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Abstract—The Nyquist-Shannon sampling theorem states that
bandlimited signals can be perfectly reconstructed from samples
taken at a fixed rate. Signals with varying spectral content are
not considered, which leads to an unnecessarily high number
of samples in signal intervals with narrowband content. An
extension of the Nyquist-Shannon theorem enables the definition
of variable bandwidth signals through nonlinear time axis distor-
tion. This technique, known as time warping, enables variable-
rate sampling based on instantaneous bandwidth, resulting in
sample numbers proportional to the average bandwidth rather
than the maximum bandwidth as in classical sampling. In
practice, however, the instantaneous bandwidth of a signal is
unknown, except for a few analytically determinable exceptions.
In this paper, we introduce a novel spectrogram-based algorithm
for estimating the instantaneous bandwidth of classically sampled
signals, allowing to project them to variable bandwidth signals.
We examine the tradeoff between sample reduction and recon-
struction accuracy of electrocardiograms and compare the results
to classical downsampling.

Index Terms—Instantaneous Bandwidth, Time-warping,
Nonuniform sampling, Electrocardiogram (ECG)

I. INTRODUCTION

The Nyquist-Shannon sampling theorem is the founda-
tion for digital signal processing of analog signals. It states
that bandlimited signals can be perfectly reconstructed from
equidistant samples. The sampling frequency is dependent on
the maximum frequency component of the signal and is kept
fixed in conventional signal processing systems. However, the
frequency content of many practical signals changes signifi-
cantly over time. Some notable examples are speech signals [1]
[2], frequency modulated (FM) signals [3], and electrocardio-
grams [4] [5]. The Nyquist-Shannon sampling theorem does
not account for periods with narrowband spectral components
where the sampling frequency is too high, resulting in more
samples than necessary.

There exist several approaches to sample signals more
efficiently, including compressive sensing [6], finite rate of
innovation [7], and event-based sampling [8]. Another method,
called time-warping was introduced in [3] by Clark, Palmer,
and Lawrence. Their proposal extends the classical sampling
theorem for nonuniform sampling distributions by introducing
a nonlinear distortion of the time-axis of classically bandlim-
ited signals. They use the resulting instantaneous sampling
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rate to define a measure of instantaneous bandwidth B(t)
of the warped signals. Therefore, this framework serves not
only as a sampling scheme but also as a signal model that
accommodates structural characteristics beyond constant band
limitation. We call signals modeled in this way variable
bandwidth (VBW) signals.

Event-based samplers adjust their sampling rate to the
instantaneous bandwidth of VBW signals [8], which, when
combined with event-based communication, promises signifi-
cantly enhanced energy efficiency in wireless communication
[9]. To evaluate potential sample reductions, practical signals
must be modeled as VBW signals, which requires an estimate
of instantaneous bandwidth. Typically, practical signals are
uniformly sampled under the assumption of classical band
limitation. By transforming these signals into VBW signals,
we can estimate potential sample savings, especially in event-
based sampling approaches.

An existing method to project signals into VBW signals
employs an iterative time-warping algorithm [10] utilizing
an undisclosed procedure involving the short-time Fourier
transform (STFT). In our work, we demonstrate how the
STFT, specifically the spectrogram, can be used to estimate
the instantaneous bandwidth of classically sampled signals. We
introduce our developed algorithm and employ it to project
classically sampled signals into VBW signals using the time-
warping technique from [3]. To illustrate the benefits of
this representation, we apply it to electrocardiogram (ECG)
signals, achieving a reduction in the total number of samples
compared to classical sampling. We also investigate the trade-
off between sample reduction and reconstruction error using
classical downsampling for comparison.

II. TIME-WARPING

First, we will revisit the Nyquist-Shannon sampling the-
orem. Afterwards, we introduce the time-warping extension
of [3] which is used to define a measure of instantaneous
bandwidth. The Nyquist-Shannon sampling theorem states
that, if a signal x(τ) is bandlimited to the bandwidth B0,

∀|f | > B0 : X(f) =

∫ ∞

−∞
x(τ)e−j2πfτdτ = 0, (1)

it can be reconstructed by its equidistant samples x( n
2B0

), n ∈
N with a constant sampling rate f0 = 2B0 using the Whittaker-



Shannon interpolation formula:

x(τ) =

∞∑
n=−∞

x

(
n

2B0

)
· sinc(2B0τ − n). (2)

Clark, Palmer and Lawrence [3] introduced an extension
of this theorem by defining a signal y(t) = x(γ(t)) as a
bandlimited signal x(τ) which is transformed by a strictly
monotonically increasing time-warping function τ = γ(t). For
a simpler understanding of this concept and without loss of
generality we set the bandwidth of x(τ) to be B0 = 1

2 for this
explanation. Substituting the time-warping function γ(t) into
(2) we get

y(t) =

∞∑
n=−∞

x(n)sinc(γ(t)− n). (3)

Since γ(t) is bijective, we can formulate the samples in the
τ -domain x(n) as samples in the t-domain y(γ−1(n)) and get
the interpolation formula

y(t) =

∞∑
n=−∞

y(γ−1(n))sinc(γ(t)− n). (4)

We call such signals y(t) variable bandwidth (VBW) signals.
They are represented by the samples y(tn) with

tn = γ−1(n) (5)

and the time-warping function γ(t). Thus, the sample times
are the integer crossings of γ(t). The instantaneous sampling
rate of the samples can be formulated as the derivative of γ(t)
[3]

fs(t) =
δγ(t)

δt
. (6)

We assume here, as in classical sampling, that the bandwidth
is twice the sampling frequency, except that here both the
sampling frequency and bandwidth are functions of time t:

B(t) :=
1

2
· δγ(t)

δt
. (7)

By integration, we can also find γ(t) when B(t) is given:

γ(t) = 2

∫
B(t)dt. (8)

In the subsequent sections of this paper, we will represent
VBW signals with B(t) and the non-uniform samples y(tn).

The number of samples in a given time interval t ∈ [0, T ]
for Shannon-Nyquist sampling is 2 · B0 · T . The number of
samples for VBW signals in the same interval is γ(T )− γ(0)
which corresponds to the average instantaneous bandwidth
B = 2

T

∫ T

0
B(t)dt in the time interval. As long as the average

bandwidth B of a VBW signal is smaller than the constant
bandwidth B0 of a bandlimited signal, VBW signals require
fewer samples than classically bandlimited signals.

In the next section, we present a method for determining
B(t) of uniformly sampled bandlimited signals x(t) with any
given B0. This provides a means of determining γ and sub-
sequently the non-uniform sampling times tn. By resampling
x(t) using (2) at tn we can project the bandlimited signal into
a VBW signal.
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Fig. 1. Example ECG signal x(t), time-warped samples y(t′n), and recon-
structed VBW signal y(t).

III. INSTANTANEOUS BANDWIDTH ESTIMATION AND
RESAMPLING

Our algorithm is based on the spectrogram, a representation
of local signal energy over time and frequency. We will give
an intuitive view of how we get from the spectrogram to
an estimation of instantaneous bandwidth before we define
it mathematically. Using an example ECG signal sampled at
360Hz with two heartbeats (shown as a solid black graph in
Fig. 1), we find that its bandlimited representation contains
spectral content up to 180Hz. Fig. 2 depicts the spectrogram
of this signal (only the colored part), showing only the section
up to 100Hz where most of the signal energy is located.
The algorithm described below estimates the instantaneous
bandwidth (shown as a solid black graph in Fig. 2) based
on an energy criterion. We then project the bandlimited signal
into a VBW signal, causing two effects: First, the VBW signal
differs from the original since the energy components above
the estimated instantaneous bandwidth are removed. Second,
the VBW signal can be represented with fewer samples as the
sampling rate is adapted to the time-varying spectral content
instead of maintaining a fixed rate of 2B0. Fig. 1 shows
the nonuniform samples and the reconstructed VBW signal,
highlighting the high sample concentrations in areas of high
instantaneous bandwidth.

The bandwidth estimation is based on the spectrogram of
real signals sampled uniformly at f0. We denote these time-
discrete signals as x[n] where x[n] = x( n

f0
). The signals have

a length of N samples, hence n ∈ [0, N − 1]. The spectrogram
for time-discrete signals is defined as

S[m, k] =
1

Nw

∣∣∣∣∣
Nw−1∑
n=0

x[n]w[n−m]e−j 2π
Nw

nk

∣∣∣∣∣
2

, (9)

where

m ∈ [0,M − 1] , k ∈ [0,K − 1] , (10)

M = N −Nw, K =

⌈
Nw

2

⌉
. (11)

w[n] is an energy normalized time-discrete window function
which is nonzero only for n ∈ [0, Nw − 1], where Nw ≤ N .
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Fig. 2. Spectrogram of example ECG signal x(t) (logarithmic, colored) and
instantaneous bandwidth estimate B(t) (solid black).

Thus, the spectrogram performs discrete Fourier transforma-
tions on windowed segments of length Nw of the signal x[n].

S[m, k] is an estimation of the power spectral density of
the signal x[n] at time tm and frequency fk:

tm =
m

f0
+

Nw

2f0
, fk =

f0
Nw

· k. (12)

For further details on the spectrogram we refer to [11].
To find B(t), we now sum up all energies cumulatively over

the frequency index k per time segment m of the spectrogram
S[m, k]. This results in a function

S+[m, k] =

k∑
k′=0

S[m, k′], (13)

showing us how much energy is contained between the fre-
quency zero and the frequency fk at time tm. Our algorithm
relies on an energy threshold, so we need a continuous
cumulative energy distribution s+m(f) for each time segment
m which we calculate by piecewise linear interpolation of
S+[m, k]. As the frequencies fk are equidistant, we can use
the convolution with the triangular function to describe this
interpolation:

s+m(f) =

K−1∑
k=0

S+[m, k] · tri
(
Nw

f0
(f − fk)

)
. (14)

If we now had the task to find an instantaneous bandwidth
that preserves all the energy contained in the signal, we
would end up at the originally assumed constant bandwidth
B(t) = B0. Thus, in order to save samples by lowering the
instantaneous bandwidth from its original constant value of
B0, we must necessarily discard signal energy. We formulate
the discarded signal energy ed as a fraction q of the total signal
energy ex =

∑N−1
n=0 |x[n]|2:

ed = qex, (15)

where q denotes the ratio of signal energy discarded.
Next, we distribute ed evenly over all time segments of the

spectrogram. Since a spectrogram segment has a length of Nw

and the window w[n] is chosen to be energy conserving, the
energy to be discarded per segment ed,seg is

ed,seg = ed
Nw

N
. (16)

The energy conserved per segment is dependent on m and can
be formulated as

ethr,m = S+[m,K − 1]− ed,seg, (17)

where S+[m,K−1] is the total energy of segment m. To find
the estimated instantaneous bandwidth per segment, we solve
ethr,m = s+m(f). As long as ethr,m ≥ s+m(0), the solution is
guaranteed to exist, because S+[m, k] is purely positive and
thus s+m(f) is monotonically increasing. Nonexisting solutions
are set to zero:

B̃(tm) =

{
0, if ethr,m < s+m(0)

f : s+m(f) = ethr,m, else.
(18)

The solution might not be unique, in which case we select the
smallest solution. This way we get a preliminary estimation
B̃(tm) of the instantaneous bandwidth at the times tm.

The time-warping framework requires purely positive B(t)
because the corresponding γ(t) has to be strictly monoton-
ically increasing. Hence, we define a free parameter, the
minimal bandwidth Bmin and clip B̃(t) to get the final estimate
of the instantaneous bandwidth:

B(tm) = max(Bmin, B̃(tm)). (19)

To get from the estimates at tm to a continuous function we
again use piecewise linear interpolation:

B(t) =

M−1∑
m=0

B(tm) · tri (f0(t− tm)) . (20)

We can now compute γ(t) using (8), and as B(t) is piece-
wise linear, we can determine it analytically. Subsequently,
we determine the sampling times tn using (5). We then
resample the original signal x(t) at tn using x[n] and the sinc-
interpolation (2). The resulting number of nonuniform samples
is ensured to be less than or equal to the original number of
samples N because B(t) cannot exceed the original bandwidth
B0. To determine the balance between saved samples and
reconstruction error, we will present numerical findings in
Section V.

IV. PARAMETRIZATION FOR ECG SIGNALS

A. Preprocessing

To show the performance of the proposed algorithm, we use
recorded ECG data from the MIT-BIH Arrhythmia Database
[12] from PhysioNet [13]. The used recordings are from the
normal electric activity within the heart. The data has a sam-
pling frequency of fs = 360Hz, which is, according to [14],
highly oversampled. To remove unwanted noise especially in
the high frequency domain we low-pass filter1 the data with

1Third-order Butterworth



a cutoff frequency of 100Hz. Since artifacts from the power
grid are visible in the raw data we additionally apply a notch
filter2 with a center frequency of 60Hz. Afterwards, we divide
the data into sections of 512 samples and subtract the mean
from the signal before applying the spectrogram, as is usual
for ECG signals [15].

B. Bandwidth estimation

The parameter Nw and the selection of the window function
w[n] jointly determine the spectrogram’s time and frequency
resolution and are subject to the Gabor limit [16]. We refer to
[11] for the selection of the window function. Here we choose
the Hann window as it performs the best among the options
examined:

w[n] =

{
1
2

(
1− cos

(
2πn

Nw−1

))
, for n ∈ [0, Nw − 1]

0, else.
(21)

The length of the segments was also optimized numerically,
and we obtained the best results with Nw = 100. Several
spectrogram variants, such as zero-padding of segments to
improve frequency resolution or evaluating more than a subset
of all possible m (see (10)), were not explored in this study
because of their minor impact on the results. For the minimum
instantaneous bandwidth a value of Bmin = 0.1Hz was chosen.

V. NUMERICAL EVALUATION

A. Average sampling rate and reconstruction error

We want to analyze the tradeoff between the number of
samples for signal representation and reconstruction accuracy.
We analyze the sample count using the average sampling rate
(ASR). After determining the instantaneous bandwidth B(t)
we obtain the ASR from the integer crossings of γ(t) during
the signal duration T

ASR =
γ(T )− γ(0)

T
(22)

as described in Section II.
For the reconstruction error we use the normalized mean

squared error (NMSE) of the VBW representation y(t) with
respect to the original bandlimited representation x(t). We
evaluate both signal representations at the original uniform
sampling rate of f0 = 360Hz for the error calculation:

NMSE =

∑N
n=1

∣∣∣x( n
f0
)− y( n

f0
)
∣∣∣2∑N

n=1

∣∣∣x( n
f0
)
∣∣∣2 . (23)

B. Alternative approach for sample reduction

To evaluate the tradeoff between ASR and NMSE of our
presented approach, we compare it with the reconstruction
error of classical downsampling, a simple alternative method
for sample reduction. Here, we first low-pass filter3 the original
signal x(t) for anti-aliasing and then resampled at a uniform
rate r ·f0, where the downsampling factor r < 1. The resulting

2Second-order, quality factor Q = 30.
3Third-order Butterworth, cutoff at twice the reduced sampling rate
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Fig. 3. Resulting instantaneous bandwidths B(t) for different energy ratios
q of the example ECG signal.

NMSE is calculated according to (23) with y(t) replaced by
the downsampled signal. By varying the downsampling factor,
we can obtain different ASRs r · f0.

Apart from the anti-aliasing filter, this approach is equiv-
alent to using the VBW representation of a signal using a
constant instantaneous bandwidth B(t) = r · f0.

C. Results

By varying the energy ratios q, we can achieve VBW
representations y(t) with different ASRs. The choice of q leads
to different instantaneous bandwidths as is shown in Fig. 3
for the example ECG signal. The case q = 10−1 in particular
shows the limitation of B(t) to Bmin = 0.1. Furthermore,
the instantaneous bandwidth increases with decreasing q and
approaches a constant curve.

For the final results we analyzed 500 different ECG signals
as described in Section IV-A. We calculated the instantaneous
bandwidths for each signal with 100 different logarithmically
spaced energy ratios q between 2 · 10−1 and 10−5. Then,
we projected the signals into their VBW representation and
calculated the NMSE to the original representation. In case of
classical downsampling, we selected 100 different uniformly
spaced downsampling factors r between 0.03 and 0.3. Fig. 4
shows the resulting NMSE over the ASR for our approach
(solid line) and the classical downsampling (dashed line).

Our approach demonstrates its superiority for ASRs below
approximately 140 Hz. In certain cases, achieving an equiva-
lent NMSE to downsampling requires only half the number of
samples. For ASRs exceeding 140 Hz, both curves roughly
align. This can be attributed to the behavior observed for
smaller q, where the instantaneous bandwidth approaches a
constant value, akin to classical downsampling performance.
However, it is worth noting that the downsampling procedure
incorporates an anti-aliasing lowpass filter, while our approach
does not. Consequently, an additional error stemming from
aliasing emerges. We believe this effect accounts for the worse
NMSEs of our approach compared to downsampling for ASRs
exceeding 140 Hz.
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VI. CONCLUSION AND OUTLOOK

In this paper, we presented a novel algorithm to efficiently
resample classically bandlimited signals according to a vari-
able bandwidth (VBW) framework. Our algorithm is based
on the spectrogram in combination with energy-thresholding
and offers a free parameter, q that can be used to balance the
number of samples and the reconstruction error. The results
show a clear superiority of the VBW signal representation
compared to classical downsampling.

Moreover, the presented algorithm allows modeling practi-
cal signals as VBW signals. This class of signals provides an
interesting theoretical framework for describing signal struc-
ture and, in combination with event-based samplers, promises
an efficient communication of structured signals.
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