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Abstract—"Network of subnetworks" is envisioned to be a key
enabler in a 6G network with extremely low (100 µs) latency and
high-reliability (99.9999%-99.99999%) in demanding applications.
However, to achieve this level of performance, it is necessary
to introduce a proactive and robust interference estimation
considering the random mobility of subnetworks in an ultra-
dense environment. We propose long-short term memory (LSTM)
to learn the non-linear behavior of interference power time
series for robust estimation and prediction in in-X subnetworks.
This proposed method empowers to prediction/estimation of
interference on the subnetwork itself. The achieved estimation
result is compared with the moving average-based estimator.
Furthermore, we introduce federated learning (FL) in-X subnet-
works’ interference estimation, which learns cooperatively from
the interference power vector of subnetworks participating in
training. The results indicate that the proposed FL-based estimator
achieves a higher convergence speed and lower estimation error.

Index Terms—In-X, Smart Industry, 6G, Interference Estima-
tion, Interference Prediction, Subnetworks, LSTM, FL.

I. INTRODUCTION

While the current and still evolving 5G communication
system will significantly outperform older standards, in as little
as ten years it won’t be able to keep up with the growing
needs of intelligent and automated systems [1]. According
to the European vision for the 6G white paper [2], there is
increasing demand for vertical applications to be integrated into
6G. Such specialized networks may then exist as a subnetwork
within a surrounding 6G network. Some of the applications
of in-X subnetworks are in-robots, in-vehicle, in-body, in-
house, etc., with different service demands. These subnetworks
have their own extreme requirements in terms of low latency,
high reliability, life-criticality, and data rate, etc [3]. These
subnetworks can be either connected to the existing cellular
network directly or via local interactive devices or may remain
unconnected to the 6G network.

These use cases manifest that the mobility model of
each subnetwork is different and ranges from rapid to slow
movement as well as deterministic or random path, which
results in highly dynamic and diverse interference conditions.
It is anticipated that industrial wireless networks replace the
traditional wired industrial network infrastructures, including
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EtherCAT (Ethernet for Control Automation Technology),
Profinet, and time-sensitive network (TSN) solutions to achieve
a similar level of reliability, latency, and increased data rate as
a more flexible solution [4]. Hence, in this research, we focus
on the in-robot/factory scenario, i.e., an industrial scenario
of an in-X subnetwork that demands extremely low latencies.
Due to this requirement, the resource allocation needs to be
carried out instantly. This necessitates proactive interference
estimation/prediction.

The prediction of interference power can be classified into
classical statistical and data-driven methods like artificial
intelligence (AI) [5]. Classical statistical-based interference
prediction is based on extracting the statistical properties of
the interference like mean and distributions by considering
tail or extreme value theory to predict the next time steps of
interference power values [6]. However, statistics related to
randomness due to the mobility of subnetworks and wireless
channel statistics lead to rather complicated mathematical
derivations which usually only work for some limited cases.
One instance of these methods is [7] in which the conventional
weighted moving average-based is used as an interference
estimator. Due to its simplicity and low computational require-
ment, we have chosen the same moving average estimator as
the baseline technique.

Artificial intelligence provides an increasing ability to deal
with complex data, thus becoming a key enabler in 6G [1].
Machine learning, a branch of artificial intelligence, helps
in the estimation of interference from complex unknown
and potentially non-linear real-time data efficiently. In [8],
regression-based up-link interference identification is proposed,
in which a comparison is shown between linear and non-
linear least-squares regression algorithms along with multi-
layer perception. In [5], the authors used AI-powered inter-
ference estimation using an non-linear Autoregressive Neural
Network (NARNN). There, faster convergence is achieved by
using Levenberg-Marquadt backpropagation (LMBP). However,
backpropagation requires a lot of computations, especially
for deep neural networks, which can make training of the
networks computationally infeasible [9]. Furthermore, it is
necessary to consider existing ML problems like vanishing
and exploding gradient problems while selecting existing
ML based approaches as well. In this research, we have



considered the LSTM method, which consists of a set of gates
to control when information enters the memory that also solves
the aforementioned problems, i.e., vanishing and exploding
gradients [10].

A. Contributions

The contributions of this research work are summarized
here:

Contribution 1: The LSTM model is introduced for the
estimation of interference in individual subnetworks, which
can capture complex statistical dependencies that may exist
in complex unknown and potentially non-linear dynamic
interference patterns collected at the subnetworks. The results
illustrate that the use of LSTM helps achieve a low estimation
error by addressing problems like vanishing and exploding
gradients.

Contribution 2: The proposed LSTM-based interference
estimation achieves low estimation error at the cost of higher
convergence time. We introduce FL based (FedAVG-In-X)
interference estimation algorithm which helps to achieve fast
convergence speed and low estimation error as compared to the
LSTM-based estimation technique deployed in a subnetwork.

B. Outline

The paper is structured as follows: the system model is
introduced in Section II. The base and proposed interference
estimation model is explained in Section III. In Section IV,
the results are discussed. The conclusion of the proposal is
presented in Section V.

Notation: Bold small and capital letters denote vectors and
matrices, respectively. |.| denotes the cardinality of a set. Sets
are calligraphic.

II. SYSTEM MODEL

A. Subnetwork Deployment

Assume a set of N = {n1, . . . ,nN} with |N | = N
subnetworks have been deployed in a factory within an area
A ⊂ R2 and moving with velocity v m/s in a random direction
β. One gNB/local interactive device, e.g., an access point (AP)
or a drone in the outdoors, provides coverage and data exchange
for all N subnetworks. Each subnetwork consists of a set
of Mnq

= {m1, . . . ,mM} with |Mnq
| = M, ∀ nq ∈ N

sensor-actuator pairs. Fig. 1 shows the deployment and the
working principle of the subnetwork. For interference modeling,
it is assumed that downlink (DL) from the controller to the
actuator and uplink (UL) from the sensor to the control unit.
The control unit of the subnetwork is placed in the center
as an example. The positions of the subnetworks are given
as P = [pn1 , . . . ,pnN

]. Assume that b
(
pnq ,r

)
is a disc with

radius r centered at position pnq , illustrating the area occupied
by the nqth subnetwork. To place a new subnetwork, the
admissible area for the nq th subnetwork consists of the original
area A excluding the occupied area of all (q− 1) subnetworks,

that is, Ã ⊂ A \
q−1⋃
k=1

b (pnk
,r) [11]. Furthermore, we also

assume that Ã provides extra space to avoid overlapping of

Fig. 1. Subnetwork with sensor-actuator pair (not to scale)

subnetworks. Then, the conditional pdf for the center of the
nqth subnetwork can be given as [11]

f(pnq
|pn1

, . . . ,pnq−1
) =


1

|Ã|
for pnq

∈ Ã

0 else
(1)

where |Ã| is Lebesgue measure of Ã. In the factory, the number
of sensor-actuator pairs and control units can be assumed to
be fixed in area A. The position of the sensor / actuator ma

of the nq subnetwork is therefore ϕnqma
= pnq

+ ξnqma
.

So, the location of all sensor-actuator pairs in subnetwork nq

can be given as Ξnq = {ξnqm1 ,ξnqm2 , ..., ξnqmM
} which is

distributed as binomial point process over a disc b (0,r) for
|Mnq

| sensor-actuator pairs as the uniform pdf of 1
πr2 .

B. Interference Modeling

We focus on the interference experienced by subnetwork
nq during uplink in a high-density subnetwork scenario by
all other active links using the same frequency band in
the area A. To ensure extreme communication requirements
within a subnetwork, orthogonality of communication links
should be guaranteed [4]. We consider a network with N
subnetworks and Nch frequency bands partitioned from a
total bandwidth, B. Furthermore, we assume time division
duplexing (TDD) for intra-subnetwork communication. Each
subband is split into M orthogonal OFDM subcarriers, where
each subcarrier is occupied by only one actuator and one sensor
for downlink (DL) and uplink (UL) transmission. This ensures
there is no intra-subnetwork interference. Each subnetwork uses
a single frequency band out of Nch. We assume the number
of subbands Nch < N . Therefore, multiple subnetworks will
interfere in a single subband. In the following, interference
analysis is carried out for the nqth subnetwork among N
subnetworks during the uplink. Interference is caused by
subnetworks K \ {nq}, where K ⊂ N is a set of subnetworks
utilizing the same subband. As a result, there exists dynamic
inter-subnetwork interference due to the subband sharing by
more than one moving subnetworks.

To describe the interference at the nqth subnetwork we first
define a set of communication links except those belonging to
itself as:

Cnq =

{
N−1⋃
j=1
j ̸=q

Mnj

}
︸ ︷︷ ︸

I

⋃{
N \ {nq}

}
︸ ︷︷ ︸

II

(2)



where the I is for all sensor-actuator pairs, the II is for all
control units.

With the set Cnq
we can describe the interference using an

appropriate channel model. Eq 3 sums over all contributing
links, where hce(t) ∀ ce ∈ Cnq captures small-scale fading.
The path loss is lce(t) = min(1,|ϕce(t) − pnq

(t)|−σ) with
the path loss exponent σ[12] and ϕce represents the position
of each communication link from ϕnqma

. Small-scale fading
is modeled as a circular symmetric Gaussian distributed with
E[|hce(t)|2] = 1 [13]. The symbol ζce(t) denotes shadowing
based on spatially correlated Gaussian random fields model
with a decorrelation distance of δ, which is [14]. If we assume
unit transmit power for any time t, we obtain the interference
power at control unit pnq as

Ipnq
(t) =

∑
ce∈Cnq

|hce(t)|
2 · lce(t) · γce(t) · ζce(t) , (3)

The symbol γce(t) is a Bernoulli random variable indicating
1 when the link is active and 0 when there is no transmis-
sion. For the nqth subnetwork, we consider S interference
powers, in successive time instants collected in a vector
Ipnq

= [Ipnq
(0), . . . , Ipnq

(S)]. This interference power vector
Ipnq

can be seen as a stationary time series from which we
can capture the long-term non-linear relationships.

III. INTERFERENCE ESTIMATION

In this section, we discuss the baseline interference es-
timation technique, i.e., a moving average estimator, and
propose centralized and decentralized machine learning-based
estimation techniques.

A. Moving Average Estimation

The baseline method is the weighted average-based interfer-
ence estimator, which is used in link adaptation for traditional
enhanced mobile broadband (eMBB) services. The interference
measured at time t is filtered with a low-pass first-order infinite
impulse response (IIR) filter to obtain the interference [15]:

Îpnq
(t+ 1) = αIpnq

(t) + (1− α)Îpnq
(t) (4)

where Ipnq
is the true interference power measured at previous

time step, and Îpnq
is the estimated interference of the nqth

subnetwork and 0 < α < 1 is the forgetting factor of the filter.

B. LSTM-based Interference Estimation

An LSTM is a type of recurrent neural network that is able
to capture long-term dependencies in sequential data [16]. The
interference power vector Ipnq

is considered as the input for the
LSTM model. LSTM exploits the complex and potentially non-
linear relationship contained in the interference power vector.
Furthermore, it can learn to store and retrieve information from
long-term dependencies, allowing to make better predictions
than other types of recurrent neural networks. In interference
prediction, we are utilizing it to predict the interference
power at time t + 1 based on the series of interference
power vectors till time t, i.e. [Ipnq

(0), Ipnq
(1), . . . ,Ipnq

(t)].
LSTMs are composed of cells that can remember or forget
information, as well as input, output, and forget gates that
decide which information should be retained and which should

be discarded over time. It allows for better handling of long-
term dependencies and also solves the vanishing or exploding
gradient problem [10]. A detailed explanation of LSTM can be
found in [16]. The data consisting of interference power of size
S collected at the nqth subnetwork is split into training (90%)
and test data (10%). The training data is transformed and
restructured with a moving window of length Sw and a moving
step size sm such that it can feed into LSTM. After training, the
model is tested and analyzed in terms of root mean square error
and Mean absolute percentage error. The evaluation matrices
are presented and analyzed in Section IV. This interference
estimation technique can be deployed in subnetworks without
connection to the surrounding 6G networks.

C. Cooperative Interference Estimation Using LSTM Based
Federated Learning

Up to this point, we have considered interference in a single
subnetwork. However, it is clear that the interference power
of different subnetworks might be correlated and therefore
might improve estimation performance. Let us consider two
subnetworks like nq , nu ∈ K which are facing interference
from K \ {nq} and K \ {nu} respectively. There exists a
cross-correlation between interference power vectors as both
subnetworks account for the same interferers K\{nq,nu}. We
can infer that the subnetworks in K have higher importance
than the other subnetworks N \ K as they are likely to
cross-correlated with the result of small-scale fading. As the
subchannels on different bands are likely to be uncorrelated,
i.e., accounting subnetwork N \K in cooperative training may
result in marginal gain only. As a result, we are interested to
analyze the performance by considering nq ∈ K subnetworks.
Moreover, knowledge of the spatiotemporal distribution in the
Gaussian random field of the area A helps to learn about the
shadowing effect. Constraining data just to K, though, might
still limit the observation of global effects like shadowing.
Therefore, it is necessary to analyze considering all subnetworks
nq ∈ N in training and examine the performance of the
proposed estimator. The analysis of these two cases helps to
decide on a computationally efficient approach, e.g. reducing
the number of participating subnetworks in training, but also
gives intuition for the selection of participants among all
subnetworks, which is numerically analyzed in Section IV-C.
Hence, cooperative estimation trained with local data and
empowered by global knowledge from other subnetworks’
learning may prove to be useful for estimation with lower
error and higher convergence speed.

Federated learning is a distributed machine learning method
that allows multiple devices, such as smartphones or IoT
devices, to train a machine learning model collaboratively
[17]. In federated learning, each device trains a local model
on its own local data, and the global model is then updated
by aggregating the updates from the local models. One of the
main benefits of federated learning is that it allows the training
of machine learning models on large amounts of decentralized
data without the need to centralize the data on a single server.
We introduce the LSTM-based FL estimator (FedAVG-in-X)



with all N and interfering K clients in this research work,
which is explained in Algorithm 1, and the following.

Algorithm 1 FedAVG-in-X Interference Estimation Algorithm
1: Collect interference power vector for all nk ∈ K as Ipnk

// replace K
by N if all subnetworks participates in training.

2: gNB/Server Executes:
3: Initialize model θnk

0 with Xavier Initialization
4: for each round p = 1,2, . . . do
5: for each subnetwork nk ∈ K in parallel do
6: θ

nk
p+1 ← SubnetworkUpdate(nk , θp, Ipnk

)

7: θ
nk
p+1 ←

∑
nk∈K

|Ipnk
|∑

nk∈K
|Ipnk

|
θ
nk
p+1

8: end for
9: end for

10: Subnetwork/Client Executes:
11: Interference power vector Ipnk
12: SubnetworkUpdate(nk , θp, Ipnk

)
13: for each local epoch i from 1 to E do
14: θ

nk
p ← trained model of LSTM model with input Ipnk

15: end for
16: Predicted interference Îpnk

[Sw + 1] ← SubnetworkUpdate(nk ,
θp, Ipnk

[1:Sw ])
17: return θ

nk
p

In our work, we have considered the interference power
vector Ipnk

∀ nk ∈ N as a local data set, which is disjoint,
balanced, and non-i.i.d. and trained the LSTM model as
explained in Section III-B. The updated model of each
subnetwork nk ∈ K is uploaded to the cellular infrastructure
that aggregates the models and sends the aggregated model
back to the subnetworks. This process is carried out until
convergence as shown in Fig. 2.

Fig. 2. Interference Estimation using FL for subnetwork. The index of
subnetwork is considered based on using same channel during simulation

The machine learning model is trained by the subnetworks
collaboratively to solve the following optimization problem
[17]:

min
θ∈Ra

∑
nk∈K

|Ipnk
|∑

nk∈K
|Ipnk

|

|Ipnk
|∑

i=1

1

|Ipnk
|f(Ipnk

[i];θ) (5)

where K ⊂ N . The |.| denotes the length of vector. The
objective 1

|Ipnk
|f(Ipnk

[i];θ) is an empirical loss function

TABLE I
SIMULATION SETTING FOR INTERFERENCE ANALYSIS AND ESTIMATION

Parameter Value
Deployment Parameter
Number of subnetworks , |N | 16
Number of sensor-actuator pair, |M| 1
Interfering subnetworks, |K| 4
Deployment density~(subnetwork/km2) 40000
Mobility Parameter
Mobility Model RDMM
Cell Radius, r 2 [m]
Velocity, v 2 [m/s]
Minimum distance, d 3 [m]
Channel Parameter
Path Loss Exponent, σ 2.55
Shadow fading standard deviation 5.7 [dB]
Decorrelation distance, δ 5 [m]
Carrier frequency, fc 6 [GHz]
Number of available Channel, Nch 4
LSTM Parameters
Activation Function tanh
Loss Function Mean Square Error (MSE)
Learning Rate 0.01
Number of layer and hidden units per layer 1 and 64
Optimizer Adaptive moments (Adam)
Weight Initialization Xavier

defined by the training task, and f(Ipnk
[i];θ) is the training loss

for the data point i ∈ {1, . . . ,|Ipnk
|} and the model parameter

θ with dimension a.
In this research, we have considered federated averaging (Fe-

dAVG) which incorporate E local epochs of training in each
subnetwork. However, this Fed-in-X approach will only be
applicable for subnetworks connected to existing cellular
networks.

IV. SIMULATION SETUP AND ANALYSIS

A. Simulation Setup

We have assumed that 16 subnetworks are deployed in
a region of 20 × 20 m2 and each subnetwork is mov-
ing with a speed of 2 m/s in a random direction with
β ∼ U(0,2π). The subnetwork follows the random direction
mobility model (RDMM) [18]. Each subnetwork consists of
one active sensor-actuator pair randomly located within radius
r from the center of the subnetwork. The next position of
subnetwork at time t moving with speed v can be given
as [x(t − 1) + vt cos(β), y(t − 1) + vt sin(β)]. It has been
assumed that if two subnetworks are about to collide, i.e.,
the minimum distance between the center of two subnetworks
is less than d, the subnetwork changes the direction. The
interference power at time t is calculated by equation (3)
using the channel parameters mentioned in Table I. The
channel parameters are considered based on the technical report
produced by 3GPP [19]. The time series data associated with
position at time t = 0, 1, ...,S is stored as interference vector
Ipnq

= [Inq
(0), Inq

(1), . . . ,Inq
(S)] ∀ n ∈ 1, . . . ,N . Based on

this local dataset, interference estimation is performed.

B. Evaluation Metrics

1) Estimation Error: To analyze the performance of interfer-
ence estimation, we have considered two performance metrics,
namely root mean square error (RMSE) and mean absolute



percentage error (MAPE). Root mean square error (RMSE) is
given by

RMSE =

√√√√ 1

Ttest

Ttest∑
t=1

(Înq (t)− Inq (t))
2. (6)

MAPE is defined as

MAPE =
100%

Ttest

Ttest∑
t=1

∣∣∣∣∣Inq (t)− Înq (t)

Inq (t)

∣∣∣∣∣ (7)

where Înq
(t) is the predicted interference power and Inq

(t) is
the true interference value for the tth time instance of nqth
subnetwork with Ttest samples.

2) Convergence Analysis: Convergence analysis is the
process of evaluating whether a machine learning model
has reached a stable state, where the model’s performance
on the training data is no longer improving with additional
training. There are several ways for convergence analysis. The
convergence is analyzed in a similar way in terms of training
loss as mentioned in [17], [20].

C. Results and Analysis

The moving average estimator predicts the interference value
at time t+ 1 based on (4) with the forgetting factor α = 0.01.
For comparison with LSTM, we have stored the predicted
interference power value with a moving average-based estimator
on the estimated interference power vector. Performance is
analyzed using performance metrics like RMSE and MAPE
from true and estimated interference power vectors.

In the case of LSTM based method with a univariate
interference power vector, it is necessary to restructure the
data into multiple inputs and outputs to create a local dataset
in the subnetwork. The interference power vector of size
S = 10000 is divided into 90% train and 10% test data.
Those train and test data are restructured with a window size
of Sw = 20 and a moving step of size sm = 1. Utilizing
these sequences of interference power values from train data,
LSTM extracts the existing complex and potentially non-
linear relationships. The details of the LSTM parameters are
mentioned in Table I. The LSTM model is trained for 150
epochs in the nth subnetwork and the performance is compared
with the estimated interference power vector using a moving
average estimator.

Performance metrics are calculated for the entire test data.
Fig. 3 illustrates the comparison of RMSE in the nqth
subnetwork trained only with the interference it captures, and
another one with data of all the interference captured by all
the N subnetworks. It shows that the performance is better
when the nqth subnetwork is trained by only its captured
interference compared to the case it is trained by also all
other subnetworks’ captured interference. It takes into account
only the correlated time series observed by itself. Although
both converge, convergence with all subnetworks’ interference
power vectors together using a comparable size of LSTM (n-
to-n LSTM) for training is much slower. This encourages us to
empower training in a decentralized way without sharing the

Fig. 3. RMSE of the interference prediction for the nq th subnetwork
LSTM model trained with Ipnq

on interfered by K \ {nq} compared to
I = [Ipn1

, . . . ,IpnN
].

interference power vector itself. This reduces the effort used for
collecting and sharing interference data in the nqth subnetwork.
The RMSE and MAPE are approximately 0.0048 W and 10%
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Fig. 4. Prediction of interference for a fixed time step (test data) after training
150 epochs.

for the nqth subnetwork trained with local data after training
40 epochs. After training 150 epochs, the RMSE and MAPE
are 0.0032 W and 5.804%. For 1000 time steps (test data),
the RMSE and MAPE for the moving average-based estimator
are 0.016 W and 69.174%.

Fig. 4 shows the prediction based on the proposed LSTM-
based estimator and the moving average-based estimator. It
can be observed that the LSTM model performs better than
the moving average-based estimator. We are not considering a
moving average-based estimator for further analysis since an
LSTM-based predictor is superior.

We consider two cases with K and N are considered
participants in FL training. The local model of the participating
subnetwork is trained by local data. These subnetworks send
the model to the server. The server then aggregates them
and sends the aggregated model which will be utilized by the
subnetworks. The FL model is repeated for 150 communication
rounds. Based on simulation results, it took 40 epochs to reach
the convergence region for the LSTM model, while FedAVG
took less than 10 and 15 local epochs (i.e., approx. p = 2
and p = 3 communication rounds with E = 5 as mentioned



in Algorithm 1) for K = 4 and N = 16 participating clients,
respectively. It shows that cooperative interference estimation
helps to speed up convergence more than 2 times. Furthermore,
it is necessary to analyze the error performance as well.
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Fig. 5. RMSE comparison of test data for all subnetworks participating
in training N and only subnetworks operating in the same channel K for
FedAVG.

The RMSE analysis shown in Fig. 5 illustrates the RMSE
of FedAVG with participating N and K subnetworks. The
results show that considering N subnetworks instead of all
K achieves the performance with marginal difference (approx.
0.7− 1%) in terms of error metrics. This result illustrates the
influence of the participating K instead of N subnetworks
on the estimation error is marginal, which is computationally
efficient. The RMSE and MAPE achieved at 150th epoch for
LSTM-based estimator are 0.0032W and 5.86% approximately
comparable to 7th communication round (35 local epochs)
with 0.0031 W and 4.86% in case of FL-based estimator
with participating K clients. This result illustrates the intuitive
performance comparison of the FL-based estimator and LSTM-
based estimator at individual subnetworks. Furthermore, it
shows that the FL-based estimator outperforms in terms of
both convergence and prediction error. The reason behind the
better performance of FedAVG is that it trains a few epochs at
the subnetwork which helps to learn more about a local dataset
and the global knowledge from the aggregated model helps
learn the full statistics of interfering subnetworks as well. From
the results, we have observed that at the 30th round, a MAPE
of ≈ 2% and an RMSE of 0.000566 W have been achieved.
The MAPE in the 150th communication round is 0.9%.

V. CONCLUSION

In this paper, we have used an LSTM-based interference
estimation technique using only the interference power vector
available at each subnetwork. ML-based interference estima-
tion outperforms the conventional moving average estimation
method with a high margin in terms of RMSE and MAPE.
Already a purely local LSTM model results in low MAPE and
RMSE with slow convergence speed. Furthermore, we have
introduced the concept of cooperative interference estimation
for subnetworks operating on the same channel without losing
much compared to including all participating subnetworks. This
model with federated learning (FedAVG-in-X) shows a high

convergence speed compared to the model without federated
learning. It shows that such a proactive cooperative interference
estimation technique can be a potential proactive approach for
estimation in an application like an in-X subnetwork which
needs to work in a fraction of ms latency and extremely high
reliability.
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