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Abstract—Non-orthogonal multiple access (NOMA) has been
introduced as a promising scheme to allow for superposition
of signals, such as the transmission of multiple services in the
same resource block (time and frequency). In this paper, we
propose the application of Deep Learning (DL) in an Autoencoder
(AE) framework for simultaneous usage in multi-service NOMA
transmission. While classical NOMA simultaneously incorporates
locally separated user equipments (UEs), we focus on the simul-
taneous transmission of services within a single UE. Our scheme
achieves improved performance compared to classical NOMA
schemes and is capable of performing optimal estimation of the
superimposed transmit signals. The scheme utilizes an equidistant
power allocation scheme. The results show the potential of using
DL to enhance the performance of NOMA systems and improve
their adaptability and flexibility to different scenarios.

Index Terms—Deep Learning, Autoencoder, NOMA, Resource
Allocation, 6G, Neural Network

I. INTRODUCTION

Today’s industrial communication systems face the chal-
lenge of accommodating multiple service classes within a
single radio system [1]. A promising solution is NOMA,
designed to efficiently allocate resources by power domain
superposition [2], [3]. The approach in [4] shifts from con-
ventional NOMA to service-based NOMA, superimposing
different services for a single UE. Service-based NOMA has to
be proven optimal with equidistant power allocation [4]. This
service-based NOMA approach is applicable to both uplink
and downlink transmission. In this paper we focus on uplink.

DL and AEs have gained interest in wireless communication
research [5]–[7]. Specifically, AEs jointly optimize transmitter
and receiver structures, utilizing the power of neural networks
(NNs). This optimization incorporates the channel to handle
signal transmission and reception. Of particular interest is
the work [5], as they were the first to propose the use of
AE in the context of communication. They further applied
simultaneous transmitter and receiver structures in a Multiple-
Input-Multiple-Output (MIMO) environment to demonstrate
the potential use cases of the idea.

Integrating these AE concepts into NOMA overcomes
successive interference cancellation (SIC) complexities [6].
Techniques like weighted AE and models such as SICNet
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outperform SIC in cases of imperfect channel state information
[7], [8].

As a main contribution, we present NOMA-AE, a DL-based
AE, applied to a NOMA scenario. In our work two different
services transmit in the same resource block and hence share
the same channel. NOMA-AE employs NNs for learning a
transmit signal and distinct power allocation for each service
on the transmit side and provides different detection strategies
via NN on the receiver side. Our approach offers complete
flexibility and is suitable for modular implementation across
numerous services. We provide multiple evaluations and simu-
lation results, showing the potential of applying AE structures
in the NOMA world by outperforming classical State-of-the-
Art (SotA) SIC schemes.

II. SYSTEM OVERVIEW

The goal of service-based NOMA is to simultaneously
transmit 𝑆 services from one UE in the same time-frequency
band, hence leading to interference in the signals. For sep-
aration of the services, different power allocations are used.
Typically, these services utilize different modulation schemes
and have distinct Quality of Service (QoS) requirements, such
as latency and block error rate (BLER). To distinguish the
services on the receiver side SIC is used [9].

In this paper, we propose to replace the typical transmitter
(modulation) and receiver structures (SIC) of service-based
NOMA by applying NNs and machine learning (ML) in an
AE structure, as shown in Fig. 1. We limit ourselves to two
services in this paper, but in general this framework provides
the flexibility to be extended to more than two services.
Nevertheless, more services will introduce more interference
and the performance will overall degrade.

The key idea is to jointly train transmitter and receiver
(highlighted in orange) given a channel that disturbs the overall
transmission. This overall framework allows to incorporate the
superposition of services directly into the training. The overall
system is real valued, as NNs cannot handle complex numbers
straightforwardly. Hence, we stack real and imaginary part in
two-dimensional vectors.

A. Transmitter

Specifically, the transmitter aims to transmit bitstreams of
two services by constructing suitable transmit symbols d𝑠
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Fig. 1. Block diagram of NOMA-AE. Two independent sources create bits,
ordered in vectors b𝑠 , which are fed to trainable Tx-NN𝑠 to be mapped to
d𝑠 , weighted d′

𝑠 , ensuring overall power normalization, and superimposed
to x. After an AWGN channel, the received signal y is fed into Rx-NN𝑠

to reconstruct b̂𝑠 . Trainable parts of the proposed scheme are highlighted in
orange.

via trainable NN for each service 𝑠, named Tx-NN𝑠 in the
complex plane, i.e. a complex modulation scheme, where the
index 𝑠 runs from 𝑠 = 1, 2. These learned modulation symbols
are then scaled and superimposed to be sent over a channel.
The complex modulations are stored in a real valued two-
dimensional vector d𝑠 ∈ R2, containing real and imaginary
part separately. The key idea is to jointly optimize the Tx-NN𝑠

for each service 𝑠 so that a suited superimposed modulation is
learned. The bitstream is represented, for each time instant, via
one-hot encoded vectors b𝑠 . A one-hot coding is a vector with
exactly one entry ”1” and all others are ”0”. We use one-hot-
vectors to have an easy represenatation for each modulation
symbol and form a classification problem. 𝑀𝑠 is the number of
modulation symbols for each service 𝑠. E.g., for 𝑀1 = 4 this
results in four vectors [1000, 0100, 0010, 0001]. 𝑀𝑠 directly
represents the dimension of b𝑠 as each modulation symbol is
represented by one vector.

Tx-NNs are nonlinear functions with trainable parameters
(weights), which can mathematically be written as

d𝑠 = 𝑓 𝑡𝑠 (b𝑠 ,𝚯
𝑡
𝑠), (1)

where 𝑓 𝑡𝑠 is a nonlinear function with trainable weights 𝚯𝑡
𝑠 for

each service 𝑠, where 𝑡 is used to identify a transmit NN. The
Tx-NN𝑠 follow a feedforward structure with various hidden
layers and Rectified Linear Unit (ReLu) activation functions.
The output layer consists of a linear layer and each Tx-NN𝑠

for each service is power normalized to limit the total transmit
power 𝑃. The details of Tx-NN𝑠 are listed in Table I. The
structure of each Tx-NN𝑠 was selected experimentally after
simulations, prioritizing the best performance while choosing
the least computationally expensive NN. The output of the
Tx-NN𝑠 is the learned modulation, contained in the two-
dimensional vector d𝑠 ∈ R2. Each dimension of this vector
represents real and imaginary part of the complex transmit
symbols.

Afterwards, scaling via 𝛼𝑠 is applied to ensure power nor-
malization for the superimposed signal x, fulfilling 𝛼1+𝛼2 = 1.
The scaling via 𝛼𝑠 can lead to destructive interference if
chosen poorly, as the modulation symbols are directly scaled
in amplitude. Please note that the 𝛼𝑠 are adapted during the
training process, while 𝛼1 + 𝛼2 = 1 is ensured. This constraint

TABLE I
TRANSMITTER AND RECEIVER NN CONFIGURATIONS

Name Hidden Layer width of layer # of weights
Tx-NN𝑠 3 300, 200, 100 82002 & 85602
Rx-NN𝑠 3 500, 200, 100 122204 & 123416

is ensured by normalization. These 𝛼𝑠 are not part of the
NNs. Finally, the two services are superimposed via addition.
Therefore, the transmit signal can be expressed as:

x =

2∑︁
𝑠=1

(√︁
𝛼𝑠 · 𝑃 · d𝑠

)
(2)

B. Receiver

The goal of the receiver is to reconstruct the bit vectors/one-
hot vectors b𝑠 . For the received signal, an additive white
Gaussian noise (AWGN) channel is assumed. We choose
AWGN as a first experiment to verify our approach. The
received signal yields

y = x + n (3)

where n ∼ N(0, 𝜎2
𝑛/2) is noise and y, x, n ∈ R2. The noise

power is noted per dimension of n of real and imaginary part.
The received signal y is fed into trainbale NN for each service
𝑠, named Rx-NN𝑠 . The key objective for the Rx-NN𝑠 is to
reconstruct the one hot vectors b̂𝑠 given the received signal y.
The Tx-NN𝑠 and Rx-NN𝑠 are trained jointly, to cope with the
channel. These two Rx-NN𝑠 use, again, multiple feedforward
layers with ReLu activation. The output layer consists of a
softmax activation to form probabilities for final classification.
Mathematically, for the Rx-NN𝑠 we write

b̂𝑠 = 𝑓 𝑟𝑠 (y,𝚯𝑟
𝑠), (4)

where 𝑓 𝑟𝑠 is again a nonlinear function with trainable parame-
ters 𝚯𝑟

𝑠 . We use 𝑟 to differ the Rx-NN from the Tx-NN. Again,
the structure of these NN have been chosen experimentally and
the details of the Rx-NN𝑠 are listed in Table I.

One advantage and distinguishing feature of NOMA-AE is
its ability to run both Rx-NN𝑠 in parallel, resulting in no error
propagation compared to SIC.

C. Supervised Learning and NN details

The general idea of supervised learning is to learn from
labeled data, meaning, each training dataset contains ground
truth label. The ground truth labels represent the optimal
outcome for each training sample. Here we use NNs to create
trainable functions with adaptable parameters 𝚯 to minimize a
loss function L(b𝑠 , b̂𝑠), here the Cross Entropy (CE) loss. The
loss provides a form of closeness measure between the ground
truth labels, here the vectors b𝑠 , and the output of the adaptable
function b̂𝑠 . By minimizing the loss, the trainable parameters
are adopted accordingly. The loss function is adapted by using
an iterative form of stochastic gradient descent. Specifically,
the key objective is to jointly train the AE structure, consisting



of transmitter and receiver structures, which contains Tx- and
Rx-NNs for each service 𝑠 to transmit and receive symbols

b𝑠
!
= b̂𝑠 , (5)

The CE loss maximizes the Mutual Information between b𝑠

and b̂𝑠 hence optimizing to (5) following the maximum likeli-
hood objective. We summarize the overall trainable parameters
as 𝚯 = {𝚯𝑡

1,𝚯
𝑡
2,𝚯

𝑟
1,𝚯

𝑟
2, 𝛼1, 𝛼2}. Recall that 𝛼1 + 𝛼2 = 1 is

enforced during the training process. Recapping the overall
scheme (Fig. 1), we can observe that an identity mapping is
formed, as vectors b𝑠 are fed into the scheme and recon-
structed vectors b̂s are the desired output, which is a key
feature of an AE. We want to emphasize that our approach
is fully modular, e.g., one can replace the Tx-NN𝑠 of the
transmitter with regular modulation schemes and retrain our
approach again. Furthermore, an extension for more than
two services is straightforward. An important remark here
is that we do not need to retrain our approach for each
transmission, we train once for a certain Signal-to-Noise-Ratio
(SNR) range and simply apply the learned NOMA-AE for
inference afterward.

III. RESULTS

To the best of our knowledge, there are no comparable
NN approaches for NOMA yet. The closest we found was
[5], where a 2 × 2 MIMO system was used in a concurrent
AE fashion. As we have a 1× 2 Single-Input-Multiple-Output
(SIMO) system, this is not directly comparable to our case.
Hence, we limit the comparison of NOMA-AE to a SotA
NOMA scheme. The SotA scheme consists of 𝑆 = 2 services
using optimal power allocation factors 𝜶 =

(
0.75 0.25

)
as

we know this leads to an equidistant signal constellation [4],
[10].

For training of our proposed NOMA-AE framework, we
generate 1e6 samples of b𝑠 for our dataset, a training SNR of
15 or 18dB and maximum number of 10000 epochs are used.
We save the best weights with the lowest loss. The training
SNR has been carefully chosen after different experiments
to find a good balance between noise and reconstruction
capability of the NNs to achieve the best performance. During
training, we use Adam optimizer [11] with default learning
rate of 0.001.

For all our comparisons, service 1 wants to transmit 𝑘1 = 2
bits per symbol, yielding 𝑀1 = 4 symbols and service 2 wants
to transmit 𝑘2 = 4 bits per symbol, i.e. 𝑀2 = 16. Therefore,
in the resulting superimposed transmit signal x, 4 · 16 = 64
total symbols are used during transmission. These numbers
are chosen to get a first impression of the performance of the
proposed NOMA-AE scheme.

In general, there are no restrictions on 𝑀𝑠 . For testing
purposes, new test datasets are generated to make sure no
overfitting occurred. To measure performance, the BLER

BLER =
# of false classes
# of all classes

(6)
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Fig. 2. Case A: Power allocation factors 𝛼 over training epochs.

is shown over various SNR values. Each class refers to one of
the one-hot-vectors in b𝑠 . E.g. for service 1 with 𝑀1 = 4, 4
classes would exist. Please note that for inference no retraining
is applied, the NOMA-AE is simply executed for each SNR
and the BLER is stored.

As mentioned in the system overview, we have a modular
transmitter concept where we can exchange blocks. For our
analysis we will distinguish between the following cases:

Case A – no Tx-NN𝑠 , but 2 fixed modulations, 4-QAM
and 16-QAM, where only 𝛼𝑠 is trainable on the
transmitter side

Case B – one of the fixed modulations is replaced with
a Tx-NN, so either 4 or 16 symbols are learned

Case C – both transmit services will be handled by Tx-
NN𝑠 each

We always have RX-NN𝑠 in place for each of the cases but
the transmitter changes for each case. Only cases B) and C)
have Tx-NN𝑠 , After training, the Tx-NN𝑠 can be replaced by
simple lookup tables, simply mimicking the functions of each
Tx-NN𝑠 .

A. Case A

We show the power allocation factors 𝛼𝑠 over the number
of training epochs in Fig. 2.

The power allocation factors end up close to the same value
(𝛼1 ≈ 0.76 and 𝛼2 ≈ 0.24) as the equidistant allocation of the
SotA NOMA scheme we use for comparison. Therefore, the
learned power factors are close to optimal [10]. As expected,
the resulting learned power factors form a 64-quadrature
amplitude modulation (QAM).

Finally, we show the BLER performance over the SNR and
compare to classical NOMA scheme in Fig. 3. The NOMA-AE
outperforms classical NOMA for all SNR and both services,
as SIC is suboptimal. Another benefit of our approach is that
we can estimate both bitstreams in parallel in comparison
to a classical SIC, as we are not required to detect the
strongest service first, but this comes at the cost of increased
computational complexity.
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Fig. 3. Case A: BLER performance vs SNR for proposed NOMA-AE. The
proposed scheme outperforms classical NOMA for both services and all SNR.
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Fig. 4. Case B: Superimposed transmit signal x of 2 services, resulting in
64 total transmitsymbols. Service 1 is fixed to 4-QAM and the modulation of
service 2 is learned by Tx-NN2 with 16 symbols

B. Case B

Exemplary, we fix service 1 to 4-QAM and make the 16
symbols of service 2 trainable. The resulting power allocation
factors 𝛼𝑠 are very similar to case A, being again (𝛼1 ≈ 0.75
and 𝛼2 ≈ 0.25), which is an expected behavior as we fix one
of the modulations. In Fig. 4 the superimposed, partly learned
modulation is shown.

We can see that the trainable modulation for the 16 symbols
form a hexagonal modulation which is, as Forney stated,
more efficient than classical QAM constellations [12]. QAM
with a square shape, maximizes the minimal Euclidean dis-
tance, which enhances scalability and symmetries. However,
it comes at the cost of a relatively high peak-to-average-
power-ratio (PAPR). In contrast, phase shift keying (PSK)
is attractive in terms of PAPR, but as the constellation size
increases, the minimum Euclidean distance rapidly decreases
[13]. Hexagonal constellations have the advantage of having
the densest 2D packing among all existing constellations. This
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Fig. 5. Case B: BLER over 𝐸𝑏/𝑁0 in dB. The proposed scheme outperforms
classical NOMA schemes for both services and all SNR.
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Fig. 6. Case C: Superimposed transmit signal x of 2 services, resulting in 64
total transmitsymbols. Service 1 uses Tx-NN1 learning 4 symbols and service
2 uses Tx-NN2 for 16 symbols

leads to a reduction in the PAPR of the constellation, making
hexagonal constellations more power efficient compared to
other constellations [14]. As a result, in the BLER performance
in Fig. 5, we can see that the performance improves in
comparison to case A for both services and high SNR. For low
SNR, the performance is nearly the same for both services, as
the noise is more dominant and no clear advantage can be
gained.

C. Case C

For a first impression, we show the scatter plot of the learned
superimposed constellation in Fig. 6. Again, a hexagonal mod-
ulation is learned. Furthermore, we observe that the learned
modulation is nearly equidistant, but not symmetrical wrt. the
axes.

In Fig. 7 the learned modulation schemes for each service
is shown. We observe a 90° phase shift between service 1 and
2. This is similar to the findings in [5], where a MIMO system
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Fig. 8. Case C: BLER over SNR for proposed NOMA-AE and classical
NOMA.

was applied. Hence, the learned modulations do not interfere
destructively for certain power allocation factors, as it was for
case A and B. Furthermore both 𝛼 are close to 0.5 (not shown),
which indicates that the learned constellations compensate for
the different power allocation factors, if compared to case A
and B.

Concluding the findings for this case, the BLER results in
Fig 8 indicate that the NOMA-AE with combined learning of
both constellations outperform traditional NOMA with SIC in
case of Service 2 for all SNR. Service 1 on the other hand, is
only superior for high SNR, but the gains are larger compared
to the other cases. For low SNR the performance is slightly
worse. This is due to the hexagonal modulations, as they are
superior against noise influences and SIC is not performing
as good as the Rx-NN𝑠 , which can already be seen in case
A. The performance loss for low SNR is explainable due the
nature of smaller decision regions on the receiver side for
service 1 as the modulations are phase shifted 90° to each
other. For high SNR this is not an issue anymore and leads
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Fig. 9. Comparison of all proposed cases.

to performance gains. On top, the performance degradation is
explainable with the high training SNR of 18dB, leading to
degraded performance for low SNR.

D. Comparison of all cases

Finally, we show the performance of all cases in Fig. 9 to
provide a good overview of the different settings. As expected,
the performance of all cases is similar. Case C features the
most flexibility and can hence perform better for high SNR,
as this was the training SNR range. Although the other cases
have been trained for the same SNR, the flexibility of them
is reduced and hence the possible gains are limited. Case B
performs a fraction better than case A which is reasonable, as
in case B one modulation is fully learned and adapted. Overall,
all cases outperform classical NOMA schemes for all services
and SNR, except for case C and service 1 for low SNR,
which shows that Rx-NN receiver yields performance gains
for NOMA. The usage of Tx-NN can yield slight performance
increase on top.

IV. SUMMARY AND OUTLOOK

In this paper, we propose a novel approach to design a
NOMA system by the application of Deep Learning and
neural networks in an Autoencoder framework. We show that
NOMA-AE outperforms existing SotA NOMA schemes in a
generic setup. Furthermore, as we do not rely on SIC, no error
propagation is possible. The observed gains from NOMA-AE
result from the fact that classical QAM modulations are not
optimal with respect to noise influence and that we perform
an optimal estimation of the superimposed transmit signal.
We further verified the proposed equidistant power allocation
scheme of the authors of [4] with the evaluations in this paper.

In future investigations the extension to higher data rates
per service, the adaptation for more than 2 services, and the
transmission over more general channels is planned.
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