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Abstract—Motivated by the recent success of Machine Learn-
ing tools in wireless communications, the idea of semantic
communication by Weaver from 1949 has gained attention. It
breaks with Shannon’s classic design paradigm by aiming to
transmit the meaning, i.e., semantics, of a message instead of
its exact version, allowing for information rate savings. In this
work, we apply the Stochastic Policy Gradient (SPG) to design a
semantic communication system by reinforcement learning, not
requiring a known or differentiable channel model - a crucial
step towards deployment in practice. Further, we motivate the
use of SPG for both classic and semantic communication from
the maximization of the mutual information between received
and target variables. Numerical results show that our approach
achieves comparable performance to a model-aware approach
based on the reparametrization trick, albeit with a decreased
convergence rate.

Index Terms—Semantic communication, wireless networks, in-
fomax, information bottleneck, machine learning, reinforcement
learning, stochastic policy gradient, task-oriented.

I. INTRODUCTION

To meet the unprecedented needs of 6G communication
efficiency in terms of data rate, latency, and power, attention
has been drawn to semantic communication [1]–[4]. It aims
to transmit the meaning of a message rather than its exact
version, which has been the main focus of digital error-free
system design so far [1]. Bao, Basu et al. [5] were the first
to define semantic information sources and channels to tackle
the semantic design by conventional approaches arguing for
the generality of Shannon’s theory not only for the technical
level but for semantic level design as Weaver [1].

Recently, inspired by [1], [5] and the rise of Machine
Learning (ML) in communications research, transformer-based
Deep Neural Networks (DNNs), have been introduced to Auto
Encoders (AEs) for text transmission to learn compressed
hidden representations of semantic content, aiming to improve
communication efficiency [6]. In [7], the authors suggest
using semantic similarity as the objective function: As most
semantic metrics are non-differentiable, they propose a self-
critic Reinforcement Learning (RL) solution. Both [6], [7]
improve performance especially at low SNR compared to
classical digital transmissions with [7] being slightly superior.

This paper builds on our idea from [4]: There, we define se-
mantic communication as the data-reduced, reliable transmis-
sion of semantic sources and cast its design as an Information
Bottleneck (IB) problem extending [5]. We apply our ML-
based design SINFONY to a distributed multipoint scenario,

communicating meaning from multiple image sources to a
single receiver for semantic recovery. Numerical results show
that SINFONY outperforms classical communication systems.

Semantic communication is a developing field with many
survey papers aiming to provide interpretations (e.g., [2], [3]).
It remains still unclear how the approaches proposed so far
can be implemented in practice which motivates the main
contribution of this article:

• We apply the Stochastic Policy Gradient (SPG) to design
a semantic communication system, i.e., RL-SINFONY,
by RL. By this means, we do not require a known or
differentiable channel model - a crucial step towards
deployment in practice.

• Further, we motivate the application of the SPG for both
classic and semantic communication from maximization
of the mutual information between received, and target
variables compared to [8].

• At the time of writing, the RL-based approach in [7] was
extended to handle non-differentiable channels. Our work
distinguishes from [7] in using a different system model
akin to task-oriented communication and not deriving our
approach from a RL view. Further, the authors observed
that training does not converge within their time limit
to comparable results as the baseline approach in their
setup for text transmission. We confirm the problem
of slow convergence hinting at solution approaches and
demonstrate feasibility in our distributed scenario.

In the following, we revisit our theoretical framework from
[4] in Sec. II. For RL-based optimization, we introduce the
SPG in Sec. III. Finally, in Sec. IV and V, we provide one
numerical example for SINFONY application from [4] and
summarize the main results, respectively.

II. A FRAMEWORK FOR SEMANTICS

A. Semantic System Model

1) Semantic Source and Channel: First, we define our
information-theoretic system model of semantic communica-
tion shown in Fig. 1. Motivated by the approach of Bao, Basu
et al. [5], we adopt the terminus of a semantic source as in
[4] and describe it as a hidden target multivariate Random
Variable (RV) z ∈ MNz×1

z from domain Mz of dimension Nz

distributed according to a probability density or mass function
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Fig. 1. Block diagram of the considered semantic system model.

(pdf/pmf) p(z). To simplify the discussion, we assume it to
be discrete and memoryless.1

Then, a semantic channel modeled by conditional distri-
bution p(s|z) generates a source signal, a RV s ∈ MNs×1

s ,
that is usually observed and enters the communication system.
Compared to [5]2, we consider probabilistic semantic channels
p(s|z) using the definition from [4]. We refer the reader to [4]
for an example of what these RVs may look like.

2) Semantic Channel Encoding: Our challenge is to encode
the source s onto the transmit signal x ∈ MNTx×1

x (see Fig. 1)
for efficient and reliable semantic transmission through the
physical communication channel p(y|x), where y ∈ MNRx×1

y

is the received signal vector, such that the semantic RV
z at a recipient is best preserved [4]. We parametrize the
encoder pθ(x|s) by a parameter vector θ ∈ RNθ×1 and
assume pθ(x|s) to be deterministic in communications with
pθ(x|s) = δ(x− µθ(s)). In summary, we bring the semantic
source z to the context of communications by considering the
complete Markov chain z ↔ s ↔ x ↔ y in contrast to [5].

In classic Shannon design, the posterior pθ(s|y) is pro-
cessed to recover the source signal s as accurately as possible
at the receiver side. Instead, we recover semantics z processing
pθ(z|y): Since the entropy H (z) = Ez∼p(z)[− ln p(z)]3 of the
semantic RV z is expected to be less or equal to the entropy
H (s) of the source s, i.e., H (z) ≤ H (s), we can compress
by transmitting the semantic RV z.

B. Semantic Communication Design

Now, we revisit our two design approaches from [4].
1) Infomax Principle: First, we like to find the encoder

pθ(x|s) that maps s to a representation y such that most

1For the remainder of the article, note that the domain of all RVs M
may be either discrete or continuous. Further, we note that the definition of
entropy for discrete and continuous RVs differs. For example, the differential
entropy of continuous RVs may be negative whereas the entropy of discrete
RVs is always positive [9]. Without loss of generality, we will thus assume
all RVs either to be discrete or to be continuous. In this work, we avoid
notational clutter by using the expected value operator: Replacing the integral
by summation over discrete RVs, the equations are also valid for discrete RVs
and vice versa.

2In [5], the semantic channel is the transmission system.
3There, Ex∼p(x)[f(x)] denotes the expected value of f(x) w.r.t. both

discrete or continuous RVs x.

information of the relevant RV z is included in y, i.e., we
maximize the Mutual Information (MI) Iθ (z;y) w.r.t. pθ(x|s):

argmax
pθ(x|s)

Iθ (z;y) (1)

=argmax
pθ(x|s)

Ez,y∼pθ(z,y)

[
ln

pθ(z,y)

p(z)pθ(y)

]
(2)

=argmax
pθ(x|s)

H (z)−H (pθ(z,y), pθ(z|y)) (3)

=argmax
pθ(x|s)

Ez,y∼pθ(z,y)[ln pθ(z|y)] . (4)

There, H (p(x), q(x)) = Ex∼p(x)[− ln q(x)] is the cross en-
tropy between two pdfs/pmfs p(x) and q(x).

If the posterior pθ(z|y) in (4) is intractable to compute,
we can replace it with a variational distribution qφ(z|y) with
parameters φ, i.e., the semantic decoder in Fig. 1. Then, we
can define a MI Lower BOund (MILBO) [4]:

Iθ (z;y) ≥ Ez,y∼pθ(z,y)[ln qφ(z|y)] (5)
= −Ey∼p(y)[H (pθ(z|y), qφ(z|y))] (6)

= −LCE
θ,φ . (7)

Now, we can learn optimal parametrizations θ and φ of the
transmitter discriminative model pθ(x|s) and of the variational
receiver posterior qφ(z|y) by minimizing the amortized cross
entropy LCE

θ,φ in (6), i.e., marginalized across observations y
[4]. The encoder can be seen by rewriting:

LCE
θ,φ = Es,x,y,z∼pθ(s,x,y,z)[− ln qφ(z|y)] (8)

= Es,z∼p(s,z)

[
Ex∼pθ(x|s)

[
Ey∼p(y|x)[− ln qφ(z|y)]

]]
.

The idea is to solve (8) by AEs or - in this article - RL.
Thus, we use DNNs for the design of both encoder pθ(x|s)
and decoder qφ(z|y) [6]. Note that in our semantic problem
(1) or (8), we do not auto encode the hidden z or s as in
[6] itself, but encode s to obtain z by decoding. This means
our interpretation of semantic information and its recovery
deviates from literature: We define semantics z explicitly
compared to, e.g., [6], that optimizes on s and then measures
semantic similarity w.r.t. its estimate ŝ explicitly by some
semantic metric L(s, ŝ).

2) Information Bottleneck View: Further, introducing a con-
straint on the information rate in (1), we can formulate an
Information Bottleneck (IB) optimization problem [2], where
we like to maximize the relevant information Iθ (z;y) subject
to the constraint to limit the compression rate Iθ (s;x) to a
maximum information rate IC:

argmax
pθ(x|s)

Iθ (z;y) s.t. Iθ (s;x) ≤ IC . (9)

In this article, we set constraint IC by fixing NTx since then
an upper bound on Iθ (s;x) grows for discrete RVs [4]:
Iθ (s;x) ≤

∑NTx
n=1 H (xn) = IC. With fixed constraint IC, we

then need to maximize the relevant information Iθ (z;y). As
in the infomax problem, we can exploit the MILBO to use
the amortized cross entropy LCE

θ,φ in (8) as the optimization
criterion.



III. STOCHASTIC POLICY GRADIENT-BASED
REINFORCEMENT LEARNING

If calculating the expected value of the amortized cross en-
tropy LCE

θ,φ in (8) is analytically or computationally intractable
as typical with DNNs, we can approximate it using Monte
Carlo sampling techniques with N samples {zi, si, xi, yi}

N
i=1.

Then, our loss function (8) amounts to

LCE
θ,φ ≈ − 1

N

N∑
i=1

ln qφ(zi|yi) . (10)

A. Stochastic Gradient Descent-based Optimization

For Stochastic Gradient Descent (SGD) - based optimiza-
tion, the gradient w.r.t. φ can then be calculated by

∂LCE
θ,φ

∂φ
=− Ez,s,y∼pθ(y|s)p(s|z)p(z)

[
∂ ln qφ(z|y)

∂φ

]
(11)

≈− 1

N

N∑
i=1

∂ ln qφ(zi|yi)
∂φ

(12)

and by application of the backpropagation algorithm in Auto-
matic Differentiation Frameworks (ADF), e.g., TensorFlow or
PyTorch.

1) Reinforce Gradient: Computation of the gradient w.r.t.
θ is not straightforward since we sample w.r.t. the distribution
pθ(y|s) dependent on θ [9]. Assuming continuous-valued y

and using the log-trick ∂ ln pθ(y|s)
∂θ = ∂pθ(y|s)

∂θ /pθ(y|s), we can
derive:

∂LCE
θ,φ

∂θ

=− ∂

∂θ
Ez,s,y∼pθ(y|s)p(s,z)[ln qφ(z|y)] (13)

=− Ez,s∼p(s,z)

[ ∫
MNRx

y

∂pθ(y|s)
∂θ︸ ︷︷ ︸

=pθ(y|s)·
∂ ln pθ(y|s)

∂θ

· ln qφ(z|y) dy
]

(14)

=− Ez,s,y∼pθ(y|s)p(s,z)

[
∂ ln pθ(y|s)

∂θ
· ln qφ(z|y)

]
(15)

≈− 1

N

N∑
i=1

∂ ln pθ(yi|si)
∂θ

· ln qφ(zi|yi) . (16)

We arrive at the same result with discrete RVs y replacing
the integral in (14) by a sum. The Monte Carlo approximation
(15) is the REINFORCE gradient w.r.t. θ [9]. This estimate has
high variance since we sample w.r.t. the distribution pθ(y|s)
dependent on θ.

2) Reparametrization Trick: Leveraging the direct relation-
ship between θ and y in ln qφ(z|y) can help reduce the
estimator’s high variance compared to (15). Typically, e.g.,
in Variational AEs (VAE), the reparametrization trick is used
to achieve this [9]. Here we can apply it if we can decompose
the latent variable y ∼ pθ(y|s) into a differentiable function
y = fθ(s,n) and a RV n ∼ p(n) independent of θ.
Fortunately, the typical forward model of a communication
system pθ(y|s) fulfills this criterion. Assuming a deterministic

DNN encoder x = µθ(s) and additive noise n with covariance
Σ, we can thus rewrite y into fθ(s,n) = µθ(s) + Σ1/2 · n
and accordingly the amortized cross entropy gradient into:

∂LCE
θ,φ

∂θ
=− ∂

∂θ
Ez,s,y∼pθ(y|s)p(s,z)[ln qφ(z|y)] (17)

=− Ez,s,n∼p(n)p(s|z)p(z)

[
∂fθ(s,n)

∂θ
· ∂ ln qφ(z|y)

∂y

]
(18)

≈− 1

N

N∑
i=1

∂fθ(si,ni)

∂θ
· ∂ ln qφ(zi|yi)

∂y

∣∣∣∣
y=fθ(ni,si)

.

(19)

The trick can be easily implemented in ADFs by adding
a noise layer after (DNN) function x = µθ(s), typically
used for regularization in ML literature. This allows for joint
optimization of both θ and φ, as demonstrated in recent
works [10], treating unsupervised optimization of AEs as a
supervised learning problem.

B. Stochastic Policy Gradient

We note that unsupervised learning of encoder and decoder
with both gradients (16) or (19) requires a known and fully
differentiable forward model pθ(y|s). But the gradient

∂ ln pθ(y|s)
∂θ

=
∂µθ(s)

∂θ
· ∂p(y|x)

∂x
· ∂ ln p(y|x)

∂p(y|x)
(20)

with deterministic encoder x = µθ(s) may not be computable,
as the channel model p(y|x) could be non-differentiable or
unknown without any channel estimate. Further, in practice,
the transmitter and receiver are separated at different locations
and have at most a rudimentary feedback link, requiring
independent optimization w.r.t. θ and φ: The transmitter does
not know qφ(z|y) and the receiver pθ(x|s), vice versa.

To tackle these challenges in gradient computation, we now
introduce a stochastic policy pθ(x|s) ̸= δ(x − µθ(s)) that
fulfills the reparametrization property:

∂LCE
θ,φ

∂θ
=− ∂

∂θ
Ez,s,x,y∼p(y|x)pθ(x|s)p(s,z)[ln qφ(z|y)] (21)

=− Ez,s∼p(s,z)

[ ∫
MNTx

x

∂pθ(x|s)
∂θ︸ ︷︷ ︸

=pθ(x|s)·
∂ ln pθ(x|s)

∂θ

· Ey∼p(y|x)[ln qφ(z|y)] dx
]

(22)

=− Ez,s,x,y∼pθ(z,s,x,y)

[
∂ ln pθ(x|s)

∂θ
· ln qφ(z|y)

]
(23)

≈− 1

N

N∑
i=1

∂ ln pθ(xi|si)
∂θ

· ln qφ(zi|yi) . (24)

Again the log-trick is applied in (22) to arrive in (23) and
the results hold for discrete RVs x. Most importantly, (23)
is the policy gradient and the derivation is equivalent to
the Stochastic Policy Gradient (SPG) theorem, a fundamental



result of continuous-action RL [11]. For integration in ADFs,
usually, an objective function whose gradient is the Monte
Carlo policy gradient estimator of (23), i.e., the REINFORCE
gradient (24), is constructed:

LSPG
θ = − 1

N

N∑
i=1

ln pθ(xi|si) · ln qφ(zi|yi) . (25)

With objective (25) or REINFORCE gradient (24), we can
finally optimize LCE

θ,φ w.r.t. θ, since we are able to sample
{z, s,x,y} ∼ pθ(z, s,x,y) and compute ∂ ln pθ(x|s)

∂θ at the
transmitter and ln qφ(z|y) at the receiver. Note that s and x
only have to be known at the transmitter and both z and y
at the receiver, respectively. This means an a priori known
pilot/training sequence strain, ztrain is required.

Moreover, we require a feedback link to transmit ln qφ(z|y)
evaluated for ztrain and ytrain to the encoder. The term can
be interpreted as a reward or critic known from RL [11].
Accordingly, the transmitter can be seen as an actor with
a policy pθ(x|s). The best continuous action/policy is then
learned by optimization w.r.t. these rewards.

1) Stochastic Policy: Introducing a stochastic policy means
we need to add a probabilistic sampler/explorer function
p(x|x̄) to the encoder as shown in Fig. 2. In this article, we
use a Gaussian policy, i.e., a multivariate Gaussian pdf

p(x|x̄) = N
(
(1− σ2

exp)
1/2 · x̄, σ2

exp · I
)

(26)

with exploration variance σ2
exp ∈ (0, 1) where scaling of the

mean x̄ = µθ(s) is done to ensure the conservation of average
energy. For σ2

exp → 0, p(x|x̄) approaches a deterministic
policy. In [8], the authors show that the true channel gradient
∂
∂xp(y|x) is then perfectly approximated. However, using a
near-deterministic policy leads in their experiments to high
variance of the gradient estimate (24) resulting in slow conver-
gence. To compensate for this effect, we require a much larger
and computationally expensive batch size N = Nb. From the
view of RL, using a stochastic policy σ2

exp ̸= 0 enables the
exploration of the set of possible actions.

C. Alternating RL-based Training

After introducing the SPG, we now derive an optimization
procedure akin to [8] for the whole semantic communication
system, i.e., encoder and decoder. It does not require any chan-
nel model but a fixed training/pilot sequence and a feedback
link. We show it in Fig. 2:

1) We note that according to (12) decoder optimization
reduces to supervised learning w.r.t. LCE

θ,φ and φ at the
receiver side. Thus, in the first step, we train the decoder
based on the training sequence and updated encoder, but
without sampler/explorer (σ2

exp = 0).
2) Second, the encoder explores with transmit signals xtrain.

It is optimized based on the policy gradient of LSPG
θ and

the reward ln qφ(ztrain|ytrain) that the decoder feeds back.
3) We alternate between the first and second training steps

until convergence. Note that we can use one or multiple

Encoder

pθ(x̄|s) = δ(x̄ − µθ(s))

Sampler / Explorer

p(x|x̄)

Communication

Channel p(y|x)

Semantic Decoder
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∂
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θ

1. Train Decoder
∂
∂φLCE

θ,φ

strain

x̄train

xtrain

ytrain
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Feedback link:

ln qφ(ztrain|ytrain)

Reinforcement

Learning

Supervised

Learning

Fig. 2. Optimization procedure of a semantic encoder and decoder without
a differentiable channel model: 1. Train the decoder supervised based on
the training sequence and updated encoder but without sampler. 2. Encoder
explores transmit signals xtrain and improves its policy according to the
decoder reward feedback. 3. Alternate between both steps until convergence.

SGD steps and batches for each alternating training step,
respectively.

Reminiscent of the RL fashion of the stochastic policy opti-
mization of Semantic INFOrmation traNsmission and recov-
erY [4], we name this approach RL-SINFONY.

IV. EXAMPLE OF MODEL-FREE SEMANTIC RECOVERY

To evaluate the proposed model-free optimization approach
RL-SINFONY, we use the numerical example of distributed
image classification with SINFONY from [4] shown in Fig. 3.
Thus, we will now assume the hidden semantic RV to be a
one-hot vector z ∈ {0, 1}M×1 representing one of M image
classes. Then, each of the four agents observes its image, i.e.,
the source signal si ∼ p(si|z) with i = 1, . . . , 4, through a
semantic channel, being generated by the same semantic RV z
and thus belonging to the same class. Based on these images, a
central unit shall extract semantics, i.e., perform classification.

We propose to optimize the four encoders pθi
(xi|si) jointly

with a decoder qφ(z|y = [y1,y2,y3,y4]
T ) w.r.t. cross entropy

(8) of the semantic labels (see Fig. 3). Hence, we maximize the
system’s overall semantic measure, i.e., classification accuracy.

To show the basic working principle and ease implemen-
tation, we use the grayscale MNIST and colored CIFAR10
datasets with M = 10 image classes [4]. We assume that the
semantic channel generates an image that we divide into four
equally sized quadrants and each agent observes one quadrant
si ∈ RNx×Ny×Nc where Nx and Ny is the number of image
pixels in the x- and y-dimension, respectively, and Nc is the
color channel number.

A. Distributed SINFONY Approach

For the design of SINFONY, we rely on the powerful
DNN approach ResNet for feature extraction [4]. We use the
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Fig. 3. RL-SINFONY for distributed agents. Four agents extract features for
bandwidth-efficient transmission. Based on the received signals, the decoder
extracts semantics.

TABLE I
RL-SINFONY - DNN ARCHITECTURE FOR IMAGE EXAMPLE.

Component Layer Dimension

Input Image (MNIST, CIFAR10) (14, 14, 1), (16, 16, 3)

4× Conv2D (14, 14, 14), (16, 16, 16)
Feature ResNetBlock (2/3 res. un.) (14, 14, 14), (16, 16, 16)
Extractor ResNetBlock (2/3 res. un.) (7, 7, 28), (8, 8, 32)

ResNetBlock (2/3 res. un.) (4, 4, 56), (4, 4, 64)
Batch Normalization (4, 4, 56), (4, 4, 64)
ReLU activation (4, 4, 56), (4, 4, 64)
GlobalAvgPool2D (56), (64)

4× Tx ReLU NTx

Linear NTx

Normalization (dim.) NTx

4× Sampler AWGN + Normalization NTx

4× Channel AWGN NTx

Rx ReLU (4× shared) (2, 2, Nw)

GlobalAvgPool2D Nw

Classifier Softmax M = 10

pre-activation version of ResNet without bottlenecks imple-
mented for CIFAR10 classification. In Tab. I, we show its
structure modified for the distributed scenario from Fig. 3.
There, ResNetBlock is the basic building block of the ResNet
architecture. Each block consists of multiple residual units
(res. un.) and we use 2 for the MNIST and 3 for the CIFAR10
dataset. For further implementation details, we refer the reader
to the original work and our source code [12].

Our key idea here is to modify ResNet w.r.t. the communica-
tion task by splitting it where a low-bandwidth representation
of semantic information is present. Therefore, we aim to
transmit each agent’s local features of length NFeat provided
by the Feature Extractors in Tab. I instead of all sub-images
si and add the component Tx to encode the features into
xi ∈ RNTx×1 for transmission through the wireless channel
(see Fig. 3). We note that xi ∈ RNTx×1 is analog and that the

output dimension NTx defines the number of channel uses per
agent and thus information rate. To limit the transmit power
to one, we constrain the Tx Linear layer output by the norm
along the training batch or the encode vector dimension (dim.).
For RL-SINFONY, we add a Gaussian Sampler (26) after the
Tx output compared to [4].

At the receiver side, we use a single Rx module only with
shared DNN layers of width Nw and parameters φRx for
all inputs yi [4]. Based on an aggregation of the four Rx
outputs, a softmax layer with M = 10 units finally computes
class probabilities qφ(z|y) whose maximum is the maximum
a posteriori estimate ẑ.

B. Optimization Details

We evaluate RL-SINFONY in TensorFlow 2 on the MNIST
and CIFAR10 datasets [12]. For cross-entropy loss minimiza-
tion, we use the gradient approximations from III and the
SGD-variant Adam with a batch size of Nb = 500. We add l2-
regularization with a weight decay of 0.0001. To optimize the
transceiver for a wider SNR range, we choose the SNR to be
uniformly distributed within [−4, 6] dB where SNR = 1/σ2

n
with noise variance σ2

n . We set Nw = NFeat as default and refer
to [4], [12] for more implementation details. In the following,
we compare the performance of:

• SINFONY: The distributed SINFONY design from [4]
trained model-aware as one DNN with channel noise
layer using the reparametrization trick (19) to approxi-
mate the gradients. We train for Ne = 100 epochs with
the MNIST dataset.

• RL-SINFONY: New approach trained model-free via RL
as shown in Fig. 2 using SPG (24). We alternate between
10 decoder and encoder optimization steps. Note that one
decoder and encoder step amounts to one iteration of the
model-aware approach where the encoder and decoder
are optimized jointly. Hence, for a fair comparison, we
divide the number of alternating iterations or epochs Ne
of the SPG approach by 2. We choose Ne = 3000 and
add Ne,rx = 600 epochs of receiver fine-tuning at the end
[8]. To decrease the SPG estimator variance, we choose
a rather high exploration variance σ2

exp = 0.15.
- perfect comm.: SINFONY trained with perfect commu-

nication links without Tx and Rx modules, but with Tx
normalization. Thus, the plain power-constrained features
are transmitted with NTx = 56 or 64 channel uses. It
serves as the benchmark, as it indicates the maximum
performance of the distributed design.

- Tx/Rx NTx: Default SINFONY from Tab. I trained with
Tx and Rx module and NTx channel uses.

C. Numerical Results

To measure semantic transmission quality, we use classifi-
cation error rate on semantic RV z.

1) MNIST dataset: The numerical results of our proposed
approach RL-SINFONY on the MNIST validation dataset
are shown in Fig. 4. We observe that both approaches RL-
SINFONY and SINFONY with Tx/Rx module approach the
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benchmark with ideal links (SINFONY - perfect comm.) at
high SNR. Notably, both curves are very close to each other,
i.e., the performance gap after training is minor. This means
training of RL-SINFONY converged successfully.

2) Convergence Rate: Since the number of training epochs
required to achieve the same performance deviates signifi-
cantly with Ne + Ne,rx = 3000 + 600 = 3600 compared to
Ne = 100, we take a closer look at training convergence in
terms of the cross-entropy loss shown in Fig. 5. We averaged
the loss over 10 training runs and illustrate the interval between
the maximum and minimum loss value using shaded areas.
To reach the same loss, we require more than 10 times
more epochs with RL-SINFONY compared to SINFONY.
The reason for the decreased convergence is the increased
variance of the REINFORCE gradient (24) compared to the
reparametrization trick gradient (19). Also, we attribute the
increased variance in training losses (blue-shaded area) to it.

3) CIFAR10 dataset and convergence issues: Trying var-
ious hyperparameter settings, we found that training of RL-
SINFONY with NTx = 16 on the CIFAR10 dataset converges
slowly. Using SGD with high Nb = 512, σ2

exp = 0.15 and
learning rate ϵ = 10−4, we achieved a maximum validation

accuracy of 50% at high SNR after Ne+NRx = 5000+1000 =
6000 epochs compared to 80% with SINFONY after Ne = 200
epochs [4]. The loss continued to decrease even after reaching
our computation time limit of one day. We believe this is due
to the high variance of the REINFORCE gradient (24), which
increases by decreasing σ2

exp and increasing the continuous
output space NTx of x. Training with the more challenging
CIFAR10 dataset may require more accurate gradient estimates
compared to MNIST. Thus, we suggest exploring variance-
reduction techniques in future work [9], [13].

V. CONCLUSION

In this work, we expanded on our previous idea from
[4] by introducing the Stochastic Policy Gradient (SPG): We
designed a semantic communication system via reinforcement
learning, not requiring a known or differentiable channel
model - a crucial step towards deployment in practice. Further,
we motivated the use of the SPG for both classic and semantic
communication from the maximization of the mutual informa-
tion between received and target variables. Numerical results
show that our approach achieves comparable performance to
a model-aware approach, albeit at the cost of a decreased
convergence rate by at least a factor of 10. It remains the
question of how to improve the convergence rate with more
challenging datasets.
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