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Abstract

With increasing complexity of modern communication systems, Machine Learning (ML) algorithms have become

a focal point of research. However, performance demands have tightened in parallel to complexity. For some of the

key applications targeted by future wireless, such as the medical field, strict and reliable performance guarantees

are essential, but vanilla ML methods have been shown to struggle with these types of requirements. Therefore,

the question is raised whether these methods can be extended to better deal with the demands imposed by such

applications. In this paper, we look at a combinatorial Resource Allocation (RA) challenge with rare, significant

events which must be handled properly. We propose to treat this as a multi-task learning problem, select two methods

from this domain, Elastic Weight Consolidation (EWC) and Gradient Episodic Memory (GEM), and integrate them

into a vanilla actor-critic scheduler. We compare their performance in dealing with Black Swan Events with the

state-of-the-art of augmenting the training data distribution and report that the multi-task approach proves highly

effective.

Index Terms

Resource Allocation, 6G, Medical, robust, Black Swan Events, Deep Reinforcement Learning

I. INTRODUCTION

As the journey towards the 6th generation 3GPP mobile communication standard continues, many of the most

noteworthy targeted use cases are becoming highly specific, with requirements more extreme and heterogeneous [1],

[2]. While the average user may be satisfied with the service provided by 5G NR, as it is currently being implemented

by telecommunications service providers world wide, application fields such as medical communications have

demands in, e.g., bit rate, latency, and reliability that are edge cases even in 5G NR [3], [4]. Among the many

challenges faced in implementing efficient communication networking, the task of Resource Allocation (RA) is

among those that may limit performance the most. A capable resource scheduler must consider and balance available
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information, demands, and potential constraints in order to find an optimal allocation solution. For applications

with heterogeneous service demands, the combinatorial problems found in resource allocation can quickly become

burdensome to solve optimally in real time [5]. For this reason, RA has attracted significant interest in applying

Machine Learning (ML) [6].

ML, and, in particular, Deep Learning (DL), have recently demonstrated strong performance in data driven

function approximation in multiple domains, remarkably so in language and image processing, which are traditionally

considered highly complex to solve well. Their strength lies in the ability to infer an approximately optimal solution

from a given data set without the need to try to model the underlying processes. Instead, for example, the subdomain

of Reinforcement Learning (RL) learns by “trial and error”, roughly trying to increase the likelihood of decisions

that show to produce useful results while avoiding those that do not. First results in applying RL to the task of

RA in wireless communication have shown promising results, e.g., [7]–[9]. For especially demanding applications,

however, some issues remain with these approximated algorithms. While a visual glitch may be frustrating in

image generation, a missed emergency transmission may prove fatal. Unfortunately, some of the more potent ML

algorithms have been shown to struggle learning from data samples that are underrepresented in the overall data

set [10].

A typical approach to helping this issue in communication systems is to artificially increase the relative amount

of priority events in the learning data set, by, e.g., influencing data generation [9] or jointly training on two data

sets [11] with tailored distributions. Experience from domains like autonomous driving shows that algorithms trained

this way, i.e., trained on a data distribution that does not match reality, may struggle to reach expected performance

when applied to the desired application [12]. Further, with more complex applications, finding and generating the

correct augmented data set that induces the desired behavior in the learned algorithm becomes a taxing and non-

intuitive task. Lastly, these methods have no protection against catastrophic forgetting [13], i.e., overwriting desired

behavior if learning is continued on new data with a lack of priority events.

We present a procedure to harden RL schedulers in the presence of rare events by a multi-task learning approach.

Considering the task of discrete resource scheduling on the MAC layer, the learned scheduler will have to solve

three conflicting objectives: 1) Maximizing Sum-Rate, 2) minimizing time outs, and especially 3) minimizing time

outs on rare events that demand very low latency. We show that, by default, the scheduler is not able to learn proper

management of these rare priority events. Therefore, we make use of methods from multi-task learning, where a

single learned algorithm must sequentially learn multiple different tasks with limited loss in performance on earlier

tasks. We define our first task, that we wish to learn to satisfaction and then prevent unlearning, as the handling of

priority messages with high reliability. Subsequently, we then integrate two methods from multi-task learning with

a vanilla deep RL resource scheduler which we used in [14]. We show that the two methods,

1) Elastic Weight Consolidation (EWC) [13], presented in our work [15]. EWC imposes an elastic penalty onto the

learning objective, incentivizing learning steps that cause the least change in expected behavior on scheduling

priority events by way of Fisher information;

2) Gradient Episodic Memory (GEM) [16] proposes to foster positive transfer learning between tasks by only

allowing learning steps that do not cause negative impact on a representative set of priority event data samples,
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Fig. 1. The discrete RA problem considered in this paper. A scheduler assesses a set Jreq,t of jobs that are assigned to a specific user and

possess different properties. The scheduler must find a way to distribute a limited number U of discrete resources among the users in order to

optimize a utility function rt. This process is repeated in each discrete time step t.

are competitive in performance to the default approach of augmenting the learning data distribution while also

compensating the issues mentioned earlier.

In the following, we will start by introducing the RA system model and optimization objective. We then

recapitulate the design of a deep RL scheduler, and detail the workings of the two multi-task learning methods and

their integration with the RL scheduler. We then evaluate and discuss their performance, advantages, and drawbacks.

Preliminaries & Notation: This paper assumes knowledge of stochastic gradient descent optimization and feed-

forward Neural Networks (NNs). Vectors and matrices are denoted in boldface (x), sets in blackboard-boldface

(N).

II. SYSTEM MODEL

In this section, we will first introduce the specifics of the discrete frequency allocation problem with significant

rare events. We then formulate a heterogeneous utility function that is to be optimized.

A. Discrete Resource Allocation

Several of the currently used medium access control protocols, chiefly among them the widely used Orthogonal

Frequency Division Multiplex (OFDM), separate the available resource bandwidth into discrete blocks. Therefore,

we consider a RA problem as depicted in Fig. 1, where in every discrete time step t a scheduler at a base station

is presented with a set of jobs Jreq,t. Each job j is destined for a specific user n ∈ N from a total of N ∈ N users

and comes with a number of properties, to be specified subsequently. Based on the state of these properties, the

scheduler must then distribute the total number of U ∈ N available discrete resource slots among the N users in

order to maximize a utility function, to be defined in subsection Section II-B. The decision takes the form of an

allocation vector

At = [a1, a2, . . . , an, . . . , aN ] with
N∑

n=1

an = 1. (1)

According to this allocation, the system will then slot a fraction of user requests un,req,t ∈ N into the available

resources, starting from the oldest request per user n.

Jobs j for each user n are generated at the start of each time step t at a probability pjob per user n. Apart from

the designated user n, these jobs differ in three properties:
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1) Request size uj,req,t ∈ N in discrete resource blocks. The request size is initialized with a value

uj,req,t ← un,init ∼ Uniform [1, umax] drawn from a uniform distribution. Upon allocation, the request size

is decreased accordingly, and a count usch,n,t ∈ N of all resource blocks scheduled to user n in time step t

is kept for performance metric calculation. Once the request size reaches zero, the job is removed from the

set of requesting jobs Jreq,t+1 for the next time step t;

2) Delay dj,t ∈ N in discrete time steps. The delay is initialized with dj,t ← 0 and incremented at the end of each

time step t where the request size has not reached zero. Should the delay then assume a value dj,t > dmax,

that job j is considered timed out, removed from the set Jreq,t+1 of jobs requested for time step t, and instead

added to a set JTO,t of jobs j that have timed out in time step t;

3) Priority status. Each jobs priority status is initialized as normal upon generation. At the beginning of each

time step t, at a low probability pprio, one job j from the set Jreq,t of all requesting jobs is assigned priority

status. If this job j is not scheduled by the end of that same time step t, it is considered as timed out regardless

of its delay dj,t and added to a set JTO,prio,t of priority jobs that have timed out in time step t. By definition,

this set can have at most one member. We emphasize that these priority jobs constitute the significant rare

events considered in this paper.

The final piece of information for a scheduler to consider is the current channel state between the scheduler’s

base station and each user n. We model the connection by a Rayleigh fading channel, where the current channel

power gain |hn,t| ∼ Rayleigh(σR) to user n in time step t is drawn from a Rayleigh distribution with variance σR.

In order to minimize the complexity of the simulation, we assume perfect knowledge of the channel state at the

scheduler and opt to keep the channel power gain |hn,t| constant over all discrete resource blocks within a time

step t.

B. Problem Statement

We define three key metrics rC,t, rTO,t, rTO,prio,t for the scheduler’s consideration:

1) rC,t is the Sum Rate over all users n under assumption of a Gaussian code book, i.e.,

rC,t =

N∑
n=1

usch,n,t · log
(
1 + |hn,t|2 SNR

)
(2)

with Signal-to-Noise ratio SNR, which we assume as constant over all users within this paper, and the

count usch,n,t of all discrete resource blocks allocated to user n in time step t;

2) rTO,t is the total number of timed out jobs j ∈ JTO,t within time step t, i.e.,

rTO,t = |JTO,t| ; (3)

3) rTO,prio,t is the total number of timed out priority jobs j ∈ JTO,prio,t within time step t, i.e.,

rTO,prio,t = |JTO,prio,t| . (4)
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Ãt

rt

St

θQ̂,t

θµ,t

At

Fig. 2. The actor-critic learned scheduler’s process flow contains two loops. The outer, independent loop, marked in boldface black, infers

scheduling decisions At based on the current system state St and, during the training phase, generates data samples for the learning process.

The exploration module transforms the scheduling decisions by adding noise so as to generate a more rich training data set. In parallel, the

inner loop, marked in blue, collects the data samples generated by the outer loop in a memory buffer, uses them to update a critic NN to better

estimate the goodness of a scheduling decision and, based on that, also updates the actor NN to output better scheduling decisions.

As we wish to simultaneously maximize the Sum Rate rC,t and minimize the time outs rTO,t and rTO,prio,t, we

define the optimization goal rt to be a weighted sum of the three key metrics,

rt = wCrC,t + wTOrTO,t + wTO,priorTO,prio,t, (5)

where the weights wC, wTO, wTO,prio scale the relative importance of the metrics rC,t, rTO,t, rTO,prio,t. The following

section will detail the design of a RL scheduler that learns to approximately optimize the weighted sum metric rt

by trial-and-error.

III. LEARNED SCHEDULERS

In order to learn effective scheduling in the presence of Black Swan Events, we implement a vanilla deep

actor critic learner and extend it with two mechanisms from the domain of continual learning. This section will

first describe the components of the learner, how they interact, as well as the training algorithm that iteratively

optimizes performance. In the two following subsections, we present EWC [13] and GEM [16], and demonstrate

how we integrate them with the learner to fortify against Black Swan Events.

A. Actor-Critic Scheduler Design & Training

The actor-critic learner used in this paper consists of a pre-processor, two NN (actor µ with parameters θµ,t and

critic Q̂ with parameters θQ̂,t), an exploration module, a memory buffer, and a learning module. All components

contribute to the learning process, whereas for inference only pre-processor and actor NN µ are involved. While

the actor NN µ infers the actual scheduling decision At (see (1)), the role of the critic NN Q̂ is to estimate the

goodness of an action At in a given situation, or in other words, approximate the hidden system dynamics. Fig. 2

illustrates the process flow of these components which we will describe in more detail in the following.

In every time step t, the pre-processor first summarizes all information pertinent to scheduling decisions into a

system state vector St that can be used as an input to the NN. Specifically, the state vector contains four features

per user n:
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1) Resources requested by user n in time step t, normalized by total available resources U ,

Sn,1,t =
1
U

∑
j∈Jreq,n,t

uj,req,t; (6)

2) Priority resources requested by user n in time step t, normalized by total available resources U ,

Sn,2,t =
1
U

∑
j∈{Jreq,n,t, j is prio} uj,req,t; (7)

3) Instantaneous channel power gain of user n at time step t,

Sn,3,t = |hn,t|2 ; (8)

4) Maximum delay of user n at time step t, normalized by the maximum allowed delay dmax,

Sn,4,t = maxj∈Jreq,n,t
dj,t/dmax. (9)

This state vector St of length 4N is then used as input to the actor NN µ, which, based on its current

parametrization θµ,t, will output an allocation solution At in the form of (1) that contains the relative share

of the total resources U that each user n is allotted. In order to generate a rich data set to learn from, that action

vector At is further modified by the exploration module. The module first generates a random vector Āt of the

same length as At with its entries Ān,t ∼ Uniform[0, 1] drawn from a random uniform distribution. This vector is

then mixed with the action vector At according to a momentum parameter ϵexpl,

Ãt = ϵexplĀt + (1− ϵexpl)At. (10)

As we move away from training towards inference, ϵexpl is scaled down progressively so as to perturb the learned

scheduler’s inference less and less. The resulting noisy action vector Ãt is re-normalized and forwarded to the

communication system, where it progresses the system state as described in Section II-A, resulting in a success

metric rt and a new system state St+1. The data tuple of state St, action At and results rt is saved in the experience

buffer.

The learning module may now leverage this collected data to update the actor NN µ to output better allocation

decisions that generate a higher expected reward metric rt. In order to do this, first, the critic NN Q̂ is updated.

The critic NN takes as input a combination of state St and action At and estimates the expected reward metric,

Q̂θQ̂,t
(St,At) = r̂t. Therefore, we wish to minimize the distance between reward metric estimate and the actual

reward metrics recorded in the experience buffer,

LQ̂ =
(
Q̂θQ̂,t

(St,At)− rt

)2

. (11)

The critic NN’s estimate r̂t of the reward metric rt can then be used as a target for updating the actor NN µ. Given a

good enough approximation, the action At = µ(St) that maximizes the expected reward metric Q̂θQ̂,t
(St,At) = r̂t

also approximately maximizes the estimated reward rt. Therefore, our optimization target for the actor NN will be

Lµ = −Q̂(St, µθµ,t(St)) (12)

for a given state St from the memory buffer. In practice, the parameters θQ̂,t, θµ,t of critic and actor NN respectively

are updated to minimize both loss functions (11) and (12) on batches of experiences from the memory buffer with
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Stochastic Gradient Descent (SGD)-like optimization. While SGD has proven to be very efficient, it brings along

problems when facing a situation where significant state-action pairs are underrepresented in the learning data

set. Further, SGD does not have any built-in mechanisms to prevent forgetting, i.e., if a particular state-action

combination is phased out of the learning data set, the information contained may eventually be overwritten by

subsequent training steps. Consequently, in the following two subsections, we will present and incorporate two

methods from continual learning that harden the actor-critic scheduler against these issues.

B. Elastic Weight Consolidation (EWC)

Both multi-task learning methods presented in this paper decompose the training process into two sequential

stages: 1) First learning to solve the problem of Black Swan Events exclusively to satisfaction; 2) Then learning

to optimize overall system performance rt while constrained to try to preserve performance on the first stage.

The first of these methods, which we first presented in [15], makes use of Elastic Weight Consolidation as shown

in [13]. The main idea is to add an elastic penalty term to the actor NN optimization objective, i.e., the loss

function (12), that constrains the learning of overall performance optimization in step 2) to solutions that are

“nearby” a solution that is known to adequately handle significant rare events, i.e., the solution found in step 1).

As the NN parameters encode the scheduler’s behavior, the authors extract two indicators for “nearbiness” from

the actor NN µ after the first stage: 1) Each parameter i’s final values, denoted as θEWC
µ,i,t from here on; 2) Each

parameter i’s Fisher information F EWC
i . The Fisher information F EWC

i describes the local flatness of the optimization

landscape surrounding a given parameter i; it therefore describes the sensitivity of the NN behavior to changes in

that specific parameter i. Adjusting a parameter surrounded by a flat area on the optimization landscape is less

likely to significantly change the pre-learned behavior, therefore, this parameter is more attractive and safe to adjust

than a parameter on a steep slope.

Accordingly, for the second learning stage of optimizing overall system performance, a penalty term is added

to the actor NN optimization objective (12). For all I parameters, this penalty considers the Euclidian distance

between the parameters recorded from the first task θEWC
µ,i,t and the current parameters θµ,t, weighted by the Fisher

information F EWC
i . It is constructed as

LEWC = η

I∑
i=1

F EWC
i

(
θµ,t − θEWC

µ,i,t

)2
(13)

with the weighting factor η added to scale the EWC penalty’s importance. This penalty term is minimized by

keeping current parameters θµ,t close in value to the parameters θEWC
µ,i,t that are known to encode proper handling

of priority events, with a focus on those parameters with high Fisher information F EWC
i , i.e., those parameters

particularly sensitive to change. It therefore pulls the learning process towards solutions that cause less perturbation

to the previously learned solution. Approximations for the Fisher information F EWC
i can often be acquired at no

additional computational cost, as modern SGD implementations like the widely used Adam optimizer [17] already

make use of it internally. For a more in-depth look at the goodness of Fisher information approximations, we refer

to [18].
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C. Gradient Episodic Memory (GEM)

Like the EWC method in the previous chapter, GEM [16] also splits the learning process into the two tasks of first

learning how to deal with the rare priority events well, and secondly optimizing the overall system performance rt

with an additional constraint to limit performance degradation on the first task. GEM constructs this constraint

based on a sample of data retained from the first training stage, i.e., in our case, a set of K data samples that

contain information on how to specifically deal with the problematic events. Given this data set, we may calculate

the gradients for the actor and critic NN according to optimization objectives (11), (12). The authors in [16] now

argue that, assuming the data set is representative and the optimization landscapes are locally linear, we are able

to check the alignment of the gradient vectors ∇θLprio = gprio ∈ R1×I given the retained data set and the gradient

vectors ∇θLcurr = gcurr ∈ R1×I given the current training data from the regular learning process as described in

Section III-A via the scalar product

⟨gprio, gcurr⟩ . (14)

Local linearity may be assumed when using iterative, SGD-like optimizers with small step sizes. If the above scalar

product is greater than zero, both gradient vectors are aligned and the parameter update using the gradient on the

current training data, gcurr, is unlikely to negatively affect performance on the priority scheduling task. On the

other hand, if they are not aligned, the authors suggest to project the gradient vector gcurr geometrically to the least

perturbed alternative gradient vector g̃curr that has a positive scalar product with the priority task gradient gprio, or

mathematically,

min
g̃curr

1

2
∥g̃curr − gcurr∥22

s.t. ⟨gprio, g̃curr⟩ ≥ 0. (15)

The authors then show that this problem can be formulated as a quadratic program, to be solved by a numerical

solver. Specifically, they show that this problem can be expressed as an optimization over an amount of variables

equal to the amount of constraint data sets, which in our case is only one. The problem to be solved numerically is

vopt = min
v

1

2
v2 ∥gprio∥22 + gcurrg

T
priov

s.t. v ≥ 0 (16)

From the result vopt of this numerical optimization, the projected gradient vector g̃curr can be constructed as a linear

combination of the gradient from the retained data set gprio and from the current data set gcurr as

g̃curr = gpriov
opt + gcurr. (17)

By this mechanism, GEM tries to explicitly encourage learning transfer between the two stages in both directions:

backward transfer, i.e., updates on the current data set improve performance on handling priority events, and forward

transfer, i.e., inclusion of the priority data improving performance on the overall optimization.
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TABLE I

SELECTED SIMULATION PARAMETERS

Total Users N 5 Total Resources U 10

Job Creation Prob. pjob 0.5 Prio. Event Prob. pprio 10−4

SNR 10dB Rayleigh Scale σR 0.3

Job Max Size un,init 7 Max Delay dmax 5

Training Episodes E 30 Steps per Episode T 10 000

Weight Sum Rate wC 1 Episodes ϵexpl → 0 50%

Weight Time Out wTO −1 Learning Rate λ 10−4

Weight Prio. wTO,prio −5 NN Hidden Nodes 3× 128

IV. EVALUATION

In this section, we compare the performance of the learned schedulers on discrete RA as described in Section II-A.

All schedulers will be evaluated in overall performance, i.e., maximizing the average weighted performance sum rt

from (5), as well as their handling of priority events. The default simulation that all schedulers are evaluated on

has a low probability pprio = 1/10 000 of encountering a priority event per time step t.

A. Implementation Details

We implement the simulation and training loop in python on generic hardware, using the TensorFlow library

and the Adam optimizer [17] with a learning rate or step size λ. Numerical solving of (16) is done through the

CVXOPT library. Table I lists the most important simulation parameters, the full code implementation is available

at [19].

The basic training and evaluation loop for all schedulers is as follows. A NN is trained for T time steps, after

which the simulation is reset, and the process is repeated for E training episodes. In each time step, an inference

is made, the experience saved, and one training step is performed according to Section III, including adaptations

made for GEM and EWC where applicable. After the full amount of training steps, the NN’s final configuration is

frozen and used for evaluation on the baseline simulation, for a total of E = 5 episodes with a large number of

T = 200 000 time steps t each, giving ample opportunity to observe behavior on priority events even at their rare

occurrence. All training and evaluations are repeated three times, with their results averaged, to ascertain that the

performance is stable and reliable.

B. Results

We train five types of schedulers:

1) The Baseline scheduler is using a randomly initialized NN and is trained directly on the same simulation

configuration that all schedulers are evaluated on, i.e., pprio = 1/10 000;
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2) The Prio. Only scheduler is randomly initialized and is trained on a simulation with exclusively priority

events, pprio = 1;

3) GEM schedulers are initialized with the final state of the Prio. Only scheduler, then trained on the baseline

simulation with pprio = 1/10 000. We evaluate three choices of sample memory size K ∈ [29, 213, 216];

4) EWC schedulers similarly are initialized with the final state of the Prio. Only scheduler, then trained on the

baseline simulation with pprio = 1/10 000. We evaluate three choices of anchoring weight η ∈ [1e5, 1e6, 1e7];

5) For a benchmark, we train a randomly initialized NN on an augmented simulation, i.e., the probability to

encounter priority events is artificially increased by a significant degree, to pprio = 0.2. For a fair comparison,

to compensate for the pre-training of EWC, GEM, these schedulers are trained for twice the amount of training

episodes.

The results achieved in evaluation are illustrated in the upper section of Fig. 3. From schedulers 1), 2) we can

see the effects of naive training: Focusing only on the overall performance rt does not properly learn the handling

priority events, while exclusive focus on priority events during training leads to a drop in overall performance in

evaluation. The goal of all other schedulers will be to fill this performance gap while keeping priority event time outs

as low as possible. The benchmark 5), training on an augmented simulation with significantly increased amount of

priority samples, shows that striking this balance is indeed possible. Regarding EWC, GEM, we report that they, too,

can leverage their respective multi-task learning mechanisms to maintain proper handling of priority events while

closing the overall performance gap. We clearly highlight the impact of the relative tuning parameters, the weight η

for EWC as shown in (13), and the memory size K for GEM, both increasing in effect with increasing magnitude.

EWC suffers from a relatively larger drop in overall performance, but has an easier time with priority events over

all configurations, while GEM maintains high overall performance, but requires a large amount of memory samples.

We attribute this to the non-continuous nature of mapping discrete resources with a continuous output, which may

violate the assumption of local linearity and necessitates high amounts of samples for a representative data set.

While a large memory size K comes with a performance cost in training, as all K samples have to be evaluated in

each training step, we do not consider this restriction to be overly punishing, as the training happens off-line and

can be carried out on dedicated hardware.

While the performance of EWC, GEM may not look overly impressive compared to the augmented simulation,

recall that these methods bring further benefits. To emphasize this, we select the Aug. 20 scheduler as well as

one choice of EWC, GEM each, unfreeze the NNs, and continue their training on a simulation with pprio = 0,

encountering no further priority events. The results after evaluation are displayed in the lower section of Fig. 3,

marked with a plus sign. We clearly see the effect of catastrophic forgetting on the Aug. 20 scheduler, which entirely

unlearns how to handle priority events. Meanwhile, the EWC scheduler maintains performance on both metrics,

while the GEM mechanism can even leverage positive transfer learning, achieving the best overall performance out

of all schedulers. Recall further that, as a simulation model comes closer to reality, augmenting a simulation to

the desired effect tends to become more and more complex and the augmented simulations data distribution moves
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EWC η = 1e7
EWC η = 1e6
EWC η = 1e5

GEM K = 216
GEM K = 213
GEM K = 29

Aug. 20
Prio. Only

Baseline

0.8 0.9 1.0

Avg. rt

+EWC η = 1e7
+GEM K = 216

+Aug. 20

0.0 0.5 1.0

Avg. rTO,t

Fig. 3. Mean results when using the learned schedulers in evaluation, normalized to the baseline. The left graph shows the performance in

overall optimization goal rt, where a higher score is better, while the right graph focuses on priority event handling exclusively, where lower

is better. Methods are grouped by color, blue denotes the use of GEM, green for EWC, and yellow for schedulers that were not extended but

trained on an augmented simulation, all other schedulers are white. Black bars represent the variance. Note that the left graph’s axis is scaled

to highlight the relevant area.

further from reality, while EWC, GEM remain at a single control parameter and are trained directly on the true

simulation model.

V. CONCLUSION

This paper proposes to decompose a discrete Resource Allocation challenge with Black Swan Events into a two-

stage Reinforcement Learning problem, thereby enabling the use of two methods from multi-task learning, Elastic

Weight Consolidation (EWC) and Gradient Episodic Memory (GEM). We show that this approach is well able to

handle the priority events while offering advantages in robustness over the state-of-the-art approach of changing

the training data distribution, at the cost of increased training complexity.
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