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Abstract—We focus on a (generic) joint source-channel coding
problem, appearing in a broad variety of real-world application.
Explicitly, a noisy observation from a user/source signal should
be compressed, ahead of getting forwarded over an error-prone
and rate-limited channel to a remote processing unit. The design
problem shall be formulated in a fashion that the impacts of the
forward link are taken into account. Aligned with the Information
Bottleneck (IB) method, we consider the Mutual Information (MI)
as the fidelity criterion, and work out a data-driven approach to
tackle the underlying design problem based upon a finite sample
set. For that, we derive a tractable variational lower-bound of the
objective functional, and present a general learning architecture
which can be used to optimize the given lower-bound by standard
training of the encoder and decoder Deep Neural Networks. This
approach that is, principally, based upon the (generative) latent
variable models, extends the concepts of Variational AutoEncoder
(VAE) and Deep Variational Information Bottleneck (Deep VIB)
for (remote) source coding to the context of joint source-channel
coding. We validate the effectiveness of our approach by several
numerical simulations over typical transmission scenarios.

Index Terms—Information bottleneck, variational autoencoder,
deep learning, quantization, joint source-channel coding, 6G

I. INTRODUCTION

The Information Bottleneck (IB) method for data compres-
sion, first introduced in [1], borrows ideas from the seminal
work of Shannon [2] on lossy source coding. Motivated by
the fact that, in many real-world clustering applications, it is
much easier to determine a relevant/target variable (whose
information shall be retained) than figuring out the suitable
distortion measure, the IB’s design formulation applies an
intuitive twist on the single-letter characterization of the Rate-
Distortion function. Explicitly, instead of upper-bounding the
average distortion, it lower-bounds the (relevant) information
between the target and the latent variable. Interested readers
are referred to [3] for an overview of conceptual ideas, linked
to the applicational scope of the IB method.

Aside from theoretical studies, the practical usage of the
IB method (in modern transmission systems) recently has
gained an increasing momentum. Those applications include
(but are not limited to the) Analog-to-Digital (A/D) converters
at receiver front-ends [4], discrete channel decoding schemes
[5]–[9], semantic/task-oriented communications [10]–[13], and
efficient construction of Polar Codes [14], [15].

In recent years, by exploiting the capabilities of Deep Learn-
ing and Neural Networks (NNs), novel data-driven approaches
have been devised to efficiently optimize the IB trade-off (see,
e.g., [16]–[18]). These methods that work based upon a finite
sample set drastically expand the scope of applications of the
IB principle as, unlike the conventional algorithms, they do not
require the full prior statistical knowledge of input variables.
Moreover, they can efficiently handle high dimensional (and
even continuous) data.

As the main contribution, we present with Deep Forward-
Aware Vector Information Bottleneck (Deep FAVIB) the data-
driven, sample-based counterpart of the Forward-Aware Vector
Information Bottleneck (FAVIB) algorithm, first presented in
[19]. With this, we directly extend the concept of Deep VIB
[16] for (noisy) source coding to the context of joint source-
channel coding by taking into account an error-prone foward
channel (FC). Furthermore, we perform an in-depth analysis of
Deep FAVIB and as the main result, we show performance on
par with FAVIB. This, indeed, is quite remarkable, as we use
solely a finite sample set, without knowing the joint statistics
of the input signals. FAVIB, on the other hand, requires the
full statistical knowledge. This indicates that Deep FAVIB can
be utilized in a much wider scope of scenarios, where the full
statistical knowledge of the input signals is not available.

The rest of the paper is organized as follows: In Section II,
we introduce our system model and the pertinent design prob-
lem. This will be followed by presenting our deep variational
approach in Section III. Thereupon, in Section IV, we provide
several simulation results to corroborate the effectiveness of
our approach. Finally, in Section V, we conclude this paper
by a short wrap-up, containing the salient points.

II. SYSTEM OVERVIEW

Notation: The random variable, b, with the probability mass
function p(b) accepts certain realizations, b, from its domain,
B, and with boldface, the random vector, b, is given. DKL(·||·),
H(·), and I(·; ·) are the Kullback-Leibler Divergence (KLD),
Shannon’s entropy and Mutual Information (MI) [20].

A. System Model and Problem Formulation

In Fig. 1 the general setup is depicted. A discrete-valued
data source x ∈ X generates modulated symbols, mapped
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Fig. 1. System model: Symbols x are transmitted over an access channel, quantized, forwarded via an imperfect channel, and reconstructed by decoder x̂.

by any suitable modulation scheme. Afterwards, an access
channel p(y|x) will introduce signal distortion, leading to
the received signal y ∈ Y . A quantizer p(z|y) will then
compress/quantize the signal y to another signal z ∈ Z
with a fixed cardinality |Z| = N , yielding a clustered y.
After quantization, a rate-limited Forward Channel (FC) p(t|z)
with capacity R will introduce further distortions, yielding
t ∈ T . Finally, a decoder p(x̂|t) will reconstruct the transmitted
symbol x̂. This forms a joint source-channel coding scheme as,
through the compression, the quantizer also takes into account
the FC impacts.

B. Conventional IB Method
To start the discussion we begin by designing the quantizer

p(z|y) with the conventional IB method. To that end, we need
to know the joint statistics of the input signals. The quantizer is
designed such that, through the compression, the information
about the source signal x is mostly preserved.

1) Perfect Forwarding: Presuming a perfect/error-free FC,
and by utilizing the IB method, we maximize the MI between
x and z, i.e., I(x; z) under the constraint that the MI between
y and z, i.e., I(y; z) is limited to the capacity R of the FC1.
Mathematically, we write

p⋆(z|y) = argmax
p(z|y): I(y;z)≤R

I(x; z) , (1)

with 0 ≤ R ≤ log2 |Z| providing an upper-bound to I(y; z).
This constrained optimization problem can be reformulated
with the Lagrange Method of Multipliers [22] leading to

p⋆(z|y) = argmax
p(z|y)

I(x; z)− λI(y; z) , (2)

where λ≥ 0 is directly related to the capacity R of the FC.
The objective function in (2) sets a basic trade-off between
reconstruction I(x; z) and compression I(y; z). Maximizing
the MI between x and z will ensure maximal reconstruction ca-
pabilities for the decoder, while minimizing the MI between y
and z will ensure maximal compression w.r.t. y. In other words,
we want to compress the observed signal y to a variable z
such that the relevant information about the source x is mostly
preserved. The stationary solution of (2) has been derived for
each (y, z) ∈ Y×Z in [1] as

p⋆(z|y) = p(z)

ω(y, λ)
exp

(
−λ−1DKL

(
p(x|y)||p(x|z)

))
, (3)

where ω(y, λ) is a normalization function, ensuring a correct
conditional distribution. An iterative algorithm has also been
presented in [1] which, in principle, performs the Fixed-Point
Iterations [23] on the implicit solution (3). For non-zero λ
values, usually, a soft/stochastic quantizer is achieved.

1Refer to [21] for the (asymptotic) remote source coding formulation with
the Logarithmic Loss distortion.

2) Imperfect Forwarding: For an Imperfect/error-prone FC,
we extend the design problem to take its effects into account

p⋆(z|y) = argmax
p(z|y): I(y;z)≤R

I(x; t) . (4)

Applying the Lagrange Method of Multipliers [22], we get

p⋆(z|y) = argmax
p(z|y)

I(x; t)− λI(y; z)︸ ︷︷ ︸
LFAVIB

. (5)

Now, the quantizer is designed such that the information about
the source signal x after the FC is mostly preserved, with
the same constraint on compression rate I(y; z) w.r.t. the FC
capacity, R. The stationary solution of (5) has been derived
for each (y, z) ∈ Y×Z in [19] as

p⋆(z|y) = p(z)

ω(y, λ)
exp

(
−λ−1

∑
t∈T

p(t|z)DKL
(
p(x|y)||p(x|t)

))
,

(6)

where ω(y, λ) is again a normalization function. Similar to the
original IB scenario, an iterative algorithm, the Forward-Aware
(Vector) Information Bottleneck (FAVIB), has been presented
in [19] that performs the Fixed-Point Iterations [23] on the
derived implicit solution (6), together with its proof of conver-
gence to a stationary point of the objective functional LFAVIB.
Like before, for non-zero λ values, usually, a soft/stochastic
quantizer is achieved.

III. DEEP FAVIB

Here, we develop our new deep learning approach, named
Deep FAVIB, to approximately tackle the design problem (5),
when instead of the joint statistics p(x, y), solely a (finite)
sample set {xm, ym}Mm=1 (where M is the total number of
samples) is available. This approach which generalizes the
Deep Variational Information Bottleneck (Deep VIB) [16], is
based upon the (generative) latent variable models, specifically,
the well-known concept of Variational Auto-Encoder (VAE)
[24], [25].

A. Variational Lower-Bound

The starting point to develop a data-driven design approach
is to introduce a tractable Variational Lower-Bound (VLB) on
the objective functional LFAVIB in (5). We start by introducing
variables A and B for reconstruction and compression. More
specifically, let A be a lower-bound on I(x; t), i.e., I(x; t)≥A,
and B an upper-bound on I(y; z), i.e., I(y; z)≤B. Then, it
applies

LFAVIB = I(x; t)− λI(y; z) ≥ A− λB = LVLB . (7)
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Fig. 2. Learning architecture for Deep FAVIB, including two DNNs for encoder and decoder, a Gumbel sampler, and a softmax/argmax unit

For relevant information I(x; t), the following holds true

I(x; t) = H(x)︸ ︷︷ ︸
≥0

−H(x|t) (8a)

≥
∑
t∈T

p(t)DKL
(
p(x|t)||q(x|t)

)
︸ ︷︷ ︸

≥0

+
∑

x∈X ,t∈T
p(x, t) log q(x|t)

(8b)
≥ Ex,t{log q(x|t)} = A, (8c)

where we introduce the proxy posterior q(x|t), replacing the
perfect decoder p(x|t). From (8a) to (8b), the non-negativity
of entropy H(x), and, from (8b) to (8c), the non-negativity
of KLD (a.k.a. information inequality) has been applied [20].
Further, for the compression rate I(y; z), we can follow

I(y; z) =
∑

y∈Y, z∈Z
p(y, z) log

p(z|y)
r(z)

−DKL
(
p(z)∥r(z)

)︸ ︷︷ ︸
≥0

(9a)

≤ E y,z
{
log

p(z|y)
r(z)

}
= B, (9b)

in which we introduce r(z) as an arbitrary prior for the latent
variable z. From (9a) to (9b), the non-negativity of KLD has
been applied. Finally, for the VLB we get with (7)

LVLB = Ex,t∼p(x,t){log q(x|t)} − λEy,z∼p(y,z)

{
log

p(z|y)
r(z)

}
.

(10)

To design the quantizer/encoder p(z|y) and the approximate
decoder q(x|t), next, we introduce parameterized distributions,
which are realized via Deep Neural Networks (DNNs). It holds

LDNN = Ex,t∼p(x,t){log qϕ(x|t)} − λEy,z∼p(y,z)

{
log

pθ(z|y)
rψ(z)

}
= Et∼p(t)

{
Ex∼p(x|t){log qϕ(x|t)}

}︸ ︷︷ ︸
reconstruction

− λEy∼p(y)
{
DKL

(
pθ(z|y)||rψ(z)

)}︸ ︷︷ ︸
regularization

,

(11)

with weights θ, ψ, and ϕ. Note that we want to maximize
(11). We observe that maximizing the relevant information
corresponds to minimizing the cross-entropy loss (which is the
standard reconstruction loss for classification, following the
Maximum-Likelihood learning rule [26]), averaged over t. The
counterpart term for compression rate, on the other hand, acts
as a regularization since the quantizer pθ(z|y) should match
the prior rψ(z) via KLD, averaged over y.

B. Learning Architecture & Implementation Details

In general, we need to design a stochastic encoder pθ(z|y)
and decoder qϕ(x|t) via DNNs. To estimate the gradients
of LDNN, the conventional approach of utilizing the repa-
rameterization trick [24] to enable the Monte-Carlo sampling
and subsequently, replacing the expectation terms with their
(empirical) estimates can be exploited here as well. Since our
main focus will be on discrete latent spaces, the Gumbel-
Softmax/Concrete Distribution [27], [28] can be employed to
do the trick, i.e., reparameterizing the underlying categorical
distribution. The overall learning architecture of our proposed
data-driven approach, i.e., the Deep FAVIB, has been depicted
in Fig. 2.

The received signal y ∈ Y is generally complex-valued. To
serve as an input of the Neural Network (NN)-Encoder (with
weights θ) the received signal yreal ∈ R2 is stacked into a 2D
vector containing real and imaginary parts, separately. This is
necessary as NNs cannot handle complex numbers straight-
forwardly2. yreal serves as input for the encoder NN, whose
output π ∈ (0, 1)N forms the categorical distribution of the
discrete latent z. To sample from the corresponding concrete
variable, N i.i.d. samples from Gumbel(0, 1) distribution are
generated and stacked into the vector g ∈ RN . The sum signal
log(π)+g is then fed into a softmax/argmax unit. If we use
argmax, one of the N entries is set to 1, and the remaining
N−1 entries become 0. This is known as one-hot encoding. For
training, argmax is not a suitable choice as gradients cannot
be calculated through this function. To circumvent this issue,
the softmax is applied. The i-th entry of the sample vector
zsamp, is calculated as (i=1 to N )

zsamp,i =
exp

((
log(πi) + gi

)
/τ
)

∑N
j=1 exp

((
log(πj) + gj

)
/τ
) ∈ [0, 1], (12)

where τ > 0 is a hyper-parameter, named temperature. The
smaller the τ , the closer behaves softmax like argmax. τ is an
important tradeoff factor. The smaller τ , the more steep the
softmax becomes and gradients change rapidly, and hence a
poor local optima may be found. If τ is too large, the softmax
will differ too much from argmax. During deployment, only
the argmax is used, yielding one latent realization z that is
then transmitted over the FC and the decoder NN qϕ(x|t) with
parameters ϕ is used to recover x̂. The decoder consists of
a standard Feed-Forward NN. This overall chain extends the

2The problem arises when updating the gradients, as complex derivatives
are not always straightforward to calculate.



VAE architecture. Specifically, in a traditional VAE we go
from x to z and back to x, but in our chain, we have a noisy
version y of x, as the input signal to the encoder. Additionally,
we have an error-prone FC, disturbing the latent variable z,
and consequently, the input signal to the decoder is also a
noisy version t of z.

C. Neural Networks & Supervised Learning

NNs are nonlinear functions with trainable parameters, here
θ and ϕ. These parameters are adapted w.r.t. a loss function,
here −LDNN (11). For a given data set {xm, ym}Mm=1, we can
update the parameters by some form of Stochastic Gradient
Descent with back-propagation. To train the decoder, samples
tm are needed. These tm are generated through the data set
indirectly. They are formed via a markov chain from ym to tm,
where the quantizer influences how zm and subsequently tm
is formed. The goal is to adapt the weights for both encoder
and decoder NNs together to minimize the loss function.
The prior rψ(z) although having its own trainable parameters
(probabilities of different clusters), does not depend on a NN.

IV. NUMERICAL RESULTS

We compare our proposed scheme’s performance, with
FAVIB, as, ideally, Deep FAVIB should perform close to
FAVIB, by maximizing a lower-bound. FAVIB is guaranteed
to converge to a stationary solution [19]. To avoid poor local
optima, FAVIB is run 100 times and the best result is shown.

We use a rather simple scenario to make comparisons
with FAVIB. Explicitly we use Quadrature Phase Shift Key-
ing (QPSK) modulation, an Additive White Gaussian Noise
(AWGN) access channel with noise variance σ2

n , and regarding
FC, we consider an N -ary symmetric model with error proba-
bility e. Remember that z is a clustered version of y, containing
N clusters. Specifically, with probability 1− e, no cluster
flip/change occurs and with probability e, one of the N−1
remaining clusters is chosen. i.e. if e = 0, t = z is true. For
training, we use M=1e6 samples, a batch size of 10000 and a
maximum of 50000 epochs. We apply Early Stopping, to track
the lowest overall loss, and save the best weights. The learning
rate is set to 10−5 and Adam [29] is used for optimization. The
model parameters are λ, σ2

n , τ and e. The NN configurations
of the encoder and decoder can be seen in Table I. Both NNs
follow a Feed-forward structure with multiple hidden layers
with Rectified Linear Unit (ReLU) activation functions. The
output activation function of the encoder is linear to form the
log probabilities log(π) and the output activation function of
the decoder is a softmax to distinguish between the symbols in
the modulation alphabet X . Training is needed only once for
each specific setup. Afterwards, we simply deploy the trained
NNs. Nevertheless, for each parameter sweep in the upcoming
plots, a new training is conducted.

A. Temperature τ and Quantization Borders

To investigate the effects of temperature τ on the per-
formance of Deep FAVIB, we vary τ over a certain range
and calculate the obtained relevant information I(x; t) for

TABLE I
CONFIGURATION FOR ENCODER NN, DECODER NN, AND PRIOR

Name # of Hidden Layers Width of Layers # of Weights
pθ(z|y) 3 300, 200, 100 82816
qϕ(x|t) 3 300, 200, 100 85602
rψ(z) 0 0 N
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Fig. 3. Relevant information I(x; t) versus temperature τ for different error
probabilities e, N=16, λ=0.01, and σ2

n =0.4.

different error probabilities e. We set N = 16, λ =0.01, and
σ2

n =0.4. The pertinent results have been depicted in Fig. 3.
In general, we observe that lower temperature values τ lead
to better performance for high error probabilities e, and vice
versa. As a consequence, the temperature value τ has to be
chosen carefully depending on the scenario, as it can have
a direct influence on the quality of outcome. For upcoming
simulations, we fix τ = 0.1 if e > 0 as this yields the best
result. If e=0, we fix τ=1, as high values of τ lead to better
performance in this case.

To understand the dynamics of compression based on the
quality of forward channel, in Figs. 4 and 5, we present the
obtained quantization regions of unreliable (e = 0.25) as
well as fully reliable forwarding (e = 0), respectively. The
horizontal and vertical axes show the real and imaginary parts
of the received signal y. In color, with arbitrary numbering, the
quantization regions are shown. We also provide the individual
contribution i(z) of each cluster z (a.k.a. partial MI) to the
overall relevant information I(x; t) in Table II. Note that
I(x; t)=

∑
z i(z) holds.

We set N = 16, σ2
n = 0.4, and λ= 0 for both figures (i.e.,

during training, only reconstruction loss is considered). The
difference comes in the error probabilities and, consequently,
the chosen temperature values. In Fig. 4, e=0 (fully reliable
forwarding), and accordingly, we choose τ = 1. In Fig. 5,
we set e=0.25 (highly unreliable forwarding), and based on
our previous investigations, we choose τ = 0.10. During our
simulations we observed that low temperature values, usually,
lead to usage of less clusters and vice versa. In Fig. 4, we
observe that all 16 clusters are used. Explicitly, 4 large corner
clusters are formed, as well as 10 ”in-between” clusters and 2
clusters around the origin. Referring to Table II, it is observed
that the 4 corner clusters {9, 10, 11, 12} carry the most



TABLE II
PARTIAL MI i(z) OF EACH CLUSTER FOR FIGS. 4 AND 5

Fig. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
∑

4 0.002 0.047 0.035 0.046 0.048 0.017 0.001 0.050 0.020 0.304 0.298 0.270 0.255 0.039 0.033 0.050 1.518
5 ≈0 0.221 0.218 ≈0 ≈0 ≈0 0.010 0.009 0.215 ≈0 0.221 0.013 ≈0 ≈0 0.009 ≈0 0.917

Fig. 4. Obtained quantization regions, equiprobable QPSK signaling over an
AWGN access channel with σ2

n = 0.4, N = 16 clusters, temperature τ = 1
and e=0 (fully reliable forwarding).

Fig. 5. Obtained quantization regions, equiprobable QPSK signaling over an
AWGN access channel with σ2

n =0.4, N=16 clusters, temperature τ=0.1,
and e=0.25 (unreliable forwarding).

information (roughly, 74% of the overall MI). The clusters
in the center {0,6}, carry almost no information (i(·)≈0) and
act as an erasure.

In Fig. 5, we observe that not all N=16 clusters are utilized.
Explicitly, 4 corner cluster, 4 ”in-between” clusters and one
cluster around the origin are formed. The remaining 7 clusters
are not used. Referring to Table II, we see that the 4 corner
cluster {1, 2, 8, 10} carry 95% of the MI. The center cluster
{4} carries no information (i(4)≈0) and acts as an erasure.

In comparison, in case of small e (Fig. 4), the forward
channel capacity is large enough to allow the quantizer to
actively utilize (almost) all clusters to generate a finer decom-
position at each quadrant. On the contrary, in case of large
e (Fig. 5), the quantizer cannot afford the luxury of such
fine decompositions. The information is best conveyed with
a lower number of active clusters. Overall, this behaviour can
be interpreted as a form of channel coding, as the FC has direct
impact on the engendered quantization regions. This highlights
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Fig. 6. Relevant information I(x; t) versus SNR of AWGN access channel,
N=32 clusters, λ=0.01, τ=0.1, and different error probabilities e.
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Fig. 7. Relevant information I(x; t) versus error probability e of FC, σ2
n =0.4,

λ=0.01, τ=0.1, and different number of clusters N .

the connection to joint source-channel coding.

B. End-to-End Rate for Different SNR and Error Probabilities

We evaluate the overall MI I(x; t) against various noise
levels σ2

n and error probabilities e for λ = 0.01, N = 32
and τ = 0.1. The obtained results are shown in Fig. 6.

As expected, the relevant information I(x; t) decreases, the
lower the SNR becomes, as less information can be passed
through the system overall. The trends of Deep FAVIB and
FAVIB are nearly linear but flatten out for low SNR. This is
consistent across all error probabilities e shown and is strictly
related to the capacity of AWGN channel and its relation to
the noise variance σ2

n and the SNR [19]. Furthermore, both
algorithms yield lower relevant information I(x; t), the higher
e becomes, as naturally, the less reliable the forward channel
is, the less information can be carried to the decoder. As a
major result, we observe that the performance of Deep FAVIB
is quite close to FAVIB. This shows that a single training



round for Deep FAVIB is sufficient to deliver quite comparable
results with the best out of 100 reruns of FAVIB.

In Fig. 7, we show the relevant information I(x; t) against
the error probability e of the FC for a fixed noise variance of
σ2

n =0.4. We set λ=0.01 and vary N . As expected, the higher
the error probability e becomes, the less MI is available as the
scheme becomes less reliable overall. Furthermore, naturally,
as the quantizer output cardinality N grows, higher relevant
information values can be achieved as more available clusters
lead to an easier forwarding of information. By comparing
the performances of both algorithms, it is again observed that
Deep FAVIB, with a single training round, comes on par with
the best result out of 100 reruns of FAVIB for all evaluated
number of clusters N . This clearly substantiates the promising
performance of our novel Deep FAVIB approach.

V. SUMMARY

In this work, we presented the Deep FAVIB, a data-driven,
deep variational approach to address the IB-based design
problem for a generic joint source-channel coding setup that
appears in real-world applications. The main advantage of
Deep FAVIB is the fact that, it is trained by a (finite) sample
set, thereby obviating the need for prior statistical knowledge
of the input signals. Other State-of-the-Art (SoTA) algorithms
like FAVIB require the prior knowledge of the joint statistics
of input signals. Deep FAVIB that is based upon (generative)
latent variable models directly generalizes the well-known
concepts of Variational Auto-Encoder (VAE) [24] and Deep
Variational Information Bottleneck (Deep VIB) [16] to the
context of joint source-channel coding by incorporating an
error-prone forward channel into the design problem. We
further substantiated the performance of Deep FAVIB by an
in-depth analysis and comparison with FAVIB. As the main
result, we showed performance on par with FAVIB, which is
a remarkable result. It was shown that, a single training round
for Deep FAVIB is sufficient to come on par with the best
result out of 100 reruns of FAVIB. This directly motivates the
usage of Deep FAVIB in real-world scenarios where the joint
statistics of input signals is not available.
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