQ) [18], [21]. To find
the global optimal quantizer, the authors of [18] proposed a
state-based algorithm to search over all possible SDQs. The
algorithm is guaranteed to find the global optimal solution and
can be interpreted as an instance of Dynamic Programming
(DP). The complexity of this algorithm is O(Nz(Ny −Nz)

2)
which can be reduced to O(Nz(Ny −Nz)) by the application
of the SMAWK algorithm [20].

Fig. 3 shows the posterior probability distribution p (x|y) in
case of a BPSK source transmitted over an AWGN channel.
The output is uniformly discretized into Ny = 128 clusters.
The resulting bins are labeled successively by the mean value
of its boundaries. For this finely quantized AWGN channel,
the resulting DMC output y ∈ Y follows already the ordering
of posterior probabilities in (10). The DMC is quantized into
Nz = 8 clusters and the resulting quantization regions that are
found via the DP approach are indicated by different colors.
The coloured points fy in the simplex ∆1 demonstrate that
neighboring points with similar meaning are clustered together.
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Fig. 3: (top) Posterior distribution p (x|y) for BPSK source
transmitted over a QAWGN channel. (bottom) Visualization
of posterior distribution p (x|y) in the probability simplex ∆1.

V. OPTIMAL SEQUENTIAL QUANTIZER FOR N -ARY INPUT

For N > 2, a one dimensional ordering of posterior prob-
abilities as in (10) cannot be established for general DMCs.
However, if the DMC is obtained by fine pre-quantization of a
typical communication channel (e.g. AWGN) with real input
and output, the observations y have a natural ordering w.r.t.
the transmit symbols x ∈ X , i.e

p (yi|xj)
p (yi|x1)

<
p (yi+1|xj)
p (yi+1|x1)

∀i ∈ {1, ..., Ny − 1} (13)

and ∀j ∈ {2, ..., N}. In this case, we observe that points fy

with similar meaning are sequentially located on a smooth
curve in the probability simplex ∆N−1. The optimal quantizer
is again an SDQ and can be found via the same DP approach.

To visualize the resulting quantization problem, we consider
a 4-ASK source, i.e., X = {±1,±3} with uniform source
distribution p (x). Again, the continuous output AWGN chan-
nel with noise variance σ2

n = 1 is converted into a QAWGN
channel by uniform pre-quantization into Ny = 128 clusters.
The posterior distribution p (x|y) is shown in Fig. 4. Moreover,
Fig. 5 visualizes the 3-dimensional probability simplex ∆3

with mappings fy and gz , showing that successive elements
y ∈ Y are also successive elements on a smooth curve. In
this example, the optimal SDQ is optimal among all possible
DQs and the DP approach is utilized to find this solution. The
resulting quantization regions are indicated by different colors.

It is important to notice that the optimal SDQ design is
not optimal for complex input/output channels or artificial
channels since a natural ordering as in (13) cannot be ensured.

Performance Evaluations

To evaluate the performance of the optimal SDQ that is
found via DP, we assume an N -ASK source that is disturbed
by AWGN and the resulting continuous output channel is
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Fig. 4: Posterior probability distribution p (x|y) of a 4-ASK
source (i.e. x ∈ X = {−3,−1, 1, 3}) and transmission over a
finely QAWGN channel

Fig. 5: Probability simplex ∆3 with points fy and clusters
with centroid coordinates gz

uniformly pre-quantized into Ny clusters. We note that using
a finely QAWGN channel in the design is not limiting the
performance, since the pre-quantization loss can be made
arbitrary small by using a refined partition [3]. We compare the
performance of the DP approach with the KL-means [25] and
greedy combining [26] for 4-, 8- and 16-ASK on the QAWGN
channel with Ny = 128. The complexity of the KL-means
algorithm is O(NN2

y imaxNinit), where imax is the maximum
number of iterations and Ninit is the number of randomly
initialized executions. In contrast to that, greedy combining
has complexity O(NN2

y (Ny −Nz)).
Fig. 6 shows the resulting KL loss L(Q) = I(x; y)−I(x; z)

if the DMC is quantized into Nz = 8, ..., 32 clusters. The KL-
means algorithm is executed Ninit = 105 times and the best
result is stored. The optimal SDQ that is found via the DP
approach is denoted as DP-Opt.

The DP approach outperforms the KL-means algorithm
and greedy combining in all cases. We also observe an
increasing gain of the DP approach if the input cardinality
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Fig. 6: KL loss for DP-Opt, KL-means and greedy combining
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N is increasing. Furthermore, the complexity of the DP
approach is O(NNz(Ny − Nz)) since the loss function for
the QAWGN channel fulfills the quadrangle inequality [21].
Hence, the DP approach achieves best performance and has
significantly lower complexity compared to KL-means and
greedy combining.

VI. CONCLUSION

The problem of mutual information maximizing quantizer
design for real valued input and output communication chan-
nels of a physical transmission was investigated. We exploited
the equivalent formulation as a clustering problem in the
N − 1 dimensional probability simplex. We observed that for
N -ASK input with AWGN transmission all channel output
values are on a smooth curve in this simplex since they
follow a natural ordering of likelihood ratios. For sufficient
fine pre-quantization, the global optimal quantizer is found via
Dynamic Programming (DP). Furthermore, the DP approach
outperforms quantizer design algorithm such as KL-means and
greedy combining in terms of complexity and performance.
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[10] S. Hassanpour, D. Wübben, and A. Dekorsy, “Overview and Investiga-
tion of Algorithms for the Information Bottleneck Method,” in 11th Int.
Conference on Systems, Communications and Coding (SCC), Hamburg,
Germany, Feb. 2017.

[11] J. Lewandowsky, M. Stark, and G. Bauch, “Information Bottleneck
Graphs for receiver design,” in 2016 IEEE Int. Symposium on Infor-
mation Theory (ISIT), Barcelona, Spain, Jul. 2016.
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