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Abstract—In wireless communication, it is essential for the base
station (BS) to obtain the downlink channel state information
(CSI). In case of the absence of channel reciprocity, the mobile
station (MS) needs to report the CSI back to the BS. In
mobile multiple input multiple output (MIMO) systems, the
CSI feedback overhead grows proportionally with the number
of antennas and with the employed bandwidth. Moreover, the
channel characteristics change constantly, so the feedback must
be reported repeatedly with cautiously designed update intervals
depending on how rapidly the channel changes. The increasing
CSI overhead becomes a performance bottleneck, therefore it is
vital to reduce it while keeping the system performance as good
as required. In this paper, we propose a novel method based
on designing a dynamical model of a time-varying channel with
help of a framework called dynamic mode decomposition (DMD).
Reporting the model to the BS gives it the ability to predict the
channel state and track its changes over time. Simulation results
show that the proposed method can increase the interval duration
between the successive feedback updates and thus reduce the
average overhead.

Index Terms—MIMO systems, Channel estimation, CSI feed-
back, Precoding, Time-varying channels, Dynamic Mode Decom-
position.

I. INTRODUCTION

Systems employing multiple-antenna techniques are one of
the key technologies in the current wireless communication
networks. One of the fundamental aspects of MIMO trans-
mission is to ensure an accurate downlink (DL) channel state
information (CSI) at the base station (BS). CSI is generally
produced at the mobile station (MS) based on the DL channel
matrix and then reported to the BS to be used for precoding.
The applied precoding scheme depends mainly on the CSI
structure. In that regard, having access to the entire DL channel
matrix enables the BS to directly use any of the precoding
methods, which is essential to reduce interference from other
users and hence improve the system performance.
In frequency division duplex (FDD), employing different car-
rier frequencies in DL and uplink (UL) prevents the usage of
channel reciprocity [1]. For time division duplex (TDD), the
propagation channel is reciprocal since the same frequency
is used in DL and UL. In many cases, the whole channel
is considered to be nonreciprocal due to the fact that the
transmitter and receiver RF-chains are usually not identical
[2]. Accordingly, for both FDD and TDD, the BS cannot count
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on the UL pilots to obtain the CSI in DL. Thereby, the channel
matrix needs first to be estimated at the MS by using DL pilots
transmitted from BS. In 5G new radio (NR), the DL pilots are
called the CSI reference signal (CSI-RS) as standardized in
3rd generation partnership project (3GPP) [3]. In fact, feeding
back the entire channel matrix as observed is very expensive
in terms of the UL overhead. Thus, the MS processes the
estimated channel to produce a low-dimensional representation
that retains the significant properties of the channel matrix.
The low-dimensional CSI can be then reported with much less
feedback overhead.

The conventional implicit CSI reporting scheme, which is
adopted in 3GPP standards [4], makes some assumptions on
the BS precoding at the time of feedback. The assumptions
are interpreted as several CSI components derived from the
estimated channel matrix. Feeding back the CSI compo-
nents results in less precoding quality since the transmission
schemes are limited by the assumptions.

On the other hand, reporting CSI explicitly refers to the
feedback of the channel as it is observed by the MS, that
can assure high system performance [5]. However, explicit
feedback can generate heavy overhead in the UL. That mo-
tivates the need to compress the estimated channel matrix at
the MS side before sending it back. Various CSI compres-
sion techniques have been proposed. Among many works,
compressed sensing (CS) [6] is an attractive option. In [7]
and [8], the time domain channel sparsity is exploited, so
that CS based CSI feedback reduction is used by utilizing
orthogonal matched pursuit (OMP), where OMP is a greedy
sparsity recovery algorithm to determine the position of the
significant channel taps in the time domain. In [9] and [10], the
channel matrix is reduced in frequency domain by exploiting
the MIMO spatial correlation properties. Principal Component
Analysis (PCA) is applied to the channel covariance matrix to
derive a compression matrix that is used to obtain the sparse
representation of the channel. Another simple method to com-
press the channel matrix in frequency domain is introduced
in [11], where singular value decomposition (SVD) is applied
to the channel matrix directly. The CSI feedback consists of
the most dominants singular values and their corresponding
singular vectors of the decomposed matrix.

In mobile communication, because the terminals and/or
scatterers are moving, the channel characteristics change con-
stantly over time. Higher relative velocities result in faster



varying channel characteristics [12]. This leads to a phe-
nomenon called channel aging, i.e., the actual channel differs
from the one used for precoding. The effect of channel aging
appears first due to the process delay needed to calculate the
CSI at the MS and then to perform the precoding at the BS.
In both implicit and explicit feedback schemes, the CSI is
fed back frequently with intervals. Therefore, the BS uses
the reported CSI to perform the precoding within the interval
duration until it receives the next update of the CSI. That
increases the time delay between the actual channel and the
channel used for precoding. Thus, the channel aging effect
grows over the the CSI update intervals. Generally, channel
aging causes significant degradation in the system performance
due to the over-time growing difference between the channel
used for precoding and the actual channel at transmission time.

The contribution of this paper is a novel feedback scheme
based on analyzing the channel evolution and studying the
impact of channel aging. For this purpose, we employ a
powerful dimensionality reduction technique called dynamic
mode decomposition (DMD) to design a dynamical model of
the channel evolution. Besides analyzing the channel changes,
the DMD model can also predict the future state of the
channel. Feeding back the dynamical model to the BS side
makes it possible to predict the channel state. That can reduce
the effect of the channel aging and thus improve the precoding
performance. In this case, CSI update intervals can be extended
and thus the system resources are kept free from overhead for
a longer time.

Notations: Throughout this paper, we represent matrices by
uppercase boldface letters, column vectors by bold lowercase
letters, scalars by italic lowercase letters and numbering by
italic uppercase letters. (.)H denotes the matrix hermitian.

II. SYSTEM AND CHANNEL MODELS

A. System Model

The system model is depicted in Fig. 1. We consider a
MIMO-orthogonal frequency division multiplexing (MIMO-
OFDM) system with K subcarriers, Nt Transmit antennas at
the BS, and Nr receive antennas at the MS.
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Fig. 1. System Model

MS utilizes the received DL CSI-RS to estimate the channel
matrix H ∈ CK×Nt×Nr . The corresponding CSI is derived
from H, then quantized and reported to the BS. The acquired
CSI feedback at BS is dequantized and then decompressed to
retrieve the channel matrix Ĥ that is required to perform the

appropriate precoding on the DL user data. However, due to
the compression and quantization error, Ĥ can deviate from
the estimated H, leading to a channel reporting error that
depends on the compression degree and the quantization levels.
That enables a trade-off relationship between the feedback
overhead and the CSI resolution. The received signal on the
subcarrier k, ∀ k = 1, 2, ...,K, is defined as:

yk = Hk Wk sk + zk (1)

where Hk ∈ CNr×Nt denotes the channel matrix in frequency
domain and Wk ∈ CNt×Nr is the corresponding precoding
matrix. yk, sk, and zk ∈ CNr×1 indicate the received signal,
transmitted signal and additive noise, respectively.

B. Time-Varying Channel Model

Due to MS mobility in practical wireless mobile networks,
radiated waves suffer from Doppler frequency shift, leading
to time-varying multiplicative modifications of the channel in
time domain [13]. One parameter used to describe the time-
varying channels is the coherence time dc. It indicates the time
duration over which the channel is temporally correlated. Es-
sentially, coherence time is inversely proportional to Doppler
shift and is defined as:

dc =
c

2vfc
(2)

where v, fc and c denote the MS velocity, the signal carrier
frequency and the speed of light, repectively.
The aforementioned channel aging could be quantified by the
channel autocorrelation function RH(∆t), as depicted in Fig. 2
[14, Chapter 3]. With increasing the time difference ∆t, the
channel temporal correlation drops constantly until ∆t = dc.
After this point the correlation could be neglected.
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Fig. 2. Channel correlation vs Time difference

Note from (2) that increasing fc and/or v results in shorter
dc. Fig. 2 implies that shorter dc leads to faster drop of
RH(∆t). That means, the higher the fc and/or v, the faster
changes in the channel.

C. Channel Aging effect on System Model

When considering the properties of time-varying channels,
each component of the discussed system model can be rede-
fined as a function of time. In this case, due to the computation
delay and CSI reporting intervals, channel aging arises leading
to a mismatch between the applied precoding matrix and the
actual channel.

As depicted in Fig. 3, after receiving the CSI-RS at time
t1, a process delay dp is required before starting DL user



data transmission. This delay occurs due to estimating H(t1)
and finding the corresponding CSI at the MS, as well as for
retrieving Ĥ(t1) and designing the precoding matrix W(t1)
at the BS. The propagation delay is here neglected.
Starting from time t2 = t1 + dp, the BS uses W(t1) for
precoding the transmitted signal until the next CSI feedback is
received. The precoding matrix is updated at time t3 = t2+du,
where du is the CSI update interval.
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Fig. 3. Process Delay and Update Interval

The received signal at any time t′, with t2 ≤ t′ < t3, on
the subcarrier k is defined as:

yk(t′) = Hk(t′) Wk(t1) sk(t′) + zk(t′) (3)

The effect of channel aging can be seen clearly in (3) as a
mismatch between W(t1) and H(t′). Since W(t1) is designed
based on Ĥ(t1), we quantify this mismatch as the mean square
error (MSE) between the reported channel Ĥ(t1) and the
actual channel H(t′). The value of the channel MSE indicates
the quality of the precoding, i.e, the lower the MSE value
the better the preecoding performance. Based on the system
requirements, the MSE value must be maintained under some
predefined threshold. Note that the channel MSE is affected
not only by channel aging but also by the compression and
quantization error. In this paper, we address only the error
caused by the channel aging effect, as discussed later.

Based on the discussion in Fig. 2, it is understood that in-
creasing ∆t reduces the channel correlation and thus increases
the channel MSE. In connection with Fig. 3, since ∆t = t′−t1
keeps growing within dp, the value of MSE keeps increasing
over time up to the next update at t3. Reducing the process
delay and update intervals can be beneficial to prevent the
MSE value from growing over the system requirements. dp
can be shrunk by employing more powerful hardware, which
is an expensive solution and works only during dp. Whereas
du can be reduced by updating CSI more frequently, which
results in higher average CSI overhead. The idea here is to
find a method to reduce the error caused by channel aging
and keep the MSE value sufficiently low as long as possible.
In this case, du can be extended and thus the channel resources
can be retained free from the CSI overhead for a longer time.

Our proposed solution is a new technique that can cope with
the effect of the channel aging within the coherence time dc
by exploiting the channel temporal correlation properties. The
reported CSI contains information about the channel evolution
that allows the BS to predict the future state of the channel
and thus track the channel changes in the time domain. Then,
the channel aging effect is eliminated since channel MSE is

calculated between the predicted channel Ĥ(t′) and the actual
channel H(t′). However, performing such prediction technique
could add a prediction error, affecting the channel MSE.
Moreover, since this kind of error is accumulative, the MSE
value will also increase over time. Simulation results show
that the prediction error is considerably lower than the channel
aging error, which makes the proposed solution preferable in
terms of reducing the MSE.

D. Aperiodic Feedback

Based on the previous discussion, the appropriate update
interval must be determined considering the channel MSE.
Because the MSE value grows over time, dc can be extended to
the maximum value that corresponds to the maximum allowed
MSE, based on the system requirements. Assuming the MS
is able to measure the MSE and compare it to some given
threshold γ, a simple feedback scheme could be: if MSE ≥ γ,
then report back a new CSI. Furthermore, MSE measurement
at the MS is easily enabled by utilizing the CSI feedback.
The MS can reproduce the channel matrix. It is denoted as
Ĥ(t1) in case of no channel prediction or Ĥ(t′) in case of
channel prediction. The MSE could be obtained by comparing
the reproduced channel to the estimated channel H(t′).
Choosing the value of γ plays a trade-off role between the
MSE value, i.e., the system performance and the CSI feedback
intervals, i.e., the overhead.

III. EXPLICIT CSI FEEDBACK

In this section, we concisely discuss two fundamentally
different explicit CSI feedback schemes that are needed for
comparison purposes in the simulation section. The first
scheme is CS based CSI feedback by utilizing the OMP. It
is used to find the sparse representation in time domain [7]
and [8]. Whereas the second scheme is performed directly
in frequency domain by utilizing the SVD that is applied to
obtain a low-dimensional CSI [11].

A. OMP based Explicit Feedback

The traditional CS method is used for dimensionality reduc-
tion. It assumes the concerned data to be sparse in some basis.
After applying the appropriate transformation, the sparse data
can be compressed by considering only the nonzero elements
with their locations [6].
In case of compressing the channel matrix, the MS can
estimate the channel in frequency domain H(t), which is not
sparse. However, the corresponding channel in time domain
G(t) ∈ CL×Nt×Nr is sparse over the first dimension L.
The relationship between H(t) and G(t) can be defined as
applying the Fourier transformation on time domain channel
resulting in the corresponding channel on frequency domain:

H(t) = FG(t) (4)

where F ∈ CK×L is the DFT matrix and L is the Fourier
transform size. K < L since only a portion of the spectrum is
utilized and the rest is restrained to comply with standardized
spectral masks. Since (4) is underdetermined, G(t) cannot be



calculated directly by taking the inverse of F. Thus, a search
algorithm is needed to detect the sparse solution.
In [7] and [8], the OMP algorithm is utilized to find the most
sparse solution. At the MS, OMP runs a greedy search over a
range of length D < L to detect the value and location of the
most powerful nonzero element, where D is chosen equal to
the length of the cyclic prefix. This search step is repeated
several times C with considering the previously detected
elements. Since each search step results in one element, the
final output is C elements.
The number of search steps C can be adjusted as a trade-off
between the computing time and output resolution. Hereby,
we denote the solution based on OMP output as Ĝ(t). The
values and locations of the nonzero elements are fed back. At
the BS side, Ĝ(t) is reconstructed and used (4) to obtain the
corresponding channel in frequency domain Ĥ(t).

B. SVD based Explicit Feedback

The SVD method can be applied at the MS directly on the
channel in frequency domain. Since SVD is used with 2D
matrices, the 3D channel matrix H(t) can be split into Nr

matrices, each of size K ×Nt. Moreover, to reduce the SVD
input, the correlation in frequency domain can be exploited
by dividing the dimension K into B subbands, so that each
subband contains K

B subcarriers. The first subcarrier in each
subband is used to build the SVD input H̄nr

(t) ∈ CB×Nt

∀ nr = 1, 2, ..., Nr.
Then SVD is performed separately on each H̄nr (t) as:

H̄nr
(t) = Unr

(t)Σnr
(t)VH

nr
(t) (5)

where Unr
(t) ∈ CB×B and Vnr

(t) ∈ CNt×Nt are the
left and right singular vectors matrices, respectively, and
Σnr

(t) ∈ CB×Nt is a diagonal matrix with singular values
that are sorted in a descending manner.
Due to the nature of SVD, it can be truncated by setting
all but the first rsvd largest singular values equal to zero,
where rsvd denotes the SVD rank. That results in truncated
components Ûnr

(t) ∈ CB×rsvd , Σ̂nr
(t) ∈ Crsvd×rsvd and

V̂nr
(t) ∈ CNt×rsvd .

The singular values in Σ̂nr (t) can be left or right multiplied
by Ûnr (t) or V̂nr (t), respectively, before feeding back. At
the BS, the channel can be recomposed as:

ˆ̄Hnr
(t) = Ûnr

(t)Σ̂nr
(t)V̂H

nr
(t) (6)

Each subcarrier in ˆ̄Hnr (t) is repeated K
B times to obtain

Ĥnr
(t). Then, the resulting Nr matrices are appended to

obtain Ĥ(t).
Choosing rsvd properly can reduce the CSI feedback consider-
ably while maintaining the approximation Ĥ(t) ≈ H(t) since
the most power is in the first singular values.

C. Explicit CSI Feedback scheme

The proposed aperiodic explicit CSI Feedback scheme is
summarized in Table I. It could be performed by applying
either OMP or SVD to compress the estimated channel.

TABLE I
EXPLICIT CSI FEEDBACK SCHEME

Step 0: Input γ.
Initialize m = 1, bool =True.

Step 1: Estimate the channel H(tm).
Step 2: Compress and Quantize to obtain CSI.
• if bool =True: Feed back CSI.

——–MS checking the condition for next feedback——–
Step 4: Decompress and Dequantize CSI to obtain Ĥ(tm).
Step 5: Calculate MSE between H(t1) and Ĥ(tm).
• if MSE< γ: bool =False
• else: bool =True. m = 0

Step 6: m = m+ 1, goto Step 1

IV. CHANNEL MODELING WITH DMD

In this section we explain the fundamental concept of the
DMD method and how it is implemented in a time-varying
channel to reduce the average CSI overhead.

A. Dynamic Mode Decomposition

DMD [14] is an equation-free data-driven method capable of
providing an accurate decomposition of a complex system into
spatiotemporal coherent structures that may be used for short
time future state prediction. The method relies on collecting
M observed snapshot data X(tm) from a dynamical system
at a number of times tm, where m = 1, 2, ...,M . Each
snapshot data is reshaped into a column vector of length N ,
i.e., x(tm) ∈ CN×1. The collected snapshots are then arranged
into two large data matrices:

X = [x(t1) x(t2) ... x(tM−1)]

X′ = [x(t2) x(t3) ... x(tM )]
(7)

where X and X′ ∈ CN×M−1. DMD calculates the best-fit
linear dynamical system, even if the data snapshots may be
captured from a nonlinear system. It finds linear approximation
that describes how the matrix X′ advances from X as:

X′ ≈ AX (8)

where A ∈ CN×N is an approximating linear operator chosen
to minimize the Frobenius norm of the error ‖X′−AX‖F by
utilizing the standard linear regression.
In practice, when data dimension N is large, the matrix A may
be intractable to analyze directly. Therefore, instead of solving
(8) for A directly, DMD utilizes a spatial dimensionality-
reduction technique called proper orthogonal decomposition
(POD). The collected data are projected onto a low-rank
subspace defined by at most M − 1 POD modes and then
solved for a low-dimensional linear operator. This process can
calculate the eigendecomposition of the matrix A without ever
explicitly computing A [14]. The solution yields eigenvectors
φm ∈ CN×1 and eigenvalues λm ∈ C of the mapping operator
A which are called DMD modes and dynamics, respec-
tively. The DMD modes represent coherent space-frequency
structures, whereas the DMD dynamics describe how the
corresponding modes evolve.



The eigendecomposition solution can be recomposed to rep-
resent the data at any time m as:

x(tm) =

rdmd∑
j=1

φjλ
m
j bj (9)

where each bj denotes the initial amplitude of the correspond-
ing mode φj , whereas rdmd is the DMD rank. rdmd indicates
the number of used eigendecompositions, i.e., eigenvalues and
eigenvectors with 1 6 rdmd 6 M . The higher the value of
rdmd, the better the resolution of x(tm). However, important
to mention that the generated eigendecompositions are sorted
in descending order from the most significant. Accordingly, it
may be sufficient to take only first rdmd modes and dynamics
out of the entire available M to ensure an adequate resolution
of any recomposed x(tm).
For prediction’s sake, formula (9) can be run forward by taking
times tm′ in the future, i.e., m′ = M + 1,M + 2, ... .

B. Dynamical Model CSI Feedback

In this subsection, we discuss how to employ the afore-
mentioned DMD in a practical wireless system. Due to the
temporal correlation properties of a time-varying channel in
mobile wireless communication, the evolved channel can be
seen as a dynamical system. DMD could be applied to generate
a dynamical model that describes the channel changes. The
model consists of modes and dynamics which can be used to
perform future state prediction of the channel.
The last M estimated channel matrices H(tm), where m =
1, 2, ...,M , can be saved at the MS to be used as input
data snapshots to the DMD algorithm. Each matrix snapshot
is first reshaped into a column vector h(tm) ∈ CN×1 as
N = KNtNr. Thereafter, the channel vectors are stacked into
two big matrices as in (7). The resulting X and X′ can be used
as input to the DMD algorithm to produce the corresponding
dynamical model, i.e., eigenvectors φm and eigenvalues λm of
the linear operator A that fulfills the approximation X′ ≈ AX.
The designed dynamical model must be fed back to the BS.

In order to calculate the feedback overhead, the size of the
DMD model could be calculated from (9) by summing only
the sizes of modes and dynamics. The initial amplitude size
should not be counted since bj could be multiplied by φj .
Each mode φj is a vector of length N coefficients while
each dynamic λj is one coefficient. Because rdmd can be
chosen up to M , the maximum size of the dynamical model
is (N + 1)M coefficients. This size is too big and also larger
than the channel h(t) size. Thus, it needs to be compressed.
Because the eigendecompositions are sorted descendingly,
we can reduce the number of needed modes and dynamics
considerably while keeping the most of the power after re-
composition. Accordingly, the size of the dynamical model
could be shrunk to (N + 1)rdmd.

Further compression can be performed by reducing the size
of each selected mode. Reducing the mode size relies on
the fact that the mode coefficients for the dominant POD
modes are sparse in the frequency domain [14]. Thus, applying
Fourier transformation to the modes results in sparse output.

1) Example of mode compression: Fig. 4 depicts an ex-
ample of applying Fourier transformation to the first mode φ1

of a channel dynamical model. For simplification, we consider
single input single output (SISO) with K = 660 subcarriers. In
(a), the mode is depicted in time domain before compression.
Note in (b) how sparse the mode is in frequency domain. Only
some elements Nz contain the most of the power. In (c) we
take Nz = 8 and apply the inverse Fourier transformation to
retrieve the mode in time domain (d).
To evaluate the reduction performance, we calculate the size
of the mode in bits before and after compression. The quanti-
zation is performed in amplitude and phase with Nb = 8 bits
for each complex coefficient. The amplitude is quantized in a
differential manner so that the strongest coefficient amplitude
is set to 1 as a reference amplitude and then quantized
to Am = 3 bits. Whereas the phase of each coefficient
is quantized using Ph = 5 bits, i.e., 32-PSK points. The
locations of the nonzero elements are defined as integer values
within a range of length N , thus, they can be measured with
Nzdlog2(N)e bits.
Accordingly, the size of the compressed mode is calculated
with Nz(Nb + dlog2(N)e) = 144 bit. Whereas, the mode size
without compression is Nb ×N = 5280 bit.
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The CSI overhead of the dynamical model comprises rdmd

compressed modes with their dynamics. At the BS, the re-
ported CSI is first dequantized and decompressed to retrieve
the dynamical model. By applying (9), the channels ĥ(tm)
can be obtained. Note that ĥ(tm) deviate from h(tm) due
to compression and quantization error. The values of the
parameters rdmd, Nz and Nb play a trade-off role between
the overhead and the CSI quality.

C. Dynamical Model CSI Feedback scheme

The proposed aperiodic dynamical model CSI feedback
scheme is summarized in Table II. This scheme depends on
collected data from the past. Therefore, the first CSI feedback
can be generated after a time delay. This time is needed
at the MS to collect the estimated channels H(tm), with
m = 1, 2, ...,M . This delay occurs only once when starting
up the MS. Step 0 represent the starting up process.

TABLE II
DYNAMICAL MODEL CSI FEEDBACK SCHEME

Step 0: Input M , γ, rdmd

Initialize m = 1, m′ =M + 1, Ḣ = 0
while m ≤M : repeat
• Estimate the channel H(tm).
• Reshape H(tm) to vector h(tm) and stack in Ḣ.
• m = m+ 1

Step 1: Remove the channels in Ḣ older than M .
Step 2: Construct X and X′ from Ḣ.
Step 3: Apply DMD on X and X′ to obtain the modes

Φ and dynamics Λ.
Step 4: Compress and Quantize the rdmd most dominant

modes in Φ and obtain CSI.
Step 5: Feed back CSI.

——–MS checking the condition for next feedback——–
Step 6: Decompress and Dequantize CSI.
Step 7: Predict Ĥ(tm′ ).
Step 8: Estimate the channel H(tm′ ).
Step 9: Reshape H(tm′ ) to column vector h(tm′ )

and stack in Ḣ.
Step 10: Calculate MSE between H(tm′ ) and Ĥ(tm′ ).
• if MSE(tm′ ) < γ: m′ = m′ + 1, goto Step 7
• else: m′ =M + 1, goto Step 1

V. SIMULATION RESULTS

In this section, we perform numerical simulations to eval-
uate the performance of the dynamical model CSI feedback
scheme and compare it to the explicit CSI feedback schemes.
For the simulations, we employ Heterogenous Radio Mobile
Simulator (HermesPy) [15] to generate the channel coeffi-
cients. System parameters are enumerated in Table III.
The simulation is run under two conditions, perfect and
imperfect channel estimation.

A. Perfect Channel Estimation

For now, the channel estimation at the MS is considered to
be perfect. We compare the channel MSE evolution for two
CSI feedback schemes. One based on dynamical model feed-
back (DM-FB) and the other based on explicit feedback (E-
FB). For the explicit feedback, it makes no difference to apply
OMP or SVD, since both just compress the estimated channel

TABLE III
SIMULATION PARAMETERS

System Parameters Value
Channel model COST 259 [16]

Channel generator HermesPy
Carrier frequency fc 2 GHz

MS velocity v 5 Km/h
Number of BS antenna Nt 4
Number of MS antenna Nr 4

System bandwidth 10 MHz
Subcarrier spacing 15 KHz

Number of subcarriers K 660
DFT size L 1024

Collected data duration M 25 ms
Quantization Am/Ph 3/5 bit

Channel estimating error AWGN
CSI feedback Aperiodic

CSI update threshold γ -5dB

DMD Parameters Value
DMD rank rdmd 2
tlsq Rank rtlsq 2

OMP Parameters Value
Search range D 256

Stopping condition C 10

SVD Parameters Value
SVD Rank rsvd 2

Number of subblocks B 22

and feed it back. Then, the BS uses the reported channel
within the entire update interval du. To focus the comparison
on the MSE evolution we set the schemes parameters such
that the MSE at the reporting time is equal for DM-FB and
E-FB. Therefore, the DMD parameters are chosen rdmd = 2,
M = 350 , 25 ms and m′ up to 1050 , 75 ms. Whereas,
the OMP parameters are D = 256 and C = 10, or the SVD
parameters are rsvd = 2 and B = 22. As seen in Fig. 5, the
MSE value at t = 0 ms is almost the same for DM-FB and
E-FB and is not equal to zero because of the compression and
quantization error. Over time, The MSE grows worse for both
schemes. However, it is obvious that the slope of the DM-FB
is much lower than the E-FB. this shows that the accumulative
prediction error is much lower than the channel aging error.
According to (2), we calculate dc ≈ 56 ms. Note in the figure
that the MSE value grows steadily over dc.
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Fig. 5. Channel MSE evolution



To evaluate the CSI feedback overhead reduction, we con-
sider the aperiodic feedback scheme. The threshold is chosen
arbitrary as γ = 0.32 ≈ −5 dB. For each of the discussed
methods, DM-FB using DMD and E-FB using OPM snd SVD,
the overhead is calculated and listed in the Table IV. We
notice that the transmitted CSI feedback for DMD is higher.
However, looking at the average overhead per second we
notice that DMD generates less overhead since it feeds back
less frequently than the other explicit techniques. By applying
DMD we save about 8 Kbit compared to OMP and 21 Kbit
compared to SVD every second.

TABLE IV
CSI OVERHEAD VALUES IN BITS

DMD OMP SVD
at once 2144 1360 1664
avr (1s) 51381.53 59646.23 72476.25

B. Imperfect Channel Estimation

Since the channel estimation error is not accumulative,
it affects the MSE at the reporting time and not the MSE
evolution. Therefore, we focus the comparison here on the
MSE at the reporting time. In the simulation we consider the
estimation error as AWGN and represent it as SNR value.
DMD offers a variant called total least-squares DMD (tlsq-
DMD). It is able to handle the noisy input data to mitigate the
noise effect, i.e., estimation error, by applying the total least-
squares algorithm [14], which is an extension of the standard
SVD-based least-squares regression. For the aperiodic feed-
back decision, the threshold is again chosen as 0.32.
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Fig. 6. SNR vs P(MSE> γ) with γ = 0.32

In Fig. 6, we compare the quality of the reported CSI at
the current time of the three discussed feedback methods,
based on DMD, OMP and SVD. The y-axis represents the
probability that the MSE is higher than the threshold γ,
i.e., the probability that the CSI feedback fails to fulfill the
system requirements. Whereas the x-axis shows the SNR that
represents the estimation error.
The probability that MSE > 0.32 starts to degrade when
the SNR value is lower than −22 dB, 2 dB and 80 dB, when

applying DMD, SVD and OMP, respectively. Therefore, ap-
plying DMD provide the most robust performance against the
estimation error compared to other schemes.

VI. CONCLUSION

In this paper, we discussed a CSI feedback scheme based on
reporting a dynamical model that describes the channel evo-
lution. The proposed method exploits the temporal correlation
properties of the channel in order to mitigate the channel aging
effect. The designed model is able to predict the future state of
the channel and hence to track the channel changes. Therefore,
the CSI update intervals could be increased.
Even though the dynamical model can be compressed before
feeding back, its size is larger than other proposed E-FB size.
However, DM-FB ensures longer CSI update intervals and
consequently less average CSI feedback overhead.
Moreover, in practice when the channel estimation is im-
perfect, the proposed DM-FB utilizes the total least-squares
algorithm. It shows impressive robust performance against the
estimation error compared to other E-FB using OMP or SVD.
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