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Abstract: Swarm exploration by multi-agent systems relies on stable inter-agent communication.
However, so far both exploration and communication have been mainly considered separately
despite their strong inter-dependency in such systems. In this paper, we present the first steps
towards a framework that unifies both of these realms by a “tight” integration. We propose to make
exploration “communication-aware” and communication “exploration-aware” by using tools of
probabilistic learning and semantic communication, thus enabling the coordination of knowledge
and action in multi-agent systems. We anticipate that by a “tight” integration of the communication
chain, the exploration strategy will balance the inference objective of the swarm with exploration-
tailored, i.e., semantic, inter-agent communication. Thus, by such a semantic communication design,
communication efficiency in terms of latency, required data rate, energy, and complexity may be
improved. With this in mind, the research proposed in this work addresses challenges in the
development of future distributed sensing and data processing platforms—sensor networks or
mobile robotic swarms consisting of multiple agents—that can collect, communicate, and process
spatially distributed sensor data.

Keywords: distributed exploration; probabilistic factor graphs; machine learning; task-oriented/semantic
communication

1. Introduction

In hazardous or inhospitable environments, exploration, and monitoring tasks im-
pose high risks on human operators. Typical examples include emergency scenarios
caused by nuclear or toxic accidents, as well as exploration scenarios in extraterrestrial
environments [1,2]. Here, the use of mobile robotic systems is required. Cooperation in
a multi-agent system, such as a swarm, is able to accelerate such reconnaissance missions
or mapping tasks significantly [3]. An example of swarm exploration on an extraterrestrial
surface, e.g., on Mars, is shown in Figure 1: Agents distribute and process sensed data
along the arrows with the aim to reconstruct an unknown physical or chemical process
u(δ, t) of interest at position δ and time t or relevant parameters of such processes in the
domain Ω. For instance, a process of interest can be the spatio-temporal distribution of gas
concentration. There, a relevant process parameter is the location of gas sources.

To achieve this goal, swarm exploration incorporates methods for distributed sensing,
optimized (intelligent) information gathering [4], and agent movement/action coordination
(exploitation). In particular, it requires the communication of locally and instantaneously
available exploration measurements between agents. The underlying communication
network acts as a data exchange backbone and is the tool that eventually enables the
“diffusion” of local information to all agents and, hence, assists global decision-making.
Communication is therefore always an integral part of a swarm exploration.
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𝑢(𝜹, 𝑡)

Ω

Figure 1. A swarm of autonomous agents explores an unknown physical process u(δ, t) over spatial
coordinate δ and time t in the spatial domain Ω.

Swarm exploration often considers reliable and error-free communications, i.e., ideal
links. However, communication systems do add uncertainty to the exchanged information.
This means that studies so far paint an optimistic picture of the exploration performance
metric, e.g., the Mean Square Error, which indeed degrades with erroneous links, as illus-
trated in Figure 2. For instance, communication uncertainty needs to be considered when
predicting new sampling positions for agents, since locations causing severe communication
degradation will be useless for distributed information processing/exploration purposes.
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Figure 2. We integrate communications into exploration through probabilistic Machine Learning
(ML) for a hypothetical enhancement of exploration performance in practice.

Likewise, communication systems are designed to aim for error-free transmission
of measurements or processing results, but they are neither aware of their relevance for
learning the entire explored process nor of the confidence in the data to be transmitted. Our
key objective is hence to integrate the latter semantic understanding of the communicated
messages into the communication and swarm system with respect to the overall exploration
objective such that an exploration task can be completed with higher accuracy and/or
higher speed. An integrated design could improve exploration performance towards that
with ideal links, as sketched in Figure 2.

In conclusion, by using the framework of semantic communication [5–9] for the
exchanged data among the agents, we avoid classical error-free digital transmission of
data but open up the possibility for a swarm to “learn” a semantic understanding of the
communicated messages with respect to the overall exploration objective. By integrating
the physical layer directly into the exploration task and thus possibly excluding higher
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communication protocol layers, we may also improve communication efficiency in terms
of latency, data rate, energy, and complexity compared to semantics-agnostic state-of-the-
art protocols.

These considerations raise two fundamental questions:

1. How to integrate exploration and communication into a single framework?
2. How to ensure mutual awareness? In other words, which information is appropriate

to be exchanged between the agents and how can it be exploited?

The aim of this paper is to present possible approaches that address these two funda-
mental questions and to outline potential research directions in the area of mutually-aware
exploration and communication.

Main Contribution

In this article, we propose and investigate a conceptually new, “tightly” coupled
“exploration-aware” communication and a “communication-aware” exploration by using
appropriate Artificial Intelligence (AI) machinery like probabilistic Machine Learning (ML).
This implies that both communication systems and exploration techniques are designed to
be learned from data and adapt their parameters to measured data. We hypothesize that
this will enhance exploration performance, as shown in Figure 2.

Our main contribution is the development of a framework and methodology as
well as the design of this “tight” integration, aiming to be a starting point for further
investigations on modeling and algorithms. We anticipate that by a “tight” integration of
the communication chain, the exploration strategy will balance the inference objective of
the swarm with exploration-tailored, i.e., semantic inter-agent communication. By doing
so, we replace the “classical” transmission of the raw data with its semantic counterpart,
thus reducing the cost in terms of required data rate, latency, energy and complexity, while
preserving the desired functionality of the whole distributed system.

At the core, we pursue two key objectives to obtain a mutually-aware design where
all domains of the exploration task are connected through probabilistic ML:

1. Modeling of the physical process by means of Factor Graphs (FGs) and design of
ML-based “communication-aware” swarm exploration algorithms that follow active
inference principles [10].

2. Investigation and design of “exploration-aware” wireless communication methods
and algorithms in the framework of ML. Here, we focus on the meaning, i.e., semantics,
of the messages to be transmitted between robots instead of the raw data. To link
exploration to communication, a promising approach is the framework of semantic
communication [5–9] and in particular [11], as it may enable a tight integration.

2. State-of-the-Art

In the following section, we give a brief overview of state-of-the-art techniques in the
areas of ML-based exploration and communications to highlight our contribution.

2.1. Distributed Multi-Agent Exploration

Distributed exploration requires cooperative computational techniques, which are
also referred to as “in-network processing” [12]. The estimation is done such that each
node conducts “local” computations and shares intermediate results with its neighboring
nodes. The key to these computations is a decomposition of a network-global objective
function into a sum of “local” sub-objectives, typically with additional constraints that
ensure a network-wide convergence to a specific solution. A special class of such algorithms
is called consensus-based algorithms, see, e.g., [13–18]. This class of algorithms enforces
consensus over the whole network, i.e., each node converges to the same solution. Here,
the Alternating Directions Method of Multipliers (ADMM) [19] has gained popularity
for in-network processing due to its ability to handle different types of constraints on
model parameters.
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As an alternative, diffusion-based approaches (see e.g., [20–22] and references therein)
have been proposed that estimate a quantity in a distributed fashion within a network
without enforcing consensus. Such approaches are also based on solving an optimization
problem that permits a decomposability of the network objective function. One of the
applications of interest for swarm exploration is seismic imaging of subsurface structures.
In particular, distributed subsurface imaging techniques based on the full waveform in-
version and the traveltime tomography have been proposed recently that can be directly
applied to decentralized multi-agent networks, s. [22,23]. Full waveform inversion is a high-
resolution geophysical imaging method based on the wave equation [24]. For a distributed
implementation of this method, a global cost function is decomposed over the receivers
and local gradients and subsurface images are computed. Following the diffusion-based
information exchange, these gradients, and images are exchanged among the receivers in
order to obtain a global estimate of the subsurface image.

For the exploration of complex physical processes that are described in terms of
Partial Differential Equations (PDEs), classical approaches typically do not provide a direct
assessment of statistical information about the quality of estimated parameters. In contrast,
Bayesian inference methods postulate randomness of the parameters of interest and are
from the domain of machine learning [25]. As such, instead of a point estimate, parameter
distributions are computed. FGs can be used to describe probabilistic relationships between
all model parameters [26] and parameter estimation is then realized using message passing
schemes [27]. Bayesian tools have been used in the past for inverse PDE problems (see,
e.g., [3,28]). In [3], the authors use FGs for inverse PDE modeling in a distributed setting
and to localize gas sources based on concentration measurement samples. In essence,
random variables are used to represent the gas concentration distribution in each mesh cell
of the discretized PDE. An FG is then applied to capture temporal and spatial dependencies
between concentration variables.

Having inferred the model parameters, one can then design a movement planning
strategy that exploits the statistics of the estimated model parameters to optimally guide
agents to new, more informative sampling locations to accelerate the exploration process.
We categorize such strategies in the realm of exploitation. For example, methods of optimal
experiment design [29] can be used for optimal selection of sampling locations; in [30]
these were used for planning of optimal and safe trajectories for the movement of multiple
agents. The work of [31] proposes information-driven approaches that guide agents based
on mutual information or entropy. Furthermore, some swarm exploration approaches make
use of (deep) Reinforcement Learning (RL) for the movement strategy of the agents [32–34].
However, the success of these methods relies heavily on the availability of suitable training
data to learn an adequate movement strategy. Especially in applications with scarce
training data, such approaches are likely to fail or perform unreliably in real environments:
The use of synthetic training data introduces a model mismatch that is learned by the
system. Furthermore, the learned behavior cannot be easily corrected a-posteriori due to
the structure of the Deep Neural Network (DNN) that cannot be interpreted. Therefore,
in our framework, we will focus on model-based approaches for exploration in scarce
data regimes, as there are typically fewer parameters to infer as compared to purely data-
driven methods.

All aforementioned methods for distributed exploration and path planning heavily
rely on agent-to-agent communication of the exchanged data or messages. Hence, the qual-
ity of the inter-agent communication links has a direct impact on the exploration result.
However, the majority of state-of-the-art methods for distributed exploration do not suffi-
ciently take into account the erroneous nature of the communication links. Most studies
consider erroneous inter-agent links by integrating noise and link failures into the link
model, see, e.g., [35,36]. The algorithmic solutions are then adapted to these erroneous
communication links.

So far, no framework has been proposed that unifies both communication and dis-
tributed exploration and optimizes both realms with respect to the overall exploration
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target. It is here, that we propose a framework for a joint design of the inter-agent commu-
nication and the exploration target in order to develop more robust and flexible algorithmic
solutions for a distributed exploration.

2.2. Machine Learning for Communications

The probabilistic view often used in exploration is vital for the field of communica-
tions. With description by probabilistic models, we are able to connect exploration and
communications closely. Since Claude Elwood Shannon laid the theoretical foundation of
communications and information theory [37], probabilistic models have found their way
not only into exploration but also into one prominent example of recent research interest:
Artificial Intelligence (AI), in particular its subdomain Machine Learning (ML).

In the last decade, ML saw the emergence of powerful (probabilistic) models known
as Deep Neural Networks (DNNs). Thanks to its ability to approximate arbitrarily well
and to learn abstract features, it has led to several breakthroughs in research areas where
there is no explicit domain knowledge but data to be collected, e.g., pattern recognition,
generative modeling, and RL [38]. Previously considered intractable to optimize, automatic
differentiation on dedicated Graphics Processing Units (GPUs) and innovative architectures
now enable data-driven training of DNNs.

The impressive results showing equal or superhuman performance have not gone
unnoticed by the communications community. Thus, much of the recent literature focuses
on the data-driven design of the physical layer with DNNs, e.g., for wireless, molecular,
and fiber-optical channels [38]. One prominent early example of such an approach is the
Auto Encoder (AE) where a complete communication system is interpreted as one DNN
and trained end-to-end [39].

In wireless communications, a number of channel models have been proposed and
are widely used, so that key gains from using ML are expected in approximating optimal
algorithmic structures that are otherwise numerically too complex (algorithm deficit) to
be realized. For example, the computational complexity of Maximum A-Posteriori (MAP)
decoding of large block-length codes or MAP detection, e.g., in massive Multiple Input
Multiple Output (MIMO) systems, grows exponentially with code/system dimensions.
In fact, e.g., using plain DNNs for decoding enables lowering of decoding complexity
while approximately maintaining MAP error rate [40]. To improve generalization and
reduce training complexity, more recent works focus on the idea of deep unfolding [41–43].
In deep unfolding, the parameters of a model-based iterative algorithm with a fixed
number of iterations are untied and enriched with additional weights as well as non-
linearities. The resulting DNN can be optimized for performance improvements in MIMO
detection [42,44] and belief propagation decoding [42]. An example of an algorithm deficit
on a higher level beyond the physical layer is resource allocation, where it is difficult to
analytically express the true objective function or to find the global optimum. Thus, Deep
RL has proven to be a proper means [45].

Semantic Communication

In contrast to wireless channels, a model deficit holds for molecular and fiber-optical
channels. Note that it applies in particular to the example of this article: integration
of semantic context, here exploration, into communication system design. The idea of
semantic communication emerged in the early 1950s [46–48] but has seen a lot of research
interest only recently with the rise of ML application to the physical layer [5–9].

Its notion traces back to Weaver [46] who reviewed Shannon’s information theory [37]
in 1949 and amended considerations w.r.t. semantic content of messages. Oftentimes
quoted is his statement that “there seem to be [communication] problems at three levels” [46]:

A. How accurately can the symbols of communication be transmitted? (The techni-
cal problem).

B. How precisely do the transmitted symbols convey the desired meaning? (The seman-
tic problem).
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C. How effectively does the received meaning affect conduct in the desired way? (The
effectiveness problem).

Weaver saw the broad applicability of Shannon’s theory back in 1949 and argued for
the generality of the theory at Level A for all levels [49].

The generic model of Weaver was revisited by Bao, Basu et al. in [48,50] where the
authors define semantic information sources and semantic channels. In [48], the authors
consider joint semantic compression and channel coding at Level B with the classic trans-
mission system, i.e., Level A, as the (semantic) channel. By this means, the authors can
derive semantic counterparts of the source and channel coding theorems.

Recently, drawing inspiration from Weaver, Bao, Basu et al. [46,48,50] and enabled
by the rise of ML in communications research, DNN-based natural language processing
techniques, i.e., transformer networks, were introduced in AEs for the task of text and
speech transmission [11,51–53]. The aim of these techniques is to learn compressed hidden
representations of the semantic content of sentences to improve communication efficiency,
but exact recovery of the source (text) is the main objective. This leads to performance
improvements in semantic metrics, especially at low Signal-to-Noise Ratio (SNR) compared
to classical digital transmissions.

As a result, semantic communication is still a nascent field: It remains still unclear
what this term exactly means and especially its distinction from Joint Source-Channel
Coding (JSCC) [9,51,54]. As a result, many survey papers aim to provide an interpretation,
see, e.g., [5–9].

In summary, we note that both model and algorithm deficits are true for the open
research topic of joint modeling or integrated design of communications and exploration.
Therefore, we think that the capability of ML-based design to handle such model deficits is
crucial to develop a first prototype of tight integration, as outlined in our main contribution.
Further, the inherent flexibility of DNNs should allow for quick design.

3. Distributed Exploration Problem

In the following, we give a brief description of the exploration problem, which requires
data exchange for a distributed solution and therefore motivates a unified framework with
communications. Consider a multi-agent system (a swarm) of L autonomous mobile
agents. Their objective is to learn model parameters of an unknown process u(δ, t) by
taking samples of u(δ, t) at different locations and times (see Figure 1). Here, δ is a spatial
coordinate vector and t is time. Exploration is understood as an inference of all (or some)
relevant process parameters, such as positions of physical sources and material or medium
parameters that cannot be directly observed from measurements. In this work, we assume
that the process of interest u(δ, t) is represented by a PDE. Hence, the physical quantity
at position δ and time t can be modeled by a function F(κ, δ, t) where κ is a parameter
vector of the PDE and the function F computes the forward solution of the PDE for u(δ, t).
For instance, in the wave equation the parameter κ can describe the spatial distribution
of the wave velocity, in the diffusion equation it can be the location of diffusive sources.
Then, the exploration problem can be formulated in generic terms as an inverse parameter
estimation or optimization problem over all agents:

min
{κl}L

l=1

L

∑
l=1
Jl(κl), (1)

where the variable κl is the parameter estimate of κ at agent l. The function Jl is the local
cost at agent l, and usually evaluates a residual error between measured samples of u(δ, t)
and estimated samples that are generated using the forward solution of the PDE F(κl , δ, t).
For a consensus solution, one usually adds the constraint κl = κk, ∀l, k = 1, . . . , L. Doing
so enforces convergence to the same parameter estimate for all agents in the network and
results in iterative updates that require data from neighboring agents. Hence, solutions
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to the corresponding optimization problem naturally require agents to cooperate, which
includes baseband/physical layer communication of processing results between the agents.

As an example, for the distributed full waveform inversion proposed in [22] the local
cost Jl(κl) is the squared residual between the measured seismic response and synthetically
generated seismic data based on the local model κl . To evaluate this residual, synthetic
seismic data needs to be generated, i.e., the wave equation needs to be solved in a forward
manner by computing F(κl , δ, t). Then, to enable a distributed estimation of the global
model κ, gradients ∂Jl(κl)/∂κl and models κl are exchanged among connected agents and
fused locally.

As mentioned earlier, the main objective of this study is the design of a joint framework
that targets the exploration problem while considering the underlying imperfect communi-
cation conditions between the agents. To this end, we integrate both communications and
exploration into a unifying framework by using FGs in a probabilistic setting.

4. Proposed Framework

As the main contribution of this article, we now describe in more detail a new design
approach that considers communications and exploration jointly. To make the exploration
“communication-aware” and communications “exploration-aware”, we use tools of proba-
bilistic learning and FGs [26,27].

4.1. Design Approach: Factor Graphs

We first illustrate how FGs can be used to solve inverse PDE problems in a distributed
fashion. In [55], the PDE given by the diffusion equation has been modeled by a FG,
and the parameter of interest, namely the position of a diffusive source, has been inferred
by a message-passing algorithm over the FG. To enable a distributed implementation in
a multi-agent network, the FG has been split over its connections such that each agent
infers within a specific geometric region. An illustration of this approach is shown in
Figure 3: In Figure 3a, the complete FG over a geometric region Ω of interest is shown
that models the gas concentration at a specific position. The multiple layers of nodes
describe the probabilistic relationship of the gas diffusion for the respective grid cell, while
skin-colored nodes at the top indicate that measurements of gas concentration have been
taken at the respective positions. Details regarding the probabilistic modeling are described
in Section 5.1.1. To enable a distributed inference over this FG, the FG is split over several
sub-graphs, as can be seen in Figure 3b. Each sub-graph is then assigned to one agent,
which then infers the parameters of interest using approximative message passing schemes,
see, e.g., [56]. The red arrows between the sub-graphs indicate where information between
agents needs to be exchanged.

Now, to connect both realms of exploration and communication with each other, we
propose the use of FGs for each exploration and each communication block, respectively.
This is illustrated in Figure 4: Each agent owns a local graph that is part of a global factor
graph distributed over all agents, which is analogous to Figure 3b. The global FG models
spatial and temporal interrelations of a PDE over the geometric area Ω. Hence, each agent
itself is responsible for the inference of the PDE over a sub-region of Ω. In the local FG
of each agent, a variable node s contains the quantity to be exchanged with neighboring
agents. On each edge between two agents, data needs to be exchanged, and hence, a block
representing the communication FG is placed between two connected agents. Since the
communication block is also described by means of a FG (see [57] for an example), it can
be readily placed between the FGs of two agents. It should be noted, that the specific
structure of the FG depends on whether an agent is a transmitting or receiving agent. This
is due to the fact that a variable node is always connected to a factor node and vice versa.
With this approach, it remains to show how to specifically implement and integrate the
communications FG.
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(a) (b)
Figure 3. (a) FG model of a discretized PDE describing a gas diffusion process at a fixed time instance
over grid cells in the spatial domain Ω. At each grid cell, there is a layer of nodes that describes the
probabilistic relationship of the gas diffusion process in this specific cell. The skin-colored nodes
at the top represent measurements of gas concentration at a specific location. (b) The FG model is
partitioned into four smaller FGs on four agents to enable distributed inference. Red arrows indicate
where information between the smaller FGs needs to be exchanged in order to realize inference.

Agent 1 Agent 2

Agent 4 Agent 3

COMMUNICATION

: Exploration variable node
: Exploration factor node
: Edge connecting factor and variable nodes
: Edge connecting two agents 
: Split position to add communication to FG
: Message to be transmitted

𝐬

𝐬

Figure 4. A schematic diagram of a joint FG for exploration and communication. The split of the FG
w.r.t. spatially separated and distributed agents requires the inclusion of communications.

4.2. Integration of Communication as Factor Node

To give a possible integration of the communications FG into the exploration FG, we
consider the following: In the distributed setting, each agent implements a message passing
algorithm over its local FG. In general, the inference on FGs requires the exchange of two
types of messages: message ms→ f from a variable node s to a factor node f , and messages
m f→s from a factor node f to a variable node s (see Figure 5). Now, we include the
physical transmission of a variable-to-factor message through the incorporation of a factor
node g into the FG. This factor represents the full communication chain between two
agents. To properly account for the new factor, we modify the graph as shown in Figure 5a:
A message ms→g is now sent from variable node s to the communication factor node g
between Agent 1 and Agent 2. At the receiver side, the variable ŝ is used to represent the
received message. This variable is set to the belief of the received and decoded message
mg→ŝ. Communication of the message m f→s is constructed similarly, yet this time the
transmitter is augmented with a “copy” of a variable s that effectively belongs to the receiver
FG graph of the Agent 2 (see Figure 5b). By designing the modified FG as shown in Figure 5,
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the communication is fully integrated into the exploration FG. The whole communications
chain including the transmitter, channel, and receiver is hence modeled by a factor node g
reflecting the communication uncertainties in a probability density function p(s, ŝ). Beside
point estimates ŝ, this information facilitates exploration by bringing more informativeness
into the estimation process, e.g., by exchanging approximations of p(ŝ) or bounds on learned
parameters. All of them enable the exploration to be “communication-aware”.

For transmission of variable s, we propose to use semantic communication that is
aware of the importance or relevance of s. For instance, if data is transmitted over a highly
unreliable communication channel between two agents, the receiving agent should be aware
of the poor data quality and consider this information for its local inference. The agent
can either assign a very low priority to the received data for the inference procedure or
discard it completely. Bad data quality can also indicate that the agent should change its
position to improve the condition of the communication channel. If received data from
another agent is of high relevance, the receiving agent should adjust its position such that
the communication condition is kept stable or improved. As such, intelligent exploration
strategies can be designed to select new sampling locations subject to the optimization of
relevance/confidence of the variables of interest.

𝐬 g

Transmitter

Agent 2

f

Communication

𝑝(𝐬, ො𝐬)

𝐬 f
𝑚𝐬→𝐟

𝑚𝐬→𝐠
ො𝐬

𝑚ො𝐬→𝐟𝑚𝒈→ො𝒔

Agent 1

Receiver

(a)

𝐬 g

Communication

𝑝(𝐬, ො𝐬)
𝑚𝐬→𝐠

ො𝐬
𝑚𝐠→ො𝐬

𝐬f
𝑚𝐟→𝐬

f

Transmitter

Agent 2Agent 1

Receiver

(b)
Figure 5. Example of possible modifications to the FG to integrate communication as a factor node
between Agent 1 and Agent 2. (a) FG for transmitting the message ms→ f from Agent 1 to Agent 2.
(b) FG for transmitting the message m f→s from Agent 1 to Agent 2.
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5. Key Challenges and Possible Approaches
5.1. Exploration

In the design approach from Section 4, we proposed the use of FGs to model the under-
lying PDE of the physical process and to incorporate inter-agent communication as a factor
and variable nodes into the exploration procedure. From the proposed design approach,
we derive the following two key challenges w.r.t. a “communication-aware” exploration:

1. Probabilistic description of PDE by factor graphs: How to describe the PDE model in
a Bayesian framework and conduct inference using FGs?

2. Process prediction for exploitation: How to design a “communication-aware” exploration
objective to determine new measurement positions for the agents?

These challenges give rise to the following possible approaches for the explo-
ration framework.

5.1.1. Probabilistic Description of PDE by Factor Graphs

For the exploration of the physical process u(δ, t), we first need to solve the corre-
sponding PDE numerically that describes this process. To this end, a broad variety of
methods are available in the literature from the domain of Finite-Difference Methods (FDM)
and Finite Element Methods (FEM). FEM allows for higher flexibility in spatial resolution
since it is a mesh-based discretization. Based on the discretized PDE, one can employ a FG
in the Bayesian framework to model and eventually solve the PDE. Here, variable nodes
represent mesh parameter estimates at the corresponding mesh vertices (when using La-
grange elements in FEM). Factor nodes describe the spatial interrelation between two mesh
vertices as modeled by the PDE. The complexity of the mesh directly influences the size
of the FG since the number of mesh vertices corresponds to the number of variable nodes.
Hence, it is crucial to optimize the FEM mesh by reducing, e.g., redundant vertices. Here,
adaptive discretization methods can be investigated that are trained to change the mesh
depending on the required spatial resolution of the physical process u(δ, t) in certain areas.

As an example of how an inverse PDE problem can be described and solved using
FGs, we consider the exploration of a gas field. Details can be found in [55]. The underlying
PDE describing the gas field is given by the diffusion equation:

∂u(δ, t)
∂t

− χ∆u(δ, t) = d(δ, t) (2)

where u(δ, t) is the gas concentration at position δ and time t, χ is a gas diffusion coefficient,
d(δ, t) is the gas source distribution and ∆ is the spatial Laplace operator. The problem
in gas exploration is to determine both u(δ, t) and d(δ, t) from gas concentration mea-
surements at distinct sampling positions. To this end, the diffusion Equation (2) needs
to be solved numerically first. As mentioned before, FDM or FEM can be used for this
matter. Authors in [55] used the FDM method, yet independent of the used discretiza-
tion, we obtain a system of linear equations that needs to be solved. In the case of FDM,
the unknown parameters in this system represent concentration and source strengths in
each cell of the discretized spatial domain. We summarize these concentration values
and the source strengths into vectors u[n] and d[n] at discrete time index n. If we define
a measurement vector y[n] = [y1[n], . . . , yL[n]]T for L agents in the network, we can model
the gas measurement process via

y[n] = A[n]u[n] + ε[n] (3)

where A[n] is a spatial sampling matrix that selects respective gas concentration values
from u[n] at the agent positions and ε[n] is zero-mean white Gaussian noise.
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Now, to transfer the gas exploration problem into a probabilistic framework, we
first model the discretized gas concentration u[n] and gas source strength d[n] as random
vectors. Then we model the gas measurement stage p(y[n]|u[n]) via a Gaussian proba-
bility density function (pdf) due to the Gaussian noise assumption in the measurement
model. Furthermore, we define a conditional pdf of the gas concentration u[n], denoted
as p(u[n]|u[n− 1], d[n]). Additionally, we define two prior pdfs, one for the initial gas
concentration u[0] and one for the source p(d[n]). For initial gas concentration u[0], we use
a Gaussian pdf with zero mean and high variance, since in the beginning no information
about the gas concentration is available. For the source prior p(d[n]), we include a sparse
assumption on the spatial distribution of gas sources and make use of sparse Bayesian
learning techniques from the domain of compressed sensing [58]. To this end, hyperpa-
rameters γ are introduced that describe the precision of the prior of the source distribution
in each Cell c. They are also random variables that need to be estimated. In other words,
for p(dc[n]|γc[n]) in Cell c, a Gaussian pdf with variance γ−1

c is assumed. For p(γc[n]),
a Gamma pdf is selected. A detailed derivation of this approach is given in [55]. In short:
the hierarchical prior favors source distributions that are sparse. Based on these pdfs, one
can then formulate the desired posterior pdf p(u, d, γ|y) using Bayes theorem:

p(u, d, γ|y) ∝ p(u[0])
N

∏
n=1

p(y[n]|u[n])p(u[n]|u[n− 1], d[n])

·
C

∏
c=1

p(dc[n]|γc[n]) ·
C

∏
c=1

p(γc[n]) (4)

for a total of N time steps and C mesh cells in the discretized spatial domain.
The posterior pdf can be graphically modeled via an FG. In Figure 6, a part of the FG

is shown depicting the relations of one cell. Here, variable nodes are shown as circles and
describe random variables of concentration uc[n], source strength dc[n], and hyperparame-
ter γc[n] in the Cell c at time instant n. The factor node Yc models a measurement is taken
in cell c and is the likelihood function p(y[n]|u[n]). Factor Rc describes the PDE model
with the finite difference method: It relates the concentration value uc[n] in the Cell c to
those in neighboring grid cells and in preceding time instants. Furthermore, the source
strength dc[n] in Cell c is put in relation to uc[n] according to the right-hand side of the
PDE. The remaining factors Gc and Hc represent the parametric prior of the sparse source
distribution p(dc[n]|γc[n]) and the prior of the hyperparameters p(γc[n]).

To finally enable inference on the FG to obtain the posterior pdf, one can use the mes-
sage passing algorithm. Here, messages that represent pdfs are exchanged between factor
and variable nodes. Based on an iterative exchange of such messages, outgoing messages of
variable nodes eventually converge to the marginal distributions of the respective variables.
For the FG model from Figure 6, the messages that are connected to factors Rc and Yc can be
calculated using the sum-product algorithm. These messages are Gaussian pdfs which are
parameterized by mean and variance. In particular, the mean and precision of the message
can be computed in closed form and are the only quantities that need to be communicated
over the edges. We summarize the messages or its characterizing parameters in a vector
m. In contrast, messages m for factor nodes Gc and Hc are not computable in closed form.
However, variational message passing [56] can be used to obtain an analytical approxima-
tion of these specific messages, cf. [55]. To enable a distributed inference, the complete FG
that covers all mesh cells can be separated into several parts. Each part corresponds to
a different 2D region of the spatial domain, as shown previously in Figure 3.
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Yc:      gas concentrationt measurement
uc[n]: gas concentration at time n 
Rc:      PDE model
dc[n]: gas source strength
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γc[n]: hyperparameters
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uc[n-1]

uc-1[n]

uc+1[n]
uc+M[n]

uc-M[n]

dc[n]

γc[n]

Figure 6. Factor graph representation of posterior pdf for one grid cell c in the spatial domain Ω
under consideration.

5.1.2. Process Prediction for Exploitation

The second key challenge considers the design of a communication-aware exploration
criterion to decide on the optimal sampling positions of the agents. In particular, the explo-
ration criterion needs to consider the reliability of inter-agent communication to guide the
agents to measurement positions that are both informative about the physical process and
reliable in terms of communication. Hence, both exploration objectives and communication
constraints need to be respected by this criterion. To this end, we intend to utilize the FG
to make predictions about process properties or message/variable certainties at arbitrary
measurement locations. These predictions are essential for exploitation and should include
uncertainty measures from communications. In fact, these predictions form a formal basis
for determining new measurement locations of the agents. Such uncertainty measures are
contained in the pdf p(s, ŝ) that can be extracted from the joint pdf p(m, m̂) of transmitted
and received messages m and m̂. This joint pdf p(m, m̂) is provided by the semantic
communication system to the respective receiving agent, e.g., by marginalization or point
estimate. Thus, by properly exploiting pdf p(s) one can optimally decide on new sampling
positions of the agents. Specifically, given (i) a trained FG FG(·) with estimated marginal
pdfs and (ii) measurement data y, we aim at finding new measurement positions δ̂1, . . . , δ̂L
for L agents as a solution for the following optimization problem

δ̂1, . . . , δ̂L = arg min
δ1,...,δL

EC(δ1, . . . , δL|FG, y) (5)

where EC(δ1, . . . , δL|FG, y) is some chosen exploration criterion. Different choices for
EC(δ1, . . . , δL|FG, y) can be investigated such as information-theoretic measures like mu-
tual information, entropy, or entropy rate. The motivation for the choice of information-
theoretic measures is mainly owed to the fact that this leads to an indirect optimization
(maximization) of the information gathered by the swarm.
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5.2. Semantic Communication

Following the design approach of Section 4.2, communication is modeled as a factor
node that consists of the main communication blocks shown in Figure 7. As input, we have
a semantic Random Variable (RV) m ∈ MNm×1

m from domainMm of dimension Nm set to
the message ms→g.

For the remainder of the article, note that the domain of all RVs M may be either
discrete or continuous. Further, we note that the definition of entropy for discrete and
continuous RVs differs. For example, the differential entropy of continuous RVs may
be negative whereas the entropy of discrete RVs is always positive [59]. Without loss of
generality, we will thus assume all RVs either to be discrete or to be continuous. In this
work, we avoid notational clutter by using the expected value operator: Replacing the
integral by summation over discrete RVs, the equations are also valid for discrete RVs and
vice versa.

The message m could, e.g., consist of samples of the pdf of s or of its parameters,
i.e., mean µ and variance σ2 in case of a Gaussian distribution. These parameters themselves
are subject to stochastic perturbations when computed or measured. After encoding with
the transmitter pθ(x|m), we transmit signals x ∈ MNTx×1

x over the wireless channel p(y|x)
to the receiver side. There, we infer an estimate m̂ set to the message m f→s based on

the received signals y ∈ MNRx×1
y with the decoder qϕ(m|y). Communication is modeled

with its distribution p(m, m̂). Since the semantic context is included in communication
system design with the RV m, we enter into the field of semantic communication, which
has seen a lot of research interest recently [6,7,9,11,46–48,53]. We will adapt and modify
here the promising approach of [11] where the authors originally designed a semantic
communication system for the transmission of written language/text similar to [51] using
transformer networks.

Communications p(m, m̂)
Rx

Tx
pθ(x|m)

Channel
p(y|x)

Inference
qϕ(m|y) Decision

m x y m̂

Figure 7. Typical communications design, but here adapted for transmission of the semantic or
message variable m. For exploration, the communication system is a black box and only needs to be
abstracted for the purpose of integration as a factor node with joint pdf p(m, m̂).

As an alternative idea, we could also follow the approach of [49]: There, the authors
model semantics by means of hidden random variables and define the semantic commu-
nication task as the data-reduced and reliable transmission of a communications source
over a communication channel such that semantics is best preserved. The authors cast this
task as an end-to-end Information Bottleneck problem, allowing for compression while
preserving relevant information. As a solution approach, the authors propose the ML-based
semantic communication system SINFONY and analyze its performance in a distributed
multipoint scenario where the meaning behind image sources is to be transmitted, revealing
a tremendous rate-normalized SNR shift up to 20 dB compared to classically designed
communication systems. Adapted to our scenario, this means we would aim to reconstruct
the exploration RV s directly instead of m. How this translates into a different integration
strategy is an open question, and we leave further elaboration for future work.

To make communications semantic/application-aware, we have to master two
key challenges:
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1. Exploration integration: How can the meaning of exploration variables be exploited in
communications when using tools of probabilistic learning?

2. Exploration interface design: Which information should be passed to the exploration to
reflect the uncertainty or reliability of communication, and how can we design this
output by using tools from probabilistic learning?

We now propose how these challenges can be approached.

5.2.1. Model Selection

In order to tackle a semantic design of both transmitter and receiver in the considered
exploration scenario, we first need to define a well-suited communication or machine learn-
ing model. From a probabilistic ML viewpoint, this design is equivalent to an unsupervised
learning problem. Since we want to learn a hidden representation y of our input data m,
our aim is to learn a probabilistic encoder or discriminative model pθ(y|m) parametrized
by a parameter vector θ. It includes both transmitter pθ(x|m) and channel model p(y|x).
Note that pθ(x|m) is probabilistic here but usually assumed to be deterministic since we
aim for uncertainty reduction at the receiver and that p(y|x) is independent of θ.

As transmitters, application-adapted DNNs pθ(x|m) are preferably analyzed in the
literature [11,53]. Also for exploration, we propose to use DNNs mainly for a generic and
flexible design of ML-based prototype transceivers, since DNNs are able to approximate
any function well (universal approximation theorem) and can be easily optimized using
automatic differentiation frameworks. But we point out that alternative forms of learning
are not excluded from future implementations.

The channel model p(y|x) in mobile communications is typically assumed to be
a frequency-selective Rayleigh fading channel. Oftentimes, this assumption is further
abstracted to Additive White Gaussian Noise (AWGN) or Multiple Input Multiple Output
(MIMO) channels for basic research. In contrast, time selectivity can be neglected on Earth
for slowly moving agents with long coherence time. Hence, we expect mainly frequency
selective channels that should even be valid for exploration of, e.g., an extraterrestrial
environment like Moon or Mars, assuming rural area models [60,61].

With this likelihood model pθ(y|m), and the semantic prior distribution p(m) in
mind, the whole generative model is given by the joint probability distribution function
pθ(m, y) = pθ(y|m) · p(m) usually assumed in communication systems. Furthermore, we
will assume pθ(m, y) to belong to the exponential family. This leads to efficient learning
and inference algorithms.

The last remaining communications component is the receiver. From a Bayesian per-
spective, the receiver infers m given the received signal y based on the posterior distribution
pθ(m|y), which can be inferred from pθ(m, y) using Bayes theorem.

Now, we are able to give an Answer to Challenge 1: Exploration Integration. It is the
prior p(m) that allows modelling the message ms→g (see, e.g., Figure 5a). In data-driven
transceiver design, samples of the prior p(m) are used as training data. In other words,
through this prior, the design of the communication system becomes “exploration-aware”.

5.2.2. Learning of the Semantic Communication System

To define an unsupervised learning optimization criterion for our discriminative
model or encoder pθ(x|m), it is useful to follow the infomax principle from the information-
theoretic perspective [59]. This means our aim is to find a representation y ∼ pθ(y|m)
that retains a significant amount of information about the input, i.e., maximization of the
mutual information I(m; y) w.r.t. the encoder pθ(x|m) [49,62]:
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arg max
pθ(x|m)

I(m; y) (6)

= arg max
θ

Em,y∼pθ(m,y)

[
ln

pθ(m, y)
p(m)pθ(y)

]
(7)

= arg max
θ

H(m)−H(pθ(m, y), pθ(m|y)) (8)

= arg max
θ

Em,y∼pθ(m,y)[ln pθ(m|y)], (9)

whereH(m) = Em∼p(m)[− ln p(m)] is the entropy and Ex∼p(x)[ f (x)] denotes the expected
value of f (x) w.r.t. both discrete or continuous RVs x. Here we also used the fact thatH(m)
is independent of θ and that pθ(m|y) ∝ pθ(y|m) · p(m). Further, note that the form of
pθ(y|m) has to be constrained to avoid learning a trivial identity mapping. For communi-
cations, the channel p(y|x), e.g., AWGN, indeed constraints pθ(y|m).

If the calculation of the posterior pθ(m|y) in (9) is intractable, we are able to replace
it by a variational distribution qϕ(m|y) with parameters ϕ. Similar to the transmitter,
DNNs are usually used in semantic communication literature [11,53] for the design of the
approximate posterior qϕ(m|y) at the receiver. To enhance the performance complexity
trade-off, the application of deep unfolding can be considered—a model-driven learning
approach that introduces model knowledge of pθ(y, m) to construct qϕ(m|y) [43,44].

With qϕ(m|y), we are able to define a Mutual Information Lower BOund (MILBO) [62]
similar to the well-known Evidence Lower BOund (ELBO) [38]:

Iθ(m; y) ≥ Em,y∼pθ(m,y)
[
ln qϕ(m|y)

]
. (10)

Optimization of θ and ϕ can now be done w.r.t. this lower bound, i.e.,

arg max
θ,ϕ

Em,y∼pθ(m,y)
[
ln qϕ(m|y)

]
(11)

arg max
θ,ϕ

− Ey∼p(y)
[
H
(

pθ(m|y), qϕ(m|y)
)]

(12)

arg min
θ,ϕ

LCE
θ,ϕ . (13)

There, H(p(x), q(x)) = Ex∼p(x)[− ln q(x)] is the cross entropy between two pdfs p(x) and
q(x). We note that the MILBO in (10) is equivalent to the negative amortized cross-entropy
LCE

θ,ϕ in (12). This means that approximate maximization of the mutual information justifies
the minimization of the cross entropy in the Auto Encoder (AE) approach [39] often-
times seen in recent semantic communication literature [11,53]. Thus, the idea is to learn
parametrizations of the transmitter discriminative model and of the variational receiver
posterior, e.g., by AEs or RL.

Furthermore, we can rewrite the amortized cross entropy [63,64]:

LCE
θ,ϕ = Ey∼p(y)

[
H
(

pθ(m|y), qϕ(m|y)
)]

(14)

= H(m)− Iθ(m; y)

+ Ey∼p(y)
[
DKL

(
pθ(m|y) ‖ qϕ(m|y)

)]
. (15)

This means that optimization of the MILBO balances minimization of the Kullback-Leibler
(KL) divergence DKL

(
pθ(m|y) ‖ qϕ(m|y)

)
and maximization of the mutual information

Iθ(m; y). The former criterion can be seen as a regularization term that favors encoders
with high mutual information, for which decoders can be learned that are close to the
true posterior.
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Indeed, our communications design and optimization based on probabilistic modeling
can be applied in general also to semantics-agnostic settings. But in this article, we introduce
semantics, i.e., messages, m into the exploration-tailored design and aim for accurate analog
transmission of m. In fact, we adopt and modify the idea of [11] where the authors originally
designed a semantic communication system for the transmission of written language/text
similar to [51] using transformer networks:

1. We replace the text with the messages m.
2. The objective in [11] is to reconstruct m (sentences) as accurately as possible while

preserving as much information of x in y. Optimization is done w.r.t. to a loss function
consisting of two parts: Cross entropy between language input m and output m̂,
as well as an additional scaled mutual information term between transmit signal x,
and received signal y. We omit the latter in our approach (12).

This view resembles JSCC and is backed by the extensive survey in [9]. After optimiza-
tion, the authors measure semantic performance with BiLingual Evaluation Understudy
(BLEU) and semantic similarity [11]

We note that computation of the MILBO (10) (or cross-entropy (12)) leads to similar
problems as for the ELBO [59]: If calculating the expected value cannot be solved analyti-
cally or is computationally intractable, we can approximate it using Monte Carlo sampling
techniques. For stochastic gradient descent-based optimization, i.e., the AE approach,
the gradient w.r.t. ϕ can then be calculated by application of the backpropagation algorithm
in automatic differentiation frameworks like TensorFlow. Computation of the so-called
reinforce gradient w.r.t. θ leads to a high variance of the gradient estimate since we sample
w.r.t. the pdf pθ(y|m) dependent on θ. Typically, the reparametrization trick is used to
overcome this problem [59].

As a final remark, we arrive at a special case of the infomax principle if we fix the
encoder with pθ(y|m) = p(y|m) and hence the transmitter. Then, only the receiver approx-
imate posterior qϕ(m|y) needs to be optimized in (14). Thus, in this case, maximization
of the MILBO is equivalent to a supervised learning problem and minimization of KL
divergence between true and approximate posterior [44]. This setup has several benefits:
In practice, we avoid the reinforce gradient, and especially we do not need any ideal
connection between transmitter and receiver. Further, even today in 5G, we can apply
a semantic receiver design to standardized systems having fixed transmitter capabilities
to possibly achieve semantic performance gains. As a first step, we thus suggest research
should focus on the design of ML-based receivers, given a non-learning state-of-the-art
transmitter. We give a first example in Section 5.3. Finally, we note that the latter was
designed for the digital transmission of bits, requiring near-deterministic links. This may
not really be needed from a semantic perspective and is a waste of resources. Hence, it
is also worth considering the adaption of the transmitter to achieve more efficient use of
bandwidth and increase data rate.

5.2.3. Interface to the Application

Based on the learned posterior qϕ(m|y), we have full information about our model at
the receiver side but still need to design an interface to the application, e.g., by inferring
transmitted messages/beliefs m. For the efficient integration as a factor node, the poste-
rior qϕ(m|y) should hence belong to the exponential family. Further, we can define an
interface by finding the optimal estimator m̂∗ = h(y) w.r.t. a loss function L(m, m̂) which
measures the quality of the inference prediction m̂. Non-informative loss functions are,
e.g., quadratic error loss or the MAP estimator [38]. If the variance needs to be computed for
the exploration part but is intractable, we can lower bound it by the Fisher information [65].

In summary, we are able to give an Answer to Challenge 2: Exploration Interface Design.
Possible approaches for output design include equipping the receiver with the capability to
learn an approximation of its corresponding posterior p(m|y), e.g., a Gaussian with mean
and variance, or to bound the estimator’s variance with, e.g., Fisher information.
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5.3. First Numerical Example: Semantic Receiver

In order to show the benefits of an exploration-oriented communication design, we
present a first numerical toy simulation using the application example of the distributed
full waveform inversion from [22] mentioned in Section 3. There, we make a first change to
the error-free digital communication system and introduce a semantics-aware receiver to
improve communication efficiency, as proposed in Section 5.2.2.

Since this is out of the scope of the first investigation of this paper, note that we will not
investigate the exact effect of semantic communication on overall exploration performance,
as well as the tight integration of communications into exploration with, e.g., an interface,
as outlined in Section 5.2.3. But still, we can gain insight into why such a design may
improve communication efficiency w.r.t. the exploration task.

5.3.1. Exploration Scenario and Data

As simulation data, we assume local models κl and gradients ∂Jl(κl)/∂κl of L = 20
agents after the second iteration of the distributed full waveform inversion from Section 3
as communicated messages, which are used to compute the global model κ i.e., to execute
the exploration task [22]. Note that the global model κ is equivalent to the exploration
RV s. Both local models and gradients are summarized in the semantic RV m ∈ R, being
continuous-valued but processed as floating point numbers with Nb bits b ∈ {0, 1}Nb×1 on
digital hardware. The size of the dataset provided from [22] is Ntrain = 1,147,000. In every
iteration of the distributed seismic exploration algorithm, these discrete floating point
numbers b are exchanged between the agents and need to be communicated.

Relying on modern digital error-free protocols, each bit would be considered equally
important and equally likely. However, with floating point representation and data dis-
tribution p(m) , p(b), respectively, this is in fact not the case: The bits are mapped via
a weighted sum within function m = h(b) into the real-valued domain, i.e., the semantic
space of the exploration task. To explain what we mean by semantic space, let us consider
the example of language. Words m like “neat” and “fine” have similar meanings and are
thus close in the semantic space. If we confuse both words, the change in meaning is minor.
In our example, this means that there is room for non-perfect transmission of bit sequences
as long as their meaning remains close, e.g., m = 1.53 and m̂ = 1.54. With semantic space in
the real-valued domain and without any further detailed knowledge about the exploration
task, i.e., utilizing low-level semantics [49], it is reasonable to assume that our receiver
estimates m̂ should be close to the true transmit value m in the Mean Square Error (MSE)
sense. By doing so, we expect that the exploration task should be still completed with high
accuracy while increasing communications efficiency. As an important remark, we note
that the model of this scenario resembles that proposed in [49], as it distinguishes between
communications source b and semantic source m and assumes a deterministic bijective
semantic channel p(b|m). Further, we both optimize and measure semantic performance
with the MSE metric, in contrast to [11].

5.3.2. Transmission Model

Since we want to focus on the key aspect of introducing semantics into the communi-
cations design at the receiver side, we use a simple abstraction of the digital transmission
system in this first investigation neglecting details, i.e., modern communication protocols
with, e.g., strong LDPC or Polar codes: We assume an uncoded Binary Phase Shift Keying
(BPSK) transmission of the bits b of each floating point number over an AWGN channel
p(y|x) with noise variance σ2

n to a receiver.

5.3.3. Methodology

With this given transmitter, we focus now on the design of the receiver, as explained
in Section 5.2. Based on the statistics/prior p(m) , p(b) of the simulation data, we are able
to compute the ideal posterior p(m|y) = p(y|m) · p(m)/p(y) by marginalization of p(y).
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From our simulations, we note that for computational tractability, the resolution needs to
be lower than Nb = 16 bits.

To reduce computational complexity, we can introduce an approximate posterior
qϕ(m|y). Assuming a Gaussian approximate posterior qϕ(m|y) from the exponential family,
minimization of the cross entropy (12), i.e., maximization of the mutual information (6),
reduces to minimization of the MSE loss w.r.t. receiver parameters ϕ [59]. Thus, from the
latter general perspective, the choice of the MSE loss for both semantic receiver optimization
and semantic performance metric is well motivated.

We examine here the following approaches for the final decision/estimation of m̂ (see
Figure 7) based on the computed posterior p(m|y) or qϕ(m|y):
• MAP detection: Optimal for error-free transmission of bit sequences b, since error

rate is minimized.
• Mean estimator: Optimal for estimation of semantics m in the MSE sense.
• Single-bit detector: As usually assumed in classic digital communications, every

bit is considered stochastically independent, i.e., p(b) ≈ ∏Nb
i=1 p(bi), and detected

separately. We assume that the prior probability p(bi) of every single-bit bi is known.
Subsequently, we estimate m̂ = h(b).

• Analog transmission: Analog transmission of m over the AWGN channel is used as
a reference curve. We assume Nb power-normalized channel uses with subsequent
averaging for a fair comparison.

• DNN estimator: For approximate estimation, we set the mean of a Gaussian approxi-
mate posterior qϕ(m|y) to a small DNN with input y ∈ RNb×1, 2 dense intermediate
ReLU layers of width 2 · Nb and a linear output layer for estimation of m. We take the
mean, i.e., the output of the DNN, as the estimate m̂.

We trained the DNN with MSE loss for Ne = 44 epochs with the stochastic gradient
descent variant Adam and a batch size of Nb = 500. To optimize the receiver over a wider
SNR range, we choose the SNR to be uniformly distributed within SNRtrain ∈ [6, 16] dB
where SNR = 1/σ2

n with noise variance σ2
n.

5.3.4. Results

In Figure 8, we show the Normalized MSE (NMSE) performance of the considered
(sub) optimal receiver approaches as a function of SNR for Nb = 16 floating point resolution.
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Figure 8. Normalized MSE (NMSE) as a function of Signal-to-Noise Ratio (SNR) for different non- and
semantic exploration data receiver approaches. We assume uncoded digital BPSK transmission of gra-
dients and models m of the distributed full seismic waveform inversion [22] over an AWGN channel.

The classic single-bit approach is clearly inferior in the considered SNR range. Even
the approximative DNN estimator outperforms the latter clearly. Notably, we observe only



Electronics 2023, 12, 1908 19 of 22

a 2 dB SNR shift compared to the mean estimate, i.e., the optimal approach, but with much
lower computational complexity.

5.3.5. Discussion

By just adapting the receiver to account for semantics in this first investigation of a sim-
ple digital transmission scheme, we achieved a notable semantic performance gain. Further,
we are able to achieve near-optimal semantic performance with a DNN of low complexity
and hence with small training and inference time, possibly allowing for a real-time imple-
mentation. Thus, we conclude that a semantic communication design is profitable and can
be realized with manageable effort. We note that it is still an open question which NMSE
is required to achieve satisfactory performance on the task of distributed full waveform
inversion. But provided that the given NMSE values of, e.g., 10−2, are accurate enough,
we could avoid high latency, complexity energy consumption and increase data rate of
modern communication protocols even with this simplified transmission scheme and by
just adapting the receiver.

6. Conclusions

In this work, we presented an approach to make both exploration and communications
mutually aware. In particular, we proposed to use probabilistic machine learning models to
enable a unified description of both exploration and communications in one framework and
made a first attempt towards integrating both areas using factor graphs. By using a factor
graph description, we can integrate communications as a factor node between two com-
municating agents and improve communication efficiency in terms of latency, bandwidth,
data rate, energy, and complexity. A first numerical example of integrating exploration
data into semantic communications showed promising semantic performance gains.

We note that exploration is just an example of the application of the proposed frame-
work. It can naturally be applied to other domains with communication links as well,
e.g., in control engineering problems, etc. This philosophy of designing communications
explicitly for a particular application lies at the heart of recent research interest in semantic
communication. The introduction of the semantic aspect holds the promise of data rate
increase in 6G networks. Further research is required to develop first prototype algorithms
that lay the foundation for a “tight” integration of exploration and communications. How-
ever, we anticipate that this work serves as a reason to stimulate the required research to
close the gap between both realms.
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BPSK Binary Phase Shift Keying
DNN Deep Neural Network
FDM Finite-Difference Methods
FEM Finite Element Methods
FG Factor Graph
GPU Graphics Processing Unit
JSCC Joint Source-Channel Coding
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MIMO Multiple Input Multiple Output
ML Machine Learning
MSE Mean Square Error
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PDE Partial Differential Equation
pdf probability density function
RL Reinforcement Learning
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