
An ultra reliable low latency Cloud RAN
implementation in GNU Radio for automated

guided vehicles
Johannes Demel

Dept. of Communications Engineering
University of Bremen
Bremen, Germany

demel@ant.uni-bremen.de

Carsten Bockelmann
Dept. of Communications Engineering

University of Bremen
Bremen, Germany

bockelmann@ant.uni-bremen.de

Armin Dekorsy
Dept. of Communications Engineering

University of Bremen
Bremen, Germany

dekorsy@ant.uni-bremen.de

Abstract—We present our Over-the-Air Ultra Reliable Low
Latency Communication system implementation in GNU Radio.
This includes our Cloud Radio Access Network concept and the
used Out-Of-Tree (OOT) modules for multicarrier synchroniza-
tion, GFDM modulation, polar coding, and symbol mapping. We
demonstrate how we use GNU Radio with Universal Software
Radio Peripherals (USRPs) on our Automated Guided Vehicles
(AGVs) and as part of our base station to realize a full
transceiver. This includes illustrations and hands on descriptions
how we integrate all components. Finally, we discuss our
measurement results in this paper. To this end, the conducted
Signal-to-Noise-Ratio (SNR) measurements over our testbed area
as well as latency measurements validate the feasibility of our
implementation for Ultra Reliable Low Latency Communication
(URLLC) requirements.

Index Terms—GNU Radio, polar codes, GFDM, wireless,
SDR, open source

I. INTRODUCTION

We present our Over-the-Air Ultra Reliable Low Latency
Communication system implementation in GNU Radio [1].
The demonstrator is comprised of several open source GNU
Radio OOT modules that we present in this work [2]–[8]. The
considered technologies are polar codes for Forward Error
Correction (FEC) [7], [9], fast, optimized, and standardized
soft demappers with Bit-Interleaved Coded Mapping (BICM)
[2], [10], [11], Generalized Frequency Division Multiplexing
(GFDM) multicarrier modulation [3], [12], [13], and high
throughput synchronization based on a refined version of
Schmidl&Cox (Schmidl&Cox) [4], [14]. The goal of this
demonstrator testbed is an evaluation of a URLLC system
in a Cloud Radio Access Network (Cloud RAN) setup with
distributed Access Points (APs) [15], [16]. The requirements
include an end to end latency below 1ms and resilience
against burst errors [17].

The benefits of our Cloud RAN software implementation
are flexibility, re-usability, efficiency and performance [18]–
[20]. Further, benefits include more rapid development cycles

This work was partly funded by the German ministry of education and
research (BMBF) under grant 16KIS1012 (IRLG).

and thus features may be deployed faster. Hardware devel-
opment, even if not Application Specific Integrated Circuit
(ASIC) focused, is inherently difficult and cumbersome. The
author in [20] makes a case for Field Programmable Gate Ar-
ray (FPGA) development in case requirements cannot be met
otherwise but recommends to stick to software development.
Thus, we stick to a software implementation for our testbed
demonstrator to enable fast technology validation. Often,
software development for Radio Access Network (RAN) is
carried out with several programming languages including C
and C++ for performance critical code as well as Python for
support functionality and testing and thus, we focus on these
as well [21].

We start with a discussion of our testbed concept, the
software environment, and the used and implemented soft-
ware components and their usage. Afterwards, we discuss
the available hardware. Finally, we present our testbed at the
NEOS building, Bremen, along with our measurement results.
The capabilities of interest are the achievable latencies and
reliability investigations for our Cloud RAN setup. The Cloud
RAN setup includes distributed antennas and APs to improve
reliability by providing spatial diversity, and thus redundancy.
Eventually, we demonstrate that our demonstrator supports the
communication testbed AGV requirements by using it.

We contribute an open-source software Over-the-Air (OTA)
communication system implementation built upon the GNU
Radio with multiple OOT modules [2]–[8]. Moreover, we use
this system to conduct SNR and Round Trip Time (RTT)
measurements in our testbed area. GNU Radio provides the
integration framework for our modules, networking capabili-
ties, and enables seamless access to the required capabilities
that USRPs provide. These capabilities include, continuous
high rate sample streams, exact receive and transmit tim-
ing information, and high precision synchronization across
multiple devices. With distributed APs to improve reliabil-
ity through spatial diversity, the chosen approach shows a
significant improvement to counter fading induced commu-
nication outages. Thus, distributed APs provide an important
option to minimize burst errors in URLLC communication

https://orcid.org/0000-0002-5434-7232
https://orcid.org/0000-0002-8501-7324
https://orcid.org/0000-0002-5790-1470


systems. SNR measurements over our testbed area confirm
that distributed APs complement each other to boost re-
liability. Moreover, our latency measurements confirm that
low latency communication systems are achievable and fully
implementable in software. The GNU Radio OTA software
implementation is able to provide lower latency than current
Long Term Evolution (LTE) and 5th Generation New Radio
(5G NR) systems [22].

II. TESTBED CONCEPT

The testbed is built with the Software-Defined Radio (SDR)
concept in mind. Thus, the testbed includes numerous parts
that are implemented in software, as well as the SDR hard-
ware to transmit and receive. Here we present an overview
as illustrated in Fig. 1. All aspects of our testbed are design
with this concept in mind.

Cloud RANRAP
(USRP)

RAP
(USRP)fronthaul fronthaul

AGV control
server

AGV
(KATE)

Fig. 1. Our testbed concept with its core components.

We consider a factory hall where multiple AGVs oper-
ate, specifically Götting KG Kinetic Automat for Transport
Enhancements (Götting KATEs) [23]. All Götting KATEs
are controlled by a central AGV control server that requires
deterministic communication with small packets and a 100ms
periodicity. The default IEEE 802.11 (Wi-Fi) communica-
tion system is replaced with our custom SDR solution to
accommodate 20ms periodicity which is the lowest period-
icity supported by the application. Our Cloud RAN system
with distributed APs is designed and configured such that it
provides higher reliability and lower latency.

III. TESTBED CONFIGURATION

We briefly discuss our URLLC testbed configuration. Since
the presented software implementation is very flexible, it may
be adopted for widely different scenarios. However, we intend
to use it in an URLLC context and hence, we present our
testbed configuration that is suited for the URLLC scenario.

Our implementation runs on a host with Ubuntu 20.04
with a Linux 5.x generic kernel. The configuration follows
the Ettus knowledge base guidelines [24] with increased net-
work buffer size, Central Processing Unit (CPU) performance

governor adjustments, and enabled real-time scheduling for
USRP Hardware Driver (UHD) and GNU Radio flowgraphs.
In order to plug our GNU Radio flowgraphs via GNU Radio
Socket PDU blocks into the host network stack, we employ
Linux Foo over UDP (FOU) tunneling [25], [26]. The Foo
over UDP (FOU) interface is configured with network-tools to
accept 84B packets which comprise a 20B Internet Protocol
(IP) header and potentially an 8B User Datagram Proto-
col (UDP) header [26]–[28]. Moreover, this configuration
allows for unfragmented Internet Control Message Proto-
col (ICMP) ping transmission [29]. The custom Medium-
Access-Control (MAC) adds a 15B header and thus, the
PHYsical layer (PHY) conveys 99B, or 792 bit, packets.

The PHY produces 1800 bit polar coded frames that are
mapped to Quadrature Phase Shift Keying (QPSK) symbols
and subsequently GFDM modulated with Kt = 15 timeslots,
Ks = 64 subcarriers, and Kon = 60 active subcarriers
[12]. Together with a NCP = 16 Cyclic Prefix (CP) and
a NCS = 8 Cyclic Suffix (CS) and an additional Kt = 2
GFDM preamble, a complete frame consists of 1136 S. The
configured sample rate is 30.72MS s−1 with two transmit and
two receive antennas. Thus, we use frames with 36.98 µs on
air duration, or burst duration and occupy a bandwidth of
29.28MHz. The transmit and receive antennas correspond
to two distributed USRPs with a 1 × 1 configuration each.
Finally, we organize the uplink and downlink with Time-
Division-Duplex (TDD) and multiple access with Time-
Division-Multiplex (TDM). Here, every User Equipment (UE)
and our RAN may transmit every Tcycle, i.e. every user is
assigned a slot in every cycle.

IV. SOFTWARE IMPLEMENTATION

In this section, we discuss GNU Radio and the UHD along
with important used software libraries that comprise our soft-
ware environment [1], [30]. Our demonstrator flowgraph in
Fig. 2 is comprised of several GNU Radio OOT modules [2]–
[8]. GNU Radio, UHD, and our OOT modules are available
under the terms of the GNU General Public License v3.0 or
later (GPLv3+).

This demonstrator is implemented in GNU Radio because
GNU Radio offers a modular, multi-threaded framework for
SDR applications while we can focus on the implementation
of our algorithms. Furthermore, it offers an extensive set of
blocks that enhance its capabilities, e.g. UHD and thus USRP
integration. Our implemented OOT modules rely heavily on
Vector-Optimized Library of Kernels (VOLK) and Fastest
Fourier Transform in The West (FFTW), as does GNU Radio
[31], [32]. In the following, we introduce our OOT modules
in more detail.

A. gr-tacmac

The OOT module gr-tacmac serves as an umbrella for our
demonstrator [8]. The GNU Radio flowgraph in Fig. 2 uses
standard GNU Radio UHD blocks to connect our software
implementation to USRPs while the UDP interface block uses
GNU Radio Socket PDU blocks as well as our custom MAC



Fig. 2. Top-level GNU Radio flowgraph with UHD sink and source for Nant = 2.

header block implementation to integrate into the Linux host
network system. In order to efficiently integrate our system
into the Linux host network stack, we employ network-tools
to configure hosts [26]. Moreover, gr-tacmac provides the
hierarchical flowgraphs that constitute the final flowgraph in
Fig. 2. The hierarchical transmitter and receiver blocks in
Fig. 2 encapsulate the transmitter and receiver blocks that rely
on our subsequently discussed modules. The Periodic time tag
block provides timing information to propagate a common
time basis between the USRPs via UHD and the transmitter.
Thus, it enables timed transmissions with tight latencies.
Finally, the Status collector block collects metadata, e.g. SNR
estimates, from the flowgraph which may be forwarded to an
elasticsearch database. We use an elasticsearch database to
permanently store metadata and Kibana for visualization.

B. XFDMSync

The XFDMSync module implements an improved
Schmidl&Cox preamble approach [4], [14], [33], [34]. A
preamble with two identical parts, consisting of a Zadoff-Chu
sequence, is used to detect the beginning of a frame, perform
time and frequency synchronization and finally allow for
channel estimation. The channel estimation includes per
subcarrier taps as well as SNR estimation.

C. gr-gfdm

The GNU Radio gr-gfdm module provides GFDM mod-
ulation capabilities [3], [12], [13]. Beyond the GNU Radio
flowgraph integration, the algorithmic GFDM implementation
is also available via pybind11 to enable integration into
Python projects such as simulations [35], [36]. The module
relies on XFDMSync to provide received frames and channel
estimates to equalize frames during demodulation. The de-
modulated and resource demapped frames consist of complex

symbols that are expected by the gr-symbolmapping module
and blocks therein.

D. gr-symbolmapping

The gr-symbolmapping module provides symbol mapping,
soft demapping, as well as hard decision for received complex
Quadrature Amplitude Modulation (QAM) symbols [2]. The
symbol mapper and demapper blocks provide optimized im-
plementations for a wide range of standardized constellations
such as QPSK, 16QAM, and 256QAM as defined in LTE, 5G
NR, or Wi-Fi. Arbitrary constellations are possible as well but
naturally without the same level of optimization. Furthermore,
the module provides interleavers and de-interleavers to enable
BICM [10]. This interleaver implementation was upstreamed
into GNU Radio [1].

E. polar-codes

Our polar-codes implementation offers heavily optimized
polar code encoders and decoders for highest throughput
and lowest latency [7]. The polar code implementation is
based on several works on polar codes [9], [37], [38]. In
order to use this implementation in GNU Radio, we use the
FECAPI in the separate gr-polarwrap module to integrate our
implementation into GNU Radio flowgraphs [6].

F. gr-latency

Our gr-latency OOT module provides further features to
measure latency in GNU Radio flowgraphs [5]. The module
is implemented based on the ideas presented in prior publi-
cations [39], [40]. The idea is to tag specific samples with
precise time tags in a flowgraph while they traverse multiple
blocks and gather timing information in a subsequent block
to measure flowgraph latencies.



Octoclock

N310

robot controller

B210

Connection
to on-board
Ethernet

computer

Fig. 3. Testbed hardware overview.

V. HARDWARE PLATFORM

The demonstrator setup comprises AGVs, computers, US-
RPs and radio equipment as illustrated in Fig. 3. The Cloud
RAN consists of a system with a AMD Ryzen Threadripper
3970X (TRX3970X) and 64GB Random Access Memory
(RAM) that computes samples from two distributed Ettus
USRP N310s (N310s) with their corresponding Pasternack
PE51084 antennas with custom ground planes [41]. The
distributed N310 are synchronized via an Ettus Octoclock-G
(Octoclock-G) [42]. The AGVs, specifically Götting KATEs,
carry a Ettus USRP B210 (B210) connected via Universal
Serial Bus (USB) to a compact computer with an AMD Ryzen
9 5900X (Ryzen 5900X) CPU and 32GB RAM [23], [43].
The presented system is measured with /usr/bin/time to
measure memory usage. Across machines, our measurement
tool reports a peak of 222MB RAM usage even under heavy
load in a client configuration.

VI. TESTBED MEASUREMENTS

The presented communication system is deployed in our
testbed where we conduct experiments to obtain performance
data. The testbed area in Fig. 4 covers approximately 359m2

with a stairwell in the middle, indicated in gray. While the
testbed is located in an office building, we assume that the
testbed represents an industrial-like environment, because the
ceiling is covered by heating elements and the top, right, and
bottom walls consist of heavily insulated windows. We use
per AP SNR measurements to obtain a reliability indicator
for each channel between an AP and an AGV. The SNR
estimation algorithm uses the Schmidl&Cox preamble and

5 10 15 20

4

8

12

16

5 10 15 20

19 20 21 22 23 24 25 26
SNR [dB]

Fig. 4. Two distributed APs with a 1×1 antenna setup each. A black triangle
[▼] indicates the AP position in the corresponding heatmap. Area axis ticks
are in m.

is integrated into our XFDMSync module [44]. The SNR
measurement campaign over the testbed area in Fig. 4 val-
idates that our approach with distributed APs may improve
reliability. The black triangle [▼] indicates the position of the
AP corresponding to a SNR measurement heatmap. The upper
area is particularly well served by AP 0 on the left in Fig. 4
while AP 1 improves the SNR in the lower area on the other
side of the stairwell. This finding indicates that our Cloud
RAN system improves the overall reliability in our testbed.

The RTT measurement results in Fig. 5 show minimum,
average, and maximum values. Every data point represents
multiple measurements. However, data aggregation is per-
formed accordingly, i.e. the minimum line shows the mini-
mum RTT in this aggregated data point. We observe that the
RTT is always below 3.5ms and on average around 2.8ms.
Also, the minimal measured RTT is just below 2.4ms. While
these values are slightly above the targeted 1ms end-to-end
latency, we are confident it is possible to close this gap in
a feature work. It should be noted that the reported RTT
values are application level measurements that include the
network stack and thus, our application may rely on the same
conditions. Finally, we compare the measured latency of our
implementation with RTT measurement results of currently
available LTE and 5G NR systems that do not yet provide
URLLC capabilities [22]. These are the lowest available
latency results to the best of our knowledge. In conclusion,
our implementation provides lower latencies than currently
available LTE and 5G NR systems. Thus, URLLC systems
are of special interest for industrial applications as soon as
they become available.

VII. CONTRIBUTION

We presented a full Cloud RAN communication system
demonstrator with distributed APs implemented in software
with GNU Radio. Hence, we present our open-source soft-
ware communication implementation modules [2]–[8]. More-
over, the paper includes a presentation of the concept, the
software environment as well as important dependencies.



00:00 00:01 00:02 00:03 00:04 00:05 00:06 00:07 00:08 00:09

2.4

2.6

2.8

3.0

3.2

3.4

R
T

T
[m

s]

mean
max
min

Fig. 5. RTT measurements during a test run.

Afterwards, we presented the available hardware and their in-
tegration. With distributed APs to improve reliability through
spatial diversity, the chosen approach shows a significant
improvement to counter fading induced communication out-
ages. The conducted experiments validate the system per-
formance and confirm that the GNU Radio OTA software
implementation is able to provide lower latency than current
LTE and 5G NR systems [22]. Here, we can conclude that
the presented full software implementation is able to deliver
low latency communication for future URLLC systems with
periodic deterministic communication behavior.

REFERENCES

[1] Long, Jeff, Morman, Josh, Abele, Jason, Aigner, Philipp, Alok,
Aradhana, Anastasopoulos, Achilleas et al., “GNU Radio,” Sep. 2022.
[Online]. Available: https://zenodo.org/record/7086439

[2] J. Demel, “GNU Radio Symbolmapping (gr-symbolmapping),” Dec.
2022. [Online]. Available: https://zenodo.org/record/7462854

[3] J. Demel, A. Rode, A. Kielstein, and S. Koslowski, “GNU Radio
GFDM Modulator & Demodulator (gr-gfdm),” Dec. 2022. [Online].
Available: https://zenodo.org/record/7458328

[4] J. Demel and L. Göhrs, “XFDMSync,” Dec. 2022. [Online]. Available:
https://zenodo.org/record/7463105

[5] J. Demel, “gr-latency,” Dec. 2022. [Online]. Available: https:
//zenodo.org/record/7464550

[6] ——, “gr-polarwrap,” Dec. 2022. [Online]. Available: https://zenodo.
org/record/6325779

[7] J. Demel and F. Lotze, “polar-codes,” Dec. 2022. [Online]. Available:
https://zenodo.org/record/6325748

[8] J. Demel, “gr-tacmac,” Jan. 2023. [Online]. Available: https:
//zenodo.org/record/7525407

[9] E. Arıkan, “Channel Polarization: A Method for Constructing
Capacity-Achieving Codes for Symmetric Binary-Input Memoryless
Channels,” IEEE Transactions on Information Theory, vol. 55,
no. 7, pp. 3051–3073, Jul. 2009. [Online]. Available: https:
//ieeexplore.ieee.org/document/5075875

[10] G. Caire, G. Taricco, and E. Biglieri, “Bit-Interleaved Coded
Modulation,” IEEE Transactions on Information Theory, vol. 44,
no. 3, pp. 927–946, May 1998. [Online]. Available: https://ieeexplore.
ieee.org/document/669123

[11] J. Mao, M. A. Abdullahi, P. Xiao, and A. Cao, “A low
complexity 256QAM soft demapper for 5G mobile system,” in
European Conference on Networks and Communications (EuCNC).
Athens, Greece: IEEE, Jun. 2016, pp. 16–21. [Online]. Available:
https://ieeexplore.ieee.org/document/7560996

[12] J. Demel, C. Bockelmann, and A. Dekorsy, “Evaluation of
a Software Defined GFDM Implementation for Industry 4.0
Applications,” in International Conference on Industrial Technology

(ICIT). Toronto, Canada: IEEE, Mar. 2017. [Online]. Available:
https://ieeexplore.ieee.org/document/7915548

[13] J. Demel, C. Bockelmann, A. Dekorsy, A. Rode, S. Koslowski,
and F. K. Jondral, “An optimized GFDM software implementation
for future Cloud-RAN and field tests,” in GNU Radio Conference
(GRCon), vol. 7. San Diego, CA, USA: GNU Radio Foundation,
Sep. 2017, p. 9. [Online]. Available: https://pubs.gnuradio.org/index.
php/grcon/article/view/23/17

[14] A. B. Awoyesila, C. Kasparis, and B. G. Evans, “Improved preamble-
aided timing estimation for OFDM systems,” IEEE Communications
Letters, vol. 12, no. 11, pp. 825 – 827, Nov. 2008.

[15] P. Rost, I. Berberana, A. Maeder, H. Paul, V. Suryaprakash,
M. Valenti et al., “Benefits and challenges of virtualization
in 5G radio access networks,” IEEE Communications Magazine,
vol. 53, no. 12, pp. 75–82, Dec. 2015. [Online]. Available:
https://ieeexplore.ieee.org/document/7355588

[16] 3GPP, “Service requirements for cyber-physical control applications
in vertical domains; Stage 1,” 3rd Generation Partnership Project,
Valbonne, France, Technical Specification 22.104 V16.1.0, Mar.
2019. [Online]. Available: https://portal.3gpp.org/desktopmodules/
Specifications/SpecificationDetails.aspx?specificationId=3528

[17] J. Demel, C. Bockelmann, and A. Dekorsy, “Burst error analysis
of scheduling algorithms for 5G NR URLLC periodic deterministic
communication,” in Vehicular Technology Conference (VTC Spring),
vol. 91. Antwerp, Belgium: IEEE, May 2020. [Online]. Available:
https://ieeexplore.ieee.org/document/9129493

[18] V. Marojevic, I. Gomez, P. L. Gilabert, G. Montoro, and A. Gelonch,
“Resource management implications and strategies for SDR clouds,”
Analog Integrated Circuits and Signal Processing, vol. 73, no. 2, pp.
473–482, Nov. 2012. [Online]. Available: http://link.springer.com/10.
1007/s10470-012-9963-z

[19] I. Gómez-Miguelez, “Radio and computing resource management in
SDR clouds,” Doctoral thesis, Universitat Politècnica de Catalunya,
Catalunya, Spain, Dec. 2013. [Online]. Available: http://hdl.handle.net/
10803/134882

[20] E. Grayver, Implementing Software Defined Radio. New York, NY,
USA: Springer, 2013. [Online]. Available: http://link.springer.com/10.
1007/978-1-4419-9332-8

[21] C. Walton and C. O’Dell, “Bridging Analog Land Mobile Radio
to LTE Mission Critical Push-to-Talk Communications,” National
Institute of Standards and Technology, vol. NISTIR 8338, no. 8338,
p. 33, Dec. 2020. [Online]. Available: https://nvlpubs.nist.gov/nistpubs/
ir/2020/NIST.IR.8338.pdf

[22] G. Soós, D. Ficzere, P. Varga, and Z. Szalay, “Practical 5G
KPI Measurement Results on a Non-Standalone Architecture,” in
Network Operations and Management Symposium (NOMS). Budapest,
Hungary: IEEE, Apr. 2020, pp. 1–5, iSSN: 2374-9709. [Online].
Available: https://ieeexplore.ieee.org/document/9110457

[23] Götting KG, “Kinetic Automat for Transport Enhancement, KATE,”
Dec. 2022. [Online]. Available: https://www.goetting-agv.com/kate

[24] Ettus Research, a National Instruments Brand, “Ettus Research
USRP B210,” Dec. 2022. [Online]. Available: https://www.ettus.com/
all-products/ub210-kit/

[25] J. Corbet, “Foo over UDP,” Oct. 2014. [Online]. Available:
https://lwn.net/Articles/614348/

[26] N. Schwarzenberg, “network-tools,” Jan. 2023. [Online]. Available:
https://zenodo.org/record/7525279

[27] J. Postel, “Internet Protocol,” Internet Engineering Task Force,
Wilmington, DE, USA, Request for Comments 791, Sep. 1981.
[Online]. Available: https://datatracker.ietf.org/doc/rfc791

[28] ——, “User Datagram Protocol,” Internet Engineering Task Force,
Wilmington, DE, USA, Request for Comments 768, Aug. 1980.
[Online]. Available: https://datatracker.ietf.org/doc/rfc768

[29] ——, “Internet Control Message Protocol,” Internet Engineering Task
Force, Wilmington, DE, USA, Request for Comments 792, Sep. 1981.
[Online]. Available: https://datatracker.ietf.org/doc/rfc792

[30] Ettus Research, a National Instruments Brand, “USRP Hardware
Driver,” Austin, TX, USA, Dec. 2021, original-date: 2013-03-
27T19:52:19Z. [Online]. Available: https://github.com/EttusResearch/
uhd

[31] J. Demel, M. Dickens, D. Anderson, B. Ashton, P. Balister, D. Behar
et al., “Vector-Optimized Library of Kernels (VOLK),” Feb. 2022.
[Online]. Available: https://zenodo.org/record/6052858

https://zenodo.org/record/7086439
https://zenodo.org/record/7462854
https://zenodo.org/record/7458328
https://zenodo.org/record/7463105
https://zenodo.org/record/7464550
https://zenodo.org/record/7464550
https://zenodo.org/record/6325779
https://zenodo.org/record/6325779
https://zenodo.org/record/6325748
https://zenodo.org/record/7525407
https://zenodo.org/record/7525407
https://ieeexplore.ieee.org/document/5075875
https://ieeexplore.ieee.org/document/5075875
https://ieeexplore.ieee.org/document/669123
https://ieeexplore.ieee.org/document/669123
https://ieeexplore.ieee.org/document/7560996
https://ieeexplore.ieee.org/document/7915548
https://pubs.gnuradio.org/index.php/grcon/article/view/23/17
https://pubs.gnuradio.org/index.php/grcon/article/view/23/17
https://ieeexplore.ieee.org/document/7355588
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3528
https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3528
https://ieeexplore.ieee.org/document/9129493
http://link.springer.com/10.1007/s10470-012-9963-z
http://link.springer.com/10.1007/s10470-012-9963-z
http://hdl.handle.net/10803/134882
http://hdl.handle.net/10803/134882
http://link.springer.com/10.1007/978-1-4419-9332-8
http://link.springer.com/10.1007/978-1-4419-9332-8
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8338.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2020/NIST.IR.8338.pdf
https://ieeexplore.ieee.org/document/9110457
https://www.goetting-agv.com/kate
https://www.ettus.com/all-products/ub210-kit/
https://www.ettus.com/all-products/ub210-kit/
https://lwn.net/Articles/614348/
https://zenodo.org/record/7525279
https://datatracker.ietf.org/doc/rfc791
https://datatracker.ietf.org/doc/rfc768
https://datatracker.ietf.org/doc/rfc792
https://github.com/EttusResearch/uhd
https://github.com/EttusResearch/uhd
https://zenodo.org/record/6052858


[32] M. Frigo and S. G. Johnson, “The design and implementation of
FFTW3,” Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231,
Feb. 2005. [Online]. Available: https://ieeexplore.ieee.org/document/
1386650

[33] T. Schmidl and D. Cox, “Robust frequency and timing synchronization
for OFDM,” IEEE Transactions on Communications, vol. 45,
no. 12, pp. 1613–1621, Dec. 1997. [Online]. Available: https:
//ieeexplore.ieee.org/document/650240

[34] I. S. Gaspar, L. L. Mendes, N. Michailow, and G. Fettweis,
“A synchronization technique for generalized frequency division
multiplexing,” EURASIP Journal on Advances in Signal
Processing, vol. 67, no. 1, pp. 1687–6180, May 2014.
[Online]. Available: https://asp-eurasipjournals.springeropen.com/
articles/10.1186/1687-6180-2014-67

[35] Python Software Foundation, “Python,” Mar. 2021. [Online]. Available:
https://www.python.org

[36] W. Jakob, J. Rhinelander, H. Schreiner, D. Moldovan, I. Smirnov,
R. W. Grosse-Kunstleve et al., “pybind11,” Feb. 2022. [Online].
Available: https://zenodo.org/record/5951946

[37] P. Giard, “High-Speed Decoders for Polar Codes,” PhD Thesis,
McGill University, Montreal, Canada, Sep. 2016. [Online]. Available:
https://escholarship.mcgill.ca/concern/theses/3r074x791

[38] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, “LLR-Based

Successive Cancellation List Decoding of Polar Codes,” IEEE
Transactions on Signal Processing, vol. 63, no. 19, pp. 5165–5179,
Oct. 2015. [Online]. Available: https://ieeexplore.ieee.org/document/
7114328

[39] B. Bloessl, M. Müller, and M. Hollick, “Benchmarking and Profiling
the GNU Radio Scheduler,” in GNU Radio Conference (GRCon),
vol. 9. Huntsville, AL, USA: GNU Radio Foundation, Sep. 2019,
p. 8. [Online]. Available: https://pubs.gnuradio.org/index.php/grcon/
article/view/64

[40] B. Bloessl, “gr-sched repository,” Nov. 2021. [Online]. Available:
https://github.com/bastibl/gr-sched

[41] Ettus Research, a National Instruments Brand, “Ettus Research
USRP N310,” Dec. 2022. [Online]. Available: https://www.ettus.com/
all-products/usrp-n310/

[42] ——, “Ettus Research OctoClock-G CDA-2990,” Dec. 2022. [Online].
Available: https://www.ettus.com/all-products/octoclock-g/

[43] ——, “Ettus Research,” Dec. 2022. [Online]. Available: https:
//www.ettus.com/

[44] M. Zivkovic and R. Mathar, “Preamble-Based SNR Estimation in
Frequency Selective Channels for Wireless OFDM Systems,” in
Vehicular Technology Conference (VTC Spring), vol. 69. Barcelona,
Spain: IEEE, Apr. 2009, pp. 1–5. [Online]. Available: https:
//ieeexplore.ieee.org/document/5073813

https://ieeexplore.ieee.org/document/1386650
https://ieeexplore.ieee.org/document/1386650
https://ieeexplore.ieee.org/document/650240
https://ieeexplore.ieee.org/document/650240
https://asp-eurasipjournals.springeropen.com/articles/10.1186/1687-6180-2014-67
https://asp-eurasipjournals.springeropen.com/articles/10.1186/1687-6180-2014-67
https://www.python.org
https://zenodo.org/record/5951946
https://escholarship.mcgill.ca/concern/theses/3r074x791
https://ieeexplore.ieee.org/document/7114328
https://ieeexplore.ieee.org/document/7114328
https://pubs.gnuradio.org/index.php/grcon/article/view/64
https://pubs.gnuradio.org/index.php/grcon/article/view/64
https://github.com/bastibl/gr-sched
https://www.ettus.com/all-products/usrp-n310/
https://www.ettus.com/all-products/usrp-n310/
https://www.ettus.com/all-products/octoclock-g/
https://www.ettus.com/
https://www.ettus.com/
https://ieeexplore.ieee.org/document/5073813
https://ieeexplore.ieee.org/document/5073813

