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Abstract—In this paper, we investigate the application of
deep transfer learning to channel estimation for an orthogonal
frequency division multiplexing (OFDM) system. Recently, deep
learning has been applied for channel estimation and shown its
promising performance, while it suffers in the presence of a mis-
match between the training phase channel model and real-world
channel conditions. In the following, we deploy two different
convolutional neural network (CNN) models from the literature
and highlight their performance degradation caused by mismatch
problems of power delay profile (PDP) and Doppler spreads.
Transfer learning then is deployed to resolve the mismatch
problem without the need to completely retrain CNN models.
Our results show that we can alleviate the degradation using
smaller efforts with transfer learning, especially for CNN with a
deeper structure. In the end, when comparing transfer learning
and data augmentation, our study also indicates that transfer
learning is the better choice when coping with channel mismatch
problems.

Index Terms—deep learning, transfer learning, channel esti-
mation, OFDM

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) has
been widely employed for LTE and 5G NR to address the fre-
quency selectivity of wireless channel and improve bandwidth
efficiency. Also, channel estimation is critical for wireless
communication systems. In order to obtain the channel esti-
mates, pilot symbols will be sent at the selected time frequency
grid. We can use conventional methods, i.e., Least Square (LS)
and Minimum Mean Square Error (MMSE) methods to obtain
a channel estimate [1]. The most significant advantage of LS
is its simplicity, but the performance is also influenced by
noise easily. Compared with LS, MMSE is able to achieve
a better performance, however, it also requires second order
channel statistics and noise variance, which must be obtained
by additional estimation methods.

The recent development in Artificial Intelligence (AI) or
Machine learning (ML) has reformed many areas. In [2],
AI/ML is regarded as a potential technical method to im-
prove the performance of the NR air interface. Specifically,
deep learning (DL) has been investigated to enhance wireless
communication systems in the areas such as channel decoding
[3] and MIMO equalization [4]. For the problem of channel
estimation, in [5], channel estimation for OFDM system is
regarded as a Super Resolution (SR) problem and a corre-

sponding CNN is employed. Furthermore, a special structure,
residual learning, is introduced in [6] for channel estimation.

For the aforementioned deep learning based methods, a
convolutional neural network (CNN) needs to be trained offline
at first and then employed to estimate the wireless channel.
The main disadvantage of offline learning is that, when the
channel model for the employing (or testing) is different
from the training phase, the estimation performance will be
degraded, which can be also regraded as an distribution shift
problem from the aspect of ML. However, from a practical
point of view, it infeasible to collect channel data from all
possible channel conditions in advance and it is very time
consuming to retrain a CNN from scratch every time channel
conditions change. In order to solve this problem, the concept
of transfer learning [7] is applied to channel estimation in this
paper, for estimating channel models different from training
data. In addition to that, our investigation shows that the
number of training data, epochs, and trainable layers can be
reduced when deploying transfer learning. The contribution of
this paper can be summarized as follows:

1. Investigate the performance degradation of CNN due to
the mismatch between channel model for training phase
and deploying phase.

2. Use transfer learning to resolve the performance degra-
dation and compare the performance in two different
scenarios, power delay profile (PDP) mismatch and
Doppler spread mismatch.

3. Use simulation results to demonstrate the reduced num-
ber of epochs, training data, and trainable layers required
for transfer learning method.

The paper is structured as follows. In section II, the system
model of channel estimation is introduced. Section III explains
CNN-based channel estimation methods. Next the channel
mismatch problem for CNN and the concepts of transfer
learning are also illustrated in this section. Simulation results
are presented and discussed in IV. Finally, section V concludes
the paper.

II. SYSTEM MODEL

The transmitter and receiver of the OFDM system are
assumed to be equipped with single antennas. Each OFDM
subframe consists of N subcarriers and T OFDM symbols.



The relationship between transmitted and received signal can
be represented by

Y = H⊙X+W (1)

where ⊙ stands for the Hadamard product. H ∈ CN×T

represents the channel matrix containing channel coefficients.
X ∈ CN×T and Y ∈ CN×T are transmitted signal and
received signal respectively. The additive Gaussian noise is
denoted as W ∈ CN×T . If i-th subcarrier and k-th symbol is
allocated to transmit pilot symbol, it can be written as

Yp,(i,k) = Hp,(i,k)Xp,(i,k) +W(i,k) (2)

the subscript p indicates that (i, k)th grid is a pilot position.
Channel estimation on the pilot position can be obtained using
least squares:

ĤLS
p,(i,k) = arg min

Hp,(i,k)

∥Yp,(i,k) −Hp,(i,k)Xp,(i,k)∥2

=
Yp,(i,k)

Xp,(i,k)

(3)

A. MMSE interpolation

In order to estimate the channel on positions where data
symbols are transmitted, a linear interpolation method can be
applied:

ĥd = A · ĥp, (4)

where ĥp ∈ CNp and ĥd ∈ CNd are the vectorized channel
estimates on pilot position and data position respectively.
Np and Nd are the number of pilot and data symbols. The
interpolation matrix A in (4) can be calculated using the
MMSE method [1]:

AMMSE = argmin
A

E
{
∥hd −A · ĥp∥2

}
= Rhdhp

(
Rhphp

+ σ2
wI

)−1 (5)

where Rhphp is the channel auto correlation matrix at pilot
positions and Rhdhp

is the channel cross correlation matrix
between data and pilot positions. σ2

w denotes noise variance
and I represents the identity matrix. Obviously the statistics of
the channel need to be perfectly known when applying MMSE
interpolation, which is infeasible from a practical prospective.

B. Radial Basis Function (RBF) Interpolation

Alternatively, kernel based approaches are also suitable for
interpolation and RBF [8] is one of most commonly used
kernel. Channel estimation on the data position n can be
calculated as:

ĥd[n] =

Np∑
j=1

ĥp[j] ·
φn(j)∑Np

l=1 φn(l)
, for n = 1, ..., Nd, (6)

where φn(l) is Gaussian radial basis function. The above
equation can be regarded as an average with weights calculated
using the kernel function φn(·).

III. DEEP LEARNING BASED CHANNEL ESTIMATION

A. Super Resolution and CNN

Super resolution refers to the process of recovering high
resolution images from low resolution images. For channel
estimation, the matrix only containing channel estimates on
pilot positions can be regarded as a low-resolution image
and the channel estimates on both pilot and data positions
as high-resolution image. In [5] and [6], neural network-
based methods have been proposed to estimate the channel
on data positions with the given channel estimates on pilot
positions. SRCNN [5] is a shallow network which includes
three convolutional layers with a structure given in Table I.
Compared with SRCNN, ResNet [6] has a deeper structure
and it employs residual structure to alleviate the problem of
vanishing gradient for deep networks. The first layer of SR-
ResNet is a convolutional layer, followed by 4 residual blocks
and 2 convolutional layers at the end.

TABLE I: Network Structure for SRCNN

Layer Type Kernel Num Kernel Size Activation
1 Conv 64 9× 9 ReLU
2 Conv 32 1× 1 ReLU
3 Conv 1 5× 5 ReLU

CNN based channel estimation can be divided into three
steps. Firstly, obtain LS channel estimates on pilot position as
explained in (3). Secondly, interpolate pilot channel estimation
coarsely to estimate the channel on the data position, e.g.,
RBF interpolation given by (6). Thirdly, feed the coarse
interpolation into CNN as input and take the output as the
final estimation on both pilot and data.

Fig. 1: The Pipeline for Deep Learning based Channel Estimation.

B. Network Training

Denote the input of the CNN, the middle matrix in Figure 1,
as Ĥinput, the output of CNN as ĤCNN. The parameters of the
CNN are represented as Θ and fΘ (·) stands for the function
learned by CNN. The estimation of the CNN can be written
as:

ĤCNN = fΘ(Ĥinput) (7)

Furthermore, we choose the Loss function as the Mean Square
Error (MSE) between the CNN estimates and ground truth:

L(Θ) =
1

Ntrain

Ntrain∑
l=1

∥Ĥ(l)
CNN −H(l)∥2

=
1

Ntrain

Ntrain∑
l=1

∥fΘ(Ĥ(l)
input)−H(l)∥2

(8)



where Ntrain is the number of training data. The weights in the
CNN will be updated using the gradient of the loss function
with respect to the weights:

Θ = Θ− α
∂L(Θ)

∂Θ
(9)

where α is named the learning rate.

C. Transfer Learning and Data Augmentation

In practice, a mismatch between the channel for training the
CNN and the channel when deploying a CNN is common due
to the change of environments and movements of users. If a
channel changes not significantly, the CNN estimator is usually
able to behave robustly [6]. However, it may be difficult for
a CNN to achieve low MSE when the channel differs greatly
from channel data used in training. Considering the cost, it is
infeasible to train CNNs using new channel information from
scratch every time the channel conditions change. In order
to alleviate this problem, concepts of data augmentation and
transfer learning are introduced.

1) Transfer Learning: The basic principle of transfer learn-
ing is to use a pre-trained model and then continuously use
new data to retrain the model based on the pre-trained model.
For large models, this might still be very computationally
complex, but will speed up convergence of the training and
requires less data generally. The most important aspect of
transfer learning is based on the following observation: the
front layers of the neural network will extract features con-
taining more general information, while layers in the back
close to the output will be more task-oriented [9]. Therefore,
when the channel condition has changed, not all parameters
need to be retrained. Front layers can be set as frozen, where
the parameters would not be updated during transfer learning
phase. For example, as depicted in Fig. 2, we set the first
convolutional layer and subsequent three residual blocks as
frozen. The corresponding parameters will not be updated
when training. Data for transfer learning can be collected using
channel sounding [10] or pilot aided training data generation
(PATDG) [11].

Fig. 2: An example of transfer learning for SR-ResNet. The gray
block is frozen and the corresponding parameters will not be updated.
The white blocks are trained.

2) Data Augmentation: Data augmentation is a technique
commonly used in machine learning which applys transfor-
mation of existing data to increase the size and diversity
of the training data [12]. In our work, data augmentation
involves collecting data from different channel conditions to
enhance the generality of the dataset, as changes in PDP and
Doppler spread can be considered as transformations along the

frequency and time axes. However, requirements on the time
and computational resource in such a way for offline training
will become higher due to the extra effort for data collection
and the increased number of training data.

IV. SIMULATION RESULTS

A. Simulation settings

The carrier frequency is set as 2.1 GHz and sub-carrier
bandwidth as 15 kHz. The number of subcarriers N is set
as 72 and the number of OFDM symbols as 14. The number
of pilots is 48. The modulation is 64 QAM and coding scheme
is chosen as convolutional codes (with code rate of 0.5) for
BER simulation. Keras and Tensorflow with GPU backend are
used to build up and train CNNs.

In our work, two scenarios are taken into consideration.
In scenario A, two channel models, COST 259 typical ur-
ban (CTU) and Extended Typical Urban (ETU) model are
employed to evaluate estimation performance of different
methods. From the PDP plotted in Fig. 3, it is clear that
the ETU channel has longer delays. Therefore, the coherence
bandwidth of ETU channel is narrower. For both channel
models we have the same Doppler spread of 96 Hz. In scenario
B, it is assumed that channel PDP is identical but user speed
will change, as a result, the Doppler spread will change. The
CTU channels with Doppler spreads of 96 Hz (user speed ca.
50 km/h) and 270 Hz (user speed ca. 140 km/h) are selected. In
order to illustrate conveniently, these two channels are named
as CTU-96 and CTU-270. In Fig. 4, different CNN training
schemes are depicted for scenario A and B. The configuration
for training is given by Table II. Notice that, for SRCNN, all
three layers are set as trainable. However, only the last three
layers in SR-ResNet are trainable and the front layers will not
be updated. The SNR of training data for both initial training
and transfer learning is set as 20 dB.
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Fig. 3: Power delay profile of ETU and CTU channel

TABLE II: Configuration for initial training and transfer learning
for ETU channel

Initial training Transfer learning
Channel model CTU / ETU 96 ETU / ETU 270
Num. training data 10000 3000
Num. training epochs 100 10



SRCNN CTU / ResNet CTU

CNN Model Train with CTU 
channel

Test with ETU 
channel

SRCNN ETU / ResNet ETU

CNN Model Train with ETU 
channel

Test with ETU 
channel

SRCNN TL / ResNet TL

CNN Model Test with ETU 
channel

Train with CTU 
channel

Transfer learning 
with ETU channel

SRCNN 96 / ResNet 96

CNN Model Train with CTU 96 
channel

Test with CTU 270 
channel

SRCNN 270 / ResNet 270

CNN Model Train with CTU 270 
channel

Test with CTU 270 
channel

SRCNN TL / ResNet TL

CNN Model Test with CTU 270 
channel

Train with CTU 96 
channel

Transfer learning with 
CTU 270 channel

Scenario A - different channel power profile delay Scenario B - different doppler spreads

Fig. 4: Training process for different CNN based methods

TABLE III: Parameter settings for BER simulation

Coding Scheme Convolutional codes
Code rate 0.5
Modulation 64 QAM
Channel Model ETU Channel
Channel Equalization Least Square

Besides the CNN methods, we also simulated other algo-
rithms for comparison.

• LS+RBF means that we at first get the LS estimation on
pilot position and then use RBF to interpolate and obtain
the estimation also on the data position, as given in (6).

• LS+MMSE stands for the method that LS estimations
on pilot position are interpolated using MMSE method,
as illustrated in (4) and (5). Channel statistics and noise
variances are assumed to be known perfectly, which is
not feasible from a practical standpoint.

B. Performance analysis

1) Scenario A: The estimation performance for the ETU
channel is depicted in Fig. 5a. Due to the assumed perfect
knowledge of channel statistics and noise variances for MMSE
interpolation, LS+MMSE exhibits the best performance. While
LS+RBF has the highest MSE until approximately 22 dB and
after that SR-ResNet CTU has the highest MSE. CTU trained
models (SRCNN CTU and SR-ResNet CTU) have mismatched
training and testing data, therefore it can be observed that
gaps between CTU trained models and ETU trained or transfer
learning model are significant when SNR is greater than 15 dB.
Interestingly, we can find that ResNet model is more sensitive
to the channel mismatch since the degradation of SR-ResNet is
more significant than SRCNN. The reason is that SR-ResNet
has a larger number of parameters and a deeper structure,
so it can overfit to the training data to a larger degree. The
overlapping between ETU trained models and TL methods
proves that transfer learning is able to alleviate this problem
to a large degree for both SRCNN and SR-ResNet.

The comparison of bit error rates (BER) is plotted in Fig.
5b. We use the estimates of introduced methods to equalize the
channel and the corresponding simulation settings is given in
table III. Similarly, the degradation due to channel mismatch
is also significant and transfer learning is helpful to solve this
problem. It is interesting that the difference between LS+RBF
and SR-ResNet CTU is larger than that shown in Fig. 5a. The

reason is that LS+RBF has some extremely large estimation
errors for certain data symbols. The large value of a single
error can increase the MSE to a large degree but it has limited
influence on the error rate simulation, since the maximum
contribution cannot be more than one symbol error.
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Fig. 5: Scenario A: Channel Estimation MSE and BER for ETU
channel in terms of SNR.

In Figure 6, we demonstrate how the computational re-
sources required for transfer learning with SR-ResNet can
be further reduced in terms of three aspects: the number
of epochs, training data, and trainable layers. The default
settings is as following: 10 epochs, 3000 training data and
3 trainable layers. For each plot, we just change one setting
and keep the other two defaulting settings. From (a), we can
find that 3 training epochs for transfer learning is already
able to reduce MSE to a relatively low level. Similarly, from
part (b) and (c), 3000 training data and 1 trainable layers can
bring improvements to a large degree. Compared with training
a model from scratch, the cost of transfer learning is quite
acceptable due to the small number of trainable layer, training
data and epochs.

2) Scenario B: In Fig. 7a, estimation MSEs for ETU-270
channel are plotted. The gap between SR-ResNet-96/SRCNN-
96 and SR-ResNet-270/SRCNN-270 shows that the mismatch
due to different Doppler spread can also cause performance
degradation. TL models perform much better than SR-ResNet-
96/SRCNN-96, but worse than SR-ResNet-270/SRCNN-270.
A possible explanation is that difference between Doppler
spread 270 Hz and 96 Hz is large and it needs more training
data or epochs to alleviate completely.

Fig. 7b provides the comparison of BERs of CNN-based and
benchmark methods. For SNRs below 10 dB, BER differences
are insignificant. When SNRs are higher, especially greater
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Fig. 6: Channel Estimation MSE of transfer learning in terms of (a)
number of epochs, (b) number of training data, and (c) number of
trainable layers.
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Fig. 7: Scenario B: Channel Estimation MSE and BER for CTU
channel (Doppler spread 270 Hz) in terms of SNR.

than 20 dB, it is very clear that LS+MMSE has the best
performance and LS+RBF has the worst one. Transfer learning
based methods outperform mismatched trained models (i.e.,
SR-ResNet-96/SRCNN-96), but are inferior to matched trained
models (i.e., SR-ResNet-270/SRCNN-270). From the compar-
ison depicted in Fig. 7a and 7b, it is evident that the order of
channel estimation MSE is consistent with the order of BER.

The comparison between data augmentation and transfer
learning is given in Figure 8. At first, 10000 data samples
from CTU-96 and 3000 data samples CTU-270 channel are
collected in advance to build up a dataset with higher gener-
ality. SRCNN-DA/SR-ResNet-DA are trained using this new
general dataset. For SNRs below 10dB, SR-ResNet models are
better than SRCNN models regardlesss of the training strategy.
For the same CNN model, we can find TL strategy is able
to have a lower MSE. In high-SNR region, the differences
between DA and TL are more significant. Above observations
indicate that TL is the better solution when solving the data
mismatch problem in the context of channel estimation.

Overall, the MSE and BER performance have been im-
proved by transfer learning with a relative low cost for the
two simulation scenarios, PDP and Doppler spread mismatch.
In the end, we also found that transfer learning is able to
perform better than data augmentation when coping with the
channel model mismatch problem.

V. CONCLUSION

In this paper, we applied deep transfer learning to channel
estimation. When the channel for training and channel for
inference phase are mismatched because of different PDPs
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Fig. 8: Comparison of channel estimation MSE for models trained
using transfer learning and data augmentation.

or Doppler spreads, transfer learning can alleviate the per-
formance degradation using a small effort. We have shown
that transfer learning can increase the scalability and flexibility
of the CNN based channel estimation method at low cost.
Furthermore, the comparison between transfer learning and
data augmentation also indicated that transfer learning is the
superior approach when dealing with channel mismatches.

REFERENCES

[1] Xiaodai Dong, Wu-Sheng Lu, and Anthony CK Soong. Linear inter-
polation in pilot symbol assisted channel estimation for ofdm. IEEE
transactions on wireless communications, 6(5):1910–1920, 2007.

[2] 3GPP. SID on AI/ML for NR Air Interface . Work item description,
3rd Generation Partnership Project (3GPP), 7 2021. RP-221348.

[3] Tobias Gruber, Sebastian Cammerer, Jakob Hoydis, and Stephan ten
Brink. On deep learning-based channel decoding. In 2017 51st annual
conference on information sciences and systems (CISS), pages 1–6.
IEEE, 2017.

[4] Aldebaro Klautau, Nuria González-Prelcic, Amine Mezghani, and
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