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Abstract—This work investigates the potential of employing
the approach Compressed Sensing Dynamic Mode Decomposition
(CS-DMD) in the context of time-varying wireless channels.
To the best of the authors’ knowledge, this marks the first
instance of utilizing CS-DMD for pilot-based channel estima-
tion in Orthogonal Frequency Division Multiplexing (OFDM)
systems. The effectiveness of this method is compared with two
advanced deep learning-based channel estimation techniques:
Interpolation-ResNet and Learned Approximate Message Passing
(LAMP). Furthermore, we leverage the advantageous character-
istics of DMD in analyzing complex nonlinear dynamic systems
to predict the future state of the channel, thereby reducing the
required pilot signals. Simulation results show that utilizing CS-
DMD can achieve superior channel estimation performance with
less pilot overhead.

Index Terms—Channel estimation, compressed sensing, data-
driven methods, dynamic mode decomposition.

I. INTRODUCTION

IN modern wireless communication systems, Orthogo-
nal Frequency Division Multiplexing (OFDM) has been

adopted due to its robustness against frequency selectivity in
wireless channels. In OFDM, the total frequency bandwidth is
divided into orthogonal subcarriers (SC) and the transmission
time into intervals known as OFDM symbols. The fundamental
building unit of the OFDM resource grid is the Resource El-
ement (RE), which consists of one subcarrier and one OFDM
symbol. Channel estimation in OFDM systems can be accom-
plished by allocating a portion of the REs to transmit pilots.
However, pilots are known symbols and carry no new informa-
tion. Hence, each RE dedicated to a pilot introduces overhead.
Reducing pilot overhead is indeed essential to save more
channel resources for user data. Several channel estimation
and pilot overhead reduction schemes for OFDM applications
have been extensively studied and investigated. Among them,
Machine Learning (ML) has gained significant attention due to
its success in a wide range of applications, including channel
estimation. In [1], authors introduce Interpolation-ResNet, a
channel estimation method based on Deep Learning (DL).
The method exhibits better performance for channel estimation
when compared to two other neural network methods, namely
ChannelNet and ReEsNet. Another commonly used channel
estimation approach involves exploiting the sparse property
of the time-domain Channel Impulse Response (CIR). In this
regard, Compressed Sensing (CS) theory is employed due to
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its ability to recover a high-dimensional sparse signal from
a limited number of measurements. In addressing CS for
sparse recovery, various methods have been investigated. For
instance, in [2], the authors utilize the Orthogonal Matching
Pursuit (OMP) algorithm to reconstruct the sparse CIR and
thus perform channel estimation. Another deep learning-based
method for sparse recovery, known as ”Learned Approximate
Message Passing” (LAMP), is proposed in [3].

This paper introduces a novel approach for channel estima-
tion. The method is based on Dynamic Mode Decomposition
(DMD), originally developed for fluid dynamics analysis in
[4]. DMD, a highly versatile matrix decomposition technique,
has found applications in various domains. For instance, in [5],
DMD is employed to analyze data collected from mechanical
equipment, enhancing bearing fault detection. In the field of
wireless communication, DMD has been utilized to compress
Channel State Information (CSI) and reduce feedback over-
head, as demonstrated in [6]. In our investigation, we employ
an extended version of DMD known as CS-DMD, where CS
is applied to the resulting DMD output. CS-DMD was initially
introduced for fluid dynamics in [7]. To the best of the authors’
knowledge, this is the first time CS-DMD has been used for
pilot-based channel estimation.

Notations: Throughout this paper, we represent matrices by
uppercase boldface letters, column vectors by bold lowercase
letters, scalars by italic lowercase letters and numbering by
italic uppercase letters. Hadamard product and division are
denoted with ⊙ and ⊘, respectively. The notation † represents
the Moore–Penrose pseudoinverse. E{.} denotes the mean.

II. SYSTEM AND CHANNEL MODELS

We consider an OFDM transmission where both the trans-
mitter and receiver are equipped with a single antenna. The
OFDM resource grid is divided into Resource Segments (RS),
each consisting of K subcarriers and M OFDM symbols.
Channel estimation is performed for each RS separately.
Within the RS, a certain number of REs are designated as
pilots for transmission. Let K ′ ≤ K and M ′ ≤ M denote the
number of pilots in one OFDM symbol and the number of
pilots in one subcarrier, respectively. Thus, the pilot density
can be defined as (K ′×M ′)/(K×M). The transmitted pilot
symbols are organized in a matrix S ∈ CK′×M ′

. Accounting
for the channel effect, the received pilots can be expressed as:

Y = P⊙ S+ Z, (1)

where P and Z ∈ CK′×M ′
are the channel coefficients at

pilots positions, and the additive noise with zero mean and
variance σ2

z per element, respectively.



2

A. Channel Sparsity

The frequency domain channel coefficients within an RS
are represented by the matrix H ∈ CK×M . Due to the radio
propagation environment, it is accepted that the channel in the
time domain exhibits sparsity, which aligns with the 3GPP
channel model [8]. We define:

H = FG, (2)

here, G ∈ CL×M denotes the channel representation in
the time domain, where L signifies the number of channel
response taps. F ∈ CK×L corresponds to the Discrete Fourier
Transform (DFT) matrix if K = L. In cases where K < L,
F is a submatrix of the DFT matrix.

III. CHANNEL ESTIMATION

The process of channel estimation involves transmitting
known pilot symbols at predetermined positions on the OFDM
resource grid. These positions are determined by the pilot
pattern, which can take various forms. In [9], different classical
pilot patterns are discussed. However, these conventional pilot
assignments are designed to satisfy the Nyquist sampling
theorem, resulting in a significant amount of overhead.
At the receiver side, channel estimation involves mainly two
steps. First, the estimation of the channel coefficients at pilots
positions, denoted as P. To estimate the matrix P, we perform
least squares estimation as:

P̂ = Y ⊘ S = P+ Z⊘ S. (3)

Due to additive noise, the estimation of P may deviate from
actual value. To account for the noisy estimation, we introduce
the signal-to-noise ratio (SNR), defined as E{∥S∥2

2}
σ2
z

.
Second step is interpolating the channel coefficients between
the pilot positions to obtain the estimated channel Ĥ. This pa-
per introduces and compares various interpolation techniques.

A. Compressed Sensing

Compressed Sensing (CS), as introduced in [10], states that
sparse data can be recovered even from a limited number
of measurements. This is achieved by adopting a strategy of
random measurements, enhancing the chance of capturing the
essential signal characteristics. In the context of channel esti-
mation, since the channel exhibits sparsity in the time domain,
CS can be applied for channel estimation purpose. In order
to capture the variations within the bandwidth, we randomly
select K ′ subcarriers to carry the pilots. To reduce the needed
pilots and thus minimize the overhead, we propose considering
only a subset of OFDM symbols on each subcarrier, with equal
distances between them, as shown in Fig. 1(a).

OFDM symbols

Subcarriers (a)

OFDM symbols

Subcarriers

Pilots

Data

SC-Lerp

(b)

Fig. 1. Randomly selected subcarriers on OFDM resource grid to
carry pilots. (a) random subcarriers. (b) SC-Lerp.

Upon receiving, the pilots are organized into matrix S, then
the matrix P̂ is estimated based on (3). Subsequently, using
the estimated elements in P̂, Linear interpolation is applied
to the subcarriers with pilots as in Fig.,1(b). We refer to this
interpolation as SC-Lerp. As a result, we obtain the matrix
B̂ ∈ CK′×M , which can be thought as projection of Ĥ through
a pilot selecting matrix C:

B̂ = CĤ, (4)

here, C ∈ BK′×K comprises elements from Boolean domain
B = {0, 1} and required to be incoherent with respect to F.
Each row of C contains only one 1, indexing the selected
subcarrier of the resource grid to carry the pilots. The rest of
the row is set to zeros. By substituting Ĥ in (4) analogous to
(2) we obtain:

B̂ = CFĜ = ΨĜ. (5)

The estimated channel response Ĝ can be determined by
solving (5). But it is an underdetermined equation. However,
since Ĝ is sparse, a sparse recovery algorithm can be applied
to detect the sparse solution. Once Ĝ is obtained, it can be
substituted into (2) to find the estimated channel Ĥ.

Orthogonal Matching Pursuit (OMP) [2] is an effective ap-
proach for sparse recovery in compressed sensing applications.
OMP performs an iterative greedy search to identify the most
significant nonzero elements and their corresponding locations.

Learned Approximate Message Passing (LAMP) [3] is built
by unfolding the iterations of AMP as a feedforward neural
network, where the parameters in the AMP can be learned.
AMP is a sparse recovery algorithm. It employs a message-
passing framework, iteratively updating estimates to converge
to an efficient solution.

B. Compressed Sensing - Dynamic Mode Decomposition

Dynamic Mode Decomposition (DMD) [4] is a data-driven
method for decomposing dynamical systems into spatiotem-
poral coherent structures that exhibit oscillations at fixed fre-
quencies which either grow or decay at fixed rates. The method
relies on collecting snapshots from a dynamical system. In
the context of wireless channels, the matrix H comprises
M channel snapshots. Specifically, H = [h1 h2 ... hM ],
with each hm ∈ CK×1 representing the channel vector at all
subcarriers over the OFDM symbol m, with m = 1, 2, ...,M .
To use DMD, the channel vectors need to be arranged into
two data matrices:

H′ = [h1 h2 ... hM−1] ∈ CK×M−1,

H′′ = [h2 h3 ... hM ] ∈ CK×M−1.
(6)

DMD defines a linear approximation, expressing how H′′

evolves from H′ as:

H′′ ≈ AhH
′, (7)

where Ah ∈ CK×K is an approximating linear operator,
determined as: Ah = H′′H′†. This solution minimizes the
Frobenius norm ∥H′′−AhH

′∥F functioning as a linear regres-
sion of data onto the dynamics represented by Ah. In practice,
direct analysis of the matrix Ah may be intractable, especially
when the number of subcarriers is extensive. However, the rank
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of Ah is at most M − 1, since it is constructed as a linear
combination of the M − 1 columns of H. Therefore, instead
of solving for Ah, DMD projects the data onto a low-rank
subspace defined by at most M−1 Proper Orthogonal Decom-
position (POD) modes. It then solves for a low-dimensional
solution evolving on these POD mode coefficients. The DMD
then uses this low-dimensional solution to find the leading r
eigenvectors Φh ∈ CK×r and eigenvalues Λh ∈ Cr×1, which
are called DMD modes and dynamics, respectively. It has been
demonstrated in [4] that the snapshots are recomposed as:

hm ≈ ΦhΛ
m
h . (8)

Here r denotes the DMD rank truncation. It indicates the
number of used eigendecompositions. Formula (8) implies that
the higher the r, the better the resolution of recomposed hm.
However, it is important to mention that the generated eigen-
decompositions are sorted in descending order of significance.
This implies that a few eigendecompositions contain most
of the channel power. Accordingly, it may be sufficient to
take just a few modes and dynamics to ensure an adequate
resolution of the recomposed hm.
One important feature of DMD is its capability for future state
prediction. This can be achieved by extending the application
of formula (8) by growing the index m beyond M , such as
m = M + 1,M + 2, . . ..

CS-DMD: According to [7], it is possible to determine the
dynamical model of a high-dimensional data when limited
number of measurements are available. This capability is
particularly applicable when the full high-dimensional data
exhibit sparsity in some basis. By exploiting the principles
of compressed sensing in conjunction with dynamic mode
decomposition, it becomes possible to effectively reconstruct
the full data from their measurements.
In this context, we adopt the approach proposed by [7] to
conduct channel estimation for an OFDM system operating in
a time-varying environment. Since the matrix B̂ of the pilots’
subcarriers is available. Here, CS-DMD can be employed. By
arranging the columns of B̂ in two matrices B̂′ and B̂′′,
analogous to (6), DMD can be utilized to determine the modes
Φb and dynamics Λb of the operator Ab, with B̂′′ ≈ AbB̂

′. It
has been mathematically demonstrated in [7] that the dynamics
of the operators Ab and Ah are the identical:

Λb = Λh. (9)

Also, the relationship between the operator’s modes is that,
Φb is the projection of Φh through C:

Φb = CΦh. (10)

It is worth mentioning that, since the channel H is sparse in
time domain, DMD can identify the most dominant modes of
Φh that capture these sparse features. Accordingly, we define:

Φh = FΘh, (11)

where Θh ∈ CL×r is the sparse time-domain representation
of the modes Φh. By substituting (11) in (10), we obtain:

Φb = CFΘh = ΨΘh. (12)

Since (12) is underdetermined, it can be solved to find the
sparse Θh by employing CS technique, as discussed in III-A.
Then, by substituting Θh in (11), we can calculate Φh.

Now that we have obtained the modes Φh and dynamics
Λh for the dynamical model of the channel evolution, we can
use equation (8) to recover the entire channel coefficients and
also perform channel prediction.

Complexity: DMD is built on POD, which is based on
Singular Value Decomposition (SVD), making SVD the most
computationally demanding part. In CS-DMD, since DMD is
applied only once on B̂ for every channel estimation iteration,
the SVD complexity is determined by O(K ′M min(K ′,M)).
The sequential execution of DMD and CS sums their com-
plexities for the overall computational load.

C. Interpolation-ResNet

Interpolation-ResNet is introduced in [1] as an improved
residual convolutional neural network structure. As illustrated
in Fig. 2, interpolation is carried out following the application
of ResNet to the channel matrix at the pilots’ positions P̂.

ResNet Block

Interpolation

Convolutional Layer

P̂ Ĥ

Fig. 2. Interpolation-ResNet architecture.

IV. SIMULATION RESULTS

In this section, we conduct numerical simulations to eval-
uate the performance of CS-DMD in comparison to other
approaches. CS-based channel estimation employs two differ-
ent sparse recovery methods: OMP and LAMP. For applying
CS-DMD, OMP is utilized, so we refer to it as OMP-DMD.
The DMD rank r = 3. For ML-based channel estimation,
we apply the interpolation-ResNet with Linear interpolation,
so we refer it as Lerp-ResNet. The parameters of the ML-
based methods remain the same as specified in their original
publications. Additionally, we include Linear interpolation
(Lerp)-based channel estimation as a baseline technique. For
a fair comparison, we evenly space the pilots’ subcarriers in
Lerp and Lerp-ResNet, otherwise they are selected randomly.
The pilot density for all methods is set to be 3.5% with
M ′ = 5 and K ′ = 102. We employ Heterogenous Radio
Mobile Simulator (HermesPy) [11] to generate the channel
coefficients. System parameters are listed in Table I.

TABLE I
SIMULATION PARAMETERS

System Parameters Value
Channel model COST 259 [12]

Carrier frequency 2 GHz
Receiver velocity 50 Km/h
RS size K, M 1024, 14

Channel taps in time domain L 1024
Subcarrier spacing 15 kHz
Channel sparsity S 8

To assess the performance, we utilize the normalized mean
square error (NMSE), defined as E{∥H−Ĥ∥2

2}
E{∥H∥2

2}
.
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In Fig. 3, the simulation shows that OMP-DMD outperforms
other methods. Notably, combining OMP with DMD enhances
performance compared to using OMP alone. The improvement
is attributed to the noise reduction achieved through the
truncation of DMD modes. This explains the convergence of
OMP-DMD and OMP performances at high SNR values.

-10 0 10 20 30 40 50 60 70
SNR [dB]
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10−5

10−4

10−3

10−2

10−1

100

101

NM
SE

Lerp
Lerp-ResNet
LAMP
OMP
OMP-DMD

≈ 1.5 dB

Fig. 3. Channel estimation NMSE in terms of SNR.

At very low SNR value, the performance of Lerp-ResNet
is comparable to OMP-DMD. However, at very high SNR,
Lerp-ResNet converge to applying Lerp. This can be explained
from Fig. 2 since interpolation is applied after ResNet block.
For example, to meet a 10−2 NMSE requirement, OMP-DMD
needs less SNR by about 1.5 dB compared Lerp-ResNet.

0.7 1.4 2.1 2.8 3.5 4.2 5.0 5.7 6.4 7.1 7.8 8.5 9.2
Pilots Density [%]

10−4
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10−2
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SE
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Ler -ResNet
LAMP
OMP
OMP-DMD

Fig. 4. Channel estimation NMSE in terms of pilots density, SNR= 30 dB.

In Fig. 4, the NMSE performance varies with pilot density.
As the pilot density increases, the NMSE improves rapidly up
to a pilot density of about 2.5%. Beyond this point, NMSE
tends to stabilize for Lerp and Lerp-ResNet, where pilots’
subcarriers are evenly spaced. While, the NMSE for LAMP,
OMP and OMP-DMD show a gradual improvement, due to
the lower likelihood of obtaining substantial information from
added pilots, given their randomly selected positions.

In the CS-DMD, we take advantage of the prediction
capability of DMD. As channel estimation is conducted on one
RS, the prediction is performed on the subsequent RSs. Fig. 5
illustrates a comparison of NMSE between applying OMP and
OMP-DMD. First, the RS#0 is estimated, the next RSs are
predicted for OMP-DMD and repeated for OMP. The plot
reveals a less steep slope in the growing NMSE for the first
predicted RS. As an example, if the system requires the NMSE
to be less than 10−2, the predicted channel for the RS#1 can

satisfy this requirement, while simply repeating the channel
values from RS#0 does not meet the desired NMSE. Thus,
no additional pilots are needed for RS#1, resulting in further
reduction in pilot overhead and computational complexity.

0 1 2 3 4 5 6 7 8 9
RS  equence

10−4

10−3

10−2

10−1

100

NM
SE

OMP-DMD, w/ prediction
OMP, w/o prediction

Fig. 5. Channel estimation NMSE in terms of RS sequence, SNR= 30 dB.

V. CONCLUSION

In this work, we proposed utilizing a method that incorpo-
rates two techniques, CS and DMD. CS exploits the inherent
sparsity features, while DMD leverages temporal correlation
present in time-varying channels. The results showed that
applying OMP-DMD provides improved channel estimation
performance compared to using OMP alone, albeit with the
added complexity of DMD. We also compared OMP-DMD
to ML-based channel estimation, namely Interpolation-ResNet
and LAMP, and observed superior performance. Additionally,
the approach OMP-DMD allows for predicting the future RSs,
leading to avoid any potential pilot overhead in the predicted
RS, as long as the prediction meets the system requirements.
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