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ABSTRACT
This paper presents a mathematically rigorous framework of
remarkably robust signal recovery over networks. The pro-
posed framework is based on the so-called minimax concave
(MC) loss, which is a “hybrid” between Tukey’s biweight loss
and Huber’s loss in the sense of yielding remarkable outlier-
robustness and being able to preserve convexity of the overall
cost under an appropriate choice of parameters so that an iter-
ative algorithm could generate a sequence of vectors converg-
ing provably to a solution (a global minimizer of the overall
cost). We present a formulation which involves an auxiliary
vector to accommodate the statistical property of noise ex-
plicitly, and we present a condition to guarantee convexity of
the local cost. We apply the distributed triangularly precondi-
tioned primal-dual algorithm to our formulation and show by
numerical examples that our proposed formulation exhibits
remarkable robustness under devastating outliers, and outper-
forms the existing methods.

Index Terms— distributed optimization, outlier robust-
ness, minimax concave penalty, proximity operator

1. INTRODUCTION

Robust methods in the presence of outliers (or impulsive
noise) have widely been studied in signal processing [1]
and machine learning as well as many other fields includ-
ing statistics [2, 3], control [4], and optimization [5]. Out-
liers frequently occur in wireless communication channels,
biomedical sensors, image/video sensors, and other applica-
tions. Distributed settings are useful in solving large-scale
problems where data volume is too large to store at a single
computer. Decentralized systems (having no central node)
are considered in the present study, which are advantageous
in many aspects: no single point of failure, no potential pri-
vacy violations by collecting all data at a single node, no need
for infrastructures, and suitability for edge computing.

There are two key aspects in the distributed signal recov-
ery task: (i) the problem formulation to characterize the target
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signal as a minimizer of cost functions, and (ii) the algorithm
to solve the formulated problem in a distributed fashion [6–8].
The major contributions of this work concern the former as-
pect basically.

In this paper, we propose the formulation named dis-
tributed stable outlier-robust signal recovery (D-SORR),
which accommodates statistical properties of Gaussian noise
and outliers at the same time. D-SORR uses the nonconvex
(weakly convex) minimax concave (MC) loss function at each
local node to attain remarkable robustness against outliers.
Furthermore, it models Gaussian noise by an auxiliary vari-
able and is thus more “stable” against perturbations caused
by Gaussian noise as well as robust large outliers in the sense
of [9]. The sensitivity of a loss function to outliers depends
on how much the residual error of the loss function grows for
larger residual errors. Compared to the ordinary least-square
loss function, the least absolute deviation (LAD) loss is rel-
atively insensitive to outliers, as it grows “linearly” (rather
than quadratically) for residual errors. However, to achieve
robustness to extreme outliers, the loss function needs to stay
constant for such residual errors with magnitudes larger than
a given threshold. This motivates the use of the MC loss
function in the present study.

The two main research questions addressed in this paper
are when the proposed formulation is solvable by an iterative
algorithm efficiently, and how robust the D-SORR estimator
is against outliers compared to existing methods. The first re-
search question is answered by studying the convexity condi-
tion for the cost function in (2) using the framework called
linearly-involved Moreau-enhanced-over-subspace (LiMES)
model developed in [10, 11]. We show that each local objec-
tive is ensured to be convex under a certain condition on the
regularization parameter (Proposition 1) based on the LiMES
framework. We also show that the proposed formulation is
solvable by the TriPD-Dist algorithm [8] via reformulation
using Moreau’s decomposition. The second research ques-
tion stated above is addressed by simulation studies. The nu-
merical examples show that our proposed method leads to re-
markable robustness when the data is contaminated by many
and/or huge outliers, outperforming the existing methods in a
variety of situations.

In the previous work [12], the sparse signal recovery prob-
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lem has been studied in a distributed setting under the use of
the MC penalty to promote sparsity of estimates, where the
proximal gradient EXTRA (PG-EXTRA) algorithm [13] was
used. However, as the algorithm cannot be used in the present
case because the proximity operator of the `1 norm involv-
ing a linear composition is hardly available, the recently de-
veloped solver called distributed triangularly preconditioned
primal-dual (TriPD-Dist) algorithm [8] (based on operator
splitting [14]) is employed in the present study. Other works
concerning nonconvex methods for distributed optimization
have been studied actively both in signal processing and ma-
chine learning communities [15]. Recent developments in-
clude most notably the heuristic approach based on the no-
tion of graduated nonconvexity for outlier-robust distributed
optimization [16].

2. PRELIMINARIES

We consider decentralized systems equipped with a network
of N nodes represented by an undirected graph, which is al-
ways assumed to be connected, with a set of nodes V and
edges E . If node i is connected to j: (i, j) ∈ E , and the set
Nj contains all neighbors of node j.

Vectors are written in boldfaced lowercase letters, and ma-
trices are written in boldfaced uppercase letters. The trans-
pose of a matrix A is denoted by A>, the identity matrix is
denoted by In, the zero matrix is denoted by Om×n, and the
zero vector is denoted by 0. The largest eigenvalue of a sym-
metric matrixA is denoted by λmax(A).

In this study, we consider the standard inner product
〈x,y〉 := x>y between x,y ∈ Rn. The induced norm
‖x‖2 :=

√
〈x,x〉 is then the `2 norm. A function f is µ-

weakly convex, if f(x) + µ
2 ‖x‖

2
2 is convex for some µ > 0.

Suppose that f : Rn → (−∞,+∞] be a proper lower-
semicontinuous convex function (see [17]). Then, its Fenchel
conjugate is defined by f∗(x) := supy∈Rn (〈x,y〉 − f(y))
[17], which is again a proper lower-semicontinuous convex
function. The proximity operator of f of index γ > 0 is de-
fined by proxγf (x) := arg miny∈Rn

(
f(y) + 1

2γ ‖x− y‖
2
2

)
[17, 18], and the minimum value γf(x) := miny∈Rn

(
f(y)

+ 1
2γ ‖x− y‖

2
2

)
= f(proxγf (x)) + 1

2γ

∥∥x− proxγf (x)
∥∥2

2

achieved by the proximity operator is called the Moreau
envelope of f [17, 18].

3. DISTRIBUTED STABLE OUTLIER-ROBUST
SIGNAL RECOVERY

We present the problem formulation for D-SORR using the
MC loss function. We then analyze the convexity of the lo-
cal objective, discuss the optimization algorithm, and give a
remark on parameter design. All results are given without
proofs due to the page limitation. An extended version of the

present work including all the proofs will be presented else-
where.

As outliers are typically sparse, we consider a linear
model where the observation vector at each node i is given by

yi = Aix? + εi? + oi� ∈ Rmi , (1)

where Ai ∈ Rmi×n is the system matrix, x? ∈ Rn is the
signal to be recovered obeying the i.i.d. zero-mean Gaus-
sian distribution with variance σ2

x? > 0, εi? ∈ Rmi is the
i.i.d. zero-mean Gaussian noise vector with variance σ2

ε? > 0,
and oi� ∈ Rmi is the sparse outlier vector. The model in (1)
has previously been studied in centralized (non-distributed)
settings [19, 20], but it has not been studied well in the dis-
tributed settings.

With the variable vectors x and εi to model x? and εi,?,
respectively, our primal focus in the present study is on the
following problem formulation:

min
x∈Rn

εi∈Rmi

(i∈V)

∑
i∈V

(
ΦMC
γ (Aix+εi−yi)+

σ−2
x

2µiN
‖x‖22+

σ−2
ε

2µi
‖εi‖22

)
,

(2)
where µi > 0 (the regularization parameter), σ2

x > 0 (the
signal power estimate), σ2

ε > 0 (the noise power estimate),
and

ΦMC
γ (x) :=

m∑
i=1

φMC
γ (xi) = ‖x‖1 −

γ‖·‖1 (x) , (3)

is the MC loss [21, 22] defined with

φMC
γ (x) :=

{
|x| − x2/2γ, if |x| ≤ γ,
γ/2, if |x| > γ.

(4)

Here, γ > 0 is the “saturation” factor to control the satura-
tion points from which ΦMC

γ becomes constant on each side
of the real line. See Section 2 for the definition of the Moreau
envelope γ‖·‖1 of the `1 norm.

Each term of the summand in (2) accommodates prior in-
formation about the random vectors. Specifically, the first
term reflects the sparseness of the outlier oi�(≈ Aix+εi−yi),
and the second and third terms reflect the Gaussianity of the
signal x? and the noise εi?, respectively. Intuitively, a small
σ−2
ε (a large noise power estimate) allows the term ‖εi‖22 to

be large, modeling large Gaussian noise appropriately.
The derivative of φMC

γ at x ∈ R \ {0} is given by

ψMC
γ (x) :=

{
sign(x)− x/γ, if |x| ∈ (0, γ),

0, if |x| ≥ γ.
Inspect-

ing the behavior of the derivative ψMC
γ , it can be seen that it

vanishes for |x| ≥ γ, making the MC loss remarkably robust
against huge outliers in analogy with Tukey’s biweight loss.
One can easily see that limx↓0 ψ

MC
γ (x) = 1, meaning that the

derivative does not vanish at the origin, meaning that the MC



loss sharply increases by small deviations from zero and thus
it would not allow small errors originated by Gaussian noise.
For this reason the auxiliary vectors εi ∈ Rmi are introduced
to model the Gaussian noise explicitly.

3.1. Convexity condition for local objective of D-SORR

The objective function of in (2) can be split into smooth and
nonsmooth terms as follows:

min
x∈Rn, εi∈Rmi

(i∈V)

∑
i∈V

(
‖Aix+ εi − yi‖1︸ ︷︷ ︸
HD-SORR

i (Aix+εi)

+
σ−2
x

2µiN
‖x‖22+

σ−2
ε

2µi
‖εi‖22−

γ‖·‖1 (Aix+εi−yi)︸ ︷︷ ︸
FD-SORR

i (x,εi)

)
. (5)

Here, the nonsmooth term HD-SORR
i (Aix+ εi), defined with

HD-SORR
i (v) := ‖v − yi‖1 , (6)

is a convex function in the space Rn × Rmi of the pair
(x, εi) of variable vectors by considering the linear operator
(x, εi) 7→ Aix+ εi. The convexity condition for the smooth
term

FD-SORR
i (x, εi) :=

σ−2
x

2µiN
‖x‖22 +

σ−2
ε

2µi
‖εi‖22

−γ‖·‖1 (Aix+ εi − yi) (7)

is analyzed below.

Proposition 1 (Convexity condition of local objective
FD-SORR
i (x, εi)). For each i ∈ V , the local function
FD-SORR
i (x, εi) is convex in (x, εi) ∈ Rn × Rmi if and

only if
µi(σ

2
ε +Nσ2

xλmax(A>i Ai)) ≤ γ. (8)

3.2. Distributed convex optimization algorithm for D-
SORR: TriPD-Dist

The TriPD-Dist algorithm (from [8]) is a convex analytic
solver for distributed optimization problems in the following
form [8]:

min
x1,...,xN∈Rn

∑
i∈V

Fi(xi) +Gi(xi) +Hi(Aixi)

s.t. Bijxi +Bjixj = dij , (i, j) ∈ E ,
(9)

where each variable vector xi is updated at each node. In-
formation exchanges over the given network are allowed
only for the variable vector xi and the edge variable wij
(see Algorithm 1). Here, Fi : Rn → R is a differen-
tiable convex function with a Lipschitz continuous gradient,

Gi : Rn → (−∞,+∞] and Hi : Rmi → (−∞,+∞] are
(possibly nonsmooth) convex functions, and Ai ∈ Rmi×n.
The consensus constraint xi = xj ,∀i, j ∈ V , can be ex-
pressed by letting Bij := In, Bji := −In, and dij := 0n
for all (i, j) ∈ E . In this study, the agents in the distributed
network are assumed to be time synchronized, and therefore
we adopt the synchronous version of the distributed algo-
rithm. The UNLocBoX toolbox was used to evaluate the
proximity operator in the implementation [23].

We reformulate the D-SORR problem with the local
variables xi ∈ Rn into a suitable form to the TriPD-Dist
algorithm. For convenience, we define ξi := [x>i ε

>
i ]> ∈

Rn+mi . Note that the unknown vector x? is common to
all nodes in (1), while the noise vectors εi? are differ-
ent among nodes. This means that the consensus con-
straint is required among xi’s, but it is not required for
εis. The “partial” consensus constraint xi = xj can be
expressed by Ĩiξi = Ĩjξj with Ĩi := [In On×mi

] ∈
Rn×(n+mi). Let Ãi =

[
Ai Imi

]
∈ Rmi×(n+mi), and

Λi :=

[
(σ−1
x /
√
µiN)In On×mi

Omi×n (σ−1
ε /
√
µi)Imi

]
∈R(n+mi)×(n+mi).

Then, (5) can be reformulated as follows:

min
ξ1,...,ξN

∑
i∈V

(
HD-SORR
i (Ãiξi) + FD-SORR

i (ξi)

)
s.t. Ĩiξi = Ĩjξj , ∀i, j = 1, 2, . . . , N, (10)

where

FD-SORR
i (ξi) :=

1

2
‖Λiξi‖22 −

γ‖·‖1
(
Ãiξi−yi

)
, (11)

HD-SORR
i (v) := ‖v − yi‖1 , v ∈ Rmi . (12)

Here, FD-SORR
i (ξi) is essentially the same as FD-SORR

i (xi, εi).
The expression (10) of D-SORR shares the same form
as (9) under the following correspondences: Fi(ξi) :=
FD-SORR
i (ξi), Gi(ξi) := 0, Hi(Ãiξi) := HD-SORR

i (Ãiξi),

Bij :=

{
Ĩi, if i < j,

−Ĩi, otherwise ,
and dij := 0n. The TriPD-Dist

algorithm applied to (10) is given in Algorithm 1.
The gradient of FD-SORR

i (ξi) is given as

∇FD-SORR
i (ξi)=Λ2

i ξi−Ã>i
Ãiξi−yi−proxγ‖·‖1(Ãiξi−yi)

γ
.

(13)
The proximity operator of the `1 norm in the algorithm can
be computed to proxα‖·‖1 (v) = soft[−α,α] (v) for v ∈ Rm,
with the element wise soft shrinkage operator given for the
l-th element as

[
soft[−α,α] (v)

]
l

=


vl + α, if vl < −α,
0, if − α ≤ vl ≤ α,
vl − α, if vl > α.

(14)



Algorithm 1: Distributed Triangular Precondi-
tioned Primal-Dual (TriPD-Dist) algorithm from [8]
for D-SORR

Requirements: step size τi > 0, dual step size
ςi > 0, link weights κij > 0

Initialisation: ξi(0)= 0 ∈Rn+mi for i=1, 2, ... , N ,
zi(0)= 0 ∈Rmi for i=1, 2, ... , N , and
wij(0)= 0 ∈Rn for (i, j) ∈ E

for k = 0, 1, . . . do
local updates

for all neighbors j of agent i do
wij(k) = 1

2 [wij(k) +wji(k)] +
κij

2 [Bijξi(k) +Bjiξj(k)]

end
zi(k) = zi(k) + ςi

(
Ãiξi(k)− yi

)
−

ςiproxς−1
i ‖·‖1

(
ς−1
i zi(k) + Ãiξi(k)− yi

)
ξi(k + 1) = ξi(k)− τiÃ>i zi(k)−

τi
∑
j∈Ni

Bijwij(k)− τi∇Fi(ξi(k))

zi(k+ 1) = zi(k) + ςiÃi [ξi(k + 1)− ξi(k)]
for all neighbors j of agent i do
wij(k + 1) =

wij(k) + κijBij [xi(k + 1)− xi(k)]
end

transmission of information
send xi(k + 1) and each estimate wij(k + 1)
to each neighbor j

end

A tight Lipschitz constant for the gradient of FD-SORR
i is given

by

βD-SORR
i := λmax(Λ2

i −
1

2γ
Ã>i Ãi) +

1

2γ
λmax(Ã>i Ãi).

(15)
Assume the convexity condition (8) and also assume the

primal step-size condition

τi <
1

βD-SORR
i /2 + ςi

∥∥∥Ã>i Ãi

∥∥∥+
∑
j∈Ni

κij
, (16)

where
∥∥∥Ã>i Ãi

∥∥∥ is the spectral norm of Ã>i Ãi. The prob-
lem in (5) may have multiple solutions in general. Un-
der the given assumptions, the sequence (ξi(k))k∈N of
ξi(k) := [xi(k)> εi(k)>]> generated by the TriPD-Dist
algorithm achieves consensus at each node i and converges to
a solution1 of (5).

Remark 1 (Parameter design for D-SORR). If estimates
of σ2

x? and σ2
ε? are available, tune γ by grid search with

1The existence of a solution is guaranteed by the coercivity of the cost
function in (5) in terms of all variable vectors x and εis.

µi set to its upper bound based on (8). If these estimates
are unavailable, one may let µ̄i := µiσ

2
x and % := σ2

x/σ
2
ε

so that the last two terms of (2) reduce to 1
2µ̄iN

‖x‖22 +
%

2µ̄i
‖εi‖22. In this case, the convexity condition is given by

µ̄i(%+Nλmax(A>A)) ≤ γ. Our recommendation is to tune
γ and % by grid search with µ̄i set to the upper bound for
each given γ and %.

4. SIMULATION RESULTS

We show the efficacy of the proposed method in terms of out-
lier robustness under various scenarios. Each local matrix
Ai ∈ Rm×n and the unknown vector x? ∈ Rn follow the
i.i.d. standard Gaussian distribution. The noise vectors εi?
are generated by scaling those temporary vectors according
to

SNR :=

∑
i∈V ‖Aix?‖22∑
i∈V ‖εi?‖

2
2

, (17)

where the temporary vectors are generated from the i.i.d.
standard Gaussian distribution. The positions of the νi
nonzero elements of oi� are chosen randomly, and the
nonzero values follow an i.i.d. scaled and shifted uniform
distribution. Here, for all simulations, given some prespec-
ified value Mo� > 0, the interval of uniform distribution is
set to duniform := 2/9Mo� with its center Mo� chosen ran-
domly again from another uniform distribution with center
and interval given by Mo� and duniform, respectively. In most
simulations, we set Mo� := 90, meaning that the outliers
come from the interval of width duniform = 20 with center
chosen randomly between 80 and 100 at each independent
run. Our primary performance measure is the following:

system mismatch :=
1

N

∑
i∈V

‖xi − x?‖22
‖x?‖22

. (18)

All plots in the figures presented in this section show the
averages over 250 independent runs. For D-SORR, we set
σ2
x := σ2

x? := 1 and σ2
ε := σ2

ε? := 1
mN

∑
i∈V ‖εi?‖

2
2. The

algorithm parameters are set to ςi := 0.065, and κij := 1,
if (i, j) ∈ E , and κij := 0, otherwise. For the design of the
saturation factor γ and the regularization parameters µi for D-
SORR, see Remark 1. D-SORR is compared to the following
robust loss functions for positive constants δL, δH, δT, δP > 0:
the LAD-ridge

∑
i∈V ‖Aix− yi‖1 + δL ‖x‖22, Huber’s

loss
∑
i∈V

δH‖·‖1 (Aix− yi), Tukey’s biweight loss [2]∑
i∈V

∑m
ι=1 φ

TK
δT

([Aix− yi]ι), where

φTK
δT

: R 3 a 7→


[
1−

(
1− (a/δT)

2
)3
]
δT/6, if |a| < δT,

δ2
T/6, otherwise,

and the fair potential function [4]
∑
i∈V

∑m
ι=1 φ

FP
δP

([Aix −
yi]ι), where φFP

δP
: R 3 a 7→ δP |a|− log10 (1 + δP |a|). Here,
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Fig. 1: System mismatch across the outlier density.

[·]ι denotes the ιth component of a vector. For reference, the
ridge regression

∑
i∈V ‖Aix− yi‖22 + δR ‖x‖22, δR > 0, is

also tested. For each method, the delta parameter is tuned by
grid search to minimize the system mismatch. In the follow-
ing simulations, we consider the case when the network has
N := 5 nodes, each of which is given m := 20 measurement
vectors.

Figure 1 shows the system mismatch across different out-
lier densities from 0 to 0.3 under different SNRs, and differ-
ent numbers of variables n. Overall, the proposed method
outperforms the other methods significantly when outliers are
present due to the robustness of the MC loss to outliers. For
the case when there are no outliers (outlier density of 0), D-
SORR is also able to perform well due to the explicit Gaussian
noise modelling with the auxiliary variable. The system mis-
match is generally lower in Fig. 1b compared to Fig. 1a due
to the higher SNR in the case of Fig. 1b. The larger number
of variables (n = 60) in case of Fig. 1b compared to the case
of Fig. 1a (n = 30) increases the overall system mismatch, as
more variables must be estimated from the same number of
measurements.

Figure 2a shows the performance across Mo� for SNR
0 dB, n = 15, and an outlier density of 0.2, where larger
Mo� means larger outlier power. There is remarkably differ-
ent tendency between the convex and nonconvex approaches.
Specifically, in contrast to the monotone behaviors of the
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Fig. 2: System mismatch across (a) Mo� , and (b) SNR.

convex methods, the nonconvex methods (D-SORR, and
distributed Tukey’s loss) show “non-monotonic” behaviors
where the system mismatch increases up to some point, and
it then decreases as the outlier power increases.

This observation leads us to the hypothesis that the non-
convex methods implicitly carry out outlier detection. Intu-
itively, it is more likely when the outlier power is larger that
the magnitude of the error for each outlier measurement lies
near or exceeds a fixed threshold where the gradient of the
loss function is zero, i.e. classifying an outlier correctly. Ad-
ditionally, in our preliminary experiments it is observed that
the optimal threshold γ increases when larger outliers occour,
which allows to use a larger regularization parameters µi to
reduce the bias and decrease the system mismatch further for
larger outliers for D-SORR.

Figure 2b shows the performance under different levels of
Gaussian noise from 0 dB SNR to 12.5 dB SNR with Mo� =
90, n = 60, and an outlier density of 0.05. It can be seen that
D-SORR outperforms the other methods. Only for an SNR
of 12.5 dB Tukey’s biweight loss achieves a similar system
mismatch than D-SORR.

5. CONCLUSION

This paper presented the D-SORR formulation for distributed
robust signal recovery. Thanks to the weak convexity of the



MC loss, the proposed formulation enjoys the two desirable
properties simultaneously: (i) significantly high robustness
against outliers, and (ii) guarantee of convergence to a so-
lution under convexity of the local objectives. The D-SORR
formulation involved an auxiliary vector to model the Gaus-
sianity of noise as well as outliers. We showed the condition
to guarantee convexity of the local objective of D-SORR and
applied the TriPD-Dist algorithm to convergence to a global
minimizer of the D-SORR formulation. The numerical exam-
ples showed that our proposed formulation exhibited remark-
able robustness under huge outliers as well as outperforming
the existing methods.
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