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Abstract—Consider a user equipment in a Cell-Free massive
Multiple-Input Multiple-Output (CF-mMIMO) system that is
served by several Radio Access Points (RAPs). In the uplink of
this setup, these RAPs receive noisy observations of the user/source
signal and must locally compress their signals before forwarding
them to the Central Processing Unit (CPU) through multiple rate-
limited fronthaul channels. To retrieve the source signal at CPU,
we are interested in maximizing the Mutual Information (MI)
between the received signals at CPU and the user/source signal,
and purposefully choose the Information Bottleneck (IB)-based
compression techniques to design the quantizers at RAPs. We
consider both separate and joint designs of the local compressors
by establishing basic trade-offs between the informativity and
compactness of the outcomes. For the joint design, two different
schemes are presented, based on whether to leverage the side-
information at CPU. Finally, the effectiveness of both compression
schemes will be shown as well by means of numerical investigations
over typical digital data transmission scenarios.

Index Terms—6G, Cell-Free massive MIMO, distributed joint
source-channel coding, information bottleneck method, mutual
information

I. INTRODUCTION

Massive Multiple-Input Multiple-Output (MIMO) technology
has emerged as a promising solution to meet the ever-increasing
demand for high data rates and spectral efficiency in wireless
communication systems [1]. By employing a large number
of antennas at the base stations, massive MIMO leverages
the spatial multiplexing and beamforming techniques to serve
multiple User Equipments (UEs) simultaneously in the same
time-frequency resource. This leads to significant gains in both
spectral efficiency and energy efficiency, making it a key tech-
nology for next-generation of wireless networks [2]. Building
upon the foundation of massive MIMO, the concept of Cell-Free
massive MIMO (CF-mMIMO) has gained attraction in recent
years as a novel architecture for wireless networks. Unlike
traditional cellular technology, cell-free networks eliminate the
concept of individual cells and cell boundaries, allowing users
to be served by all Radio Access Points (RAPs) simultaneously
where RAPs are connected to a Central Processing Unit (CPU)
through a fronthaul network [3], [4]. The simplistic approach
of CF-mMIMO, where every RAP is tasked with processing
and transmitting data signals for all UEs, lacks the scalability
since there is a linear (or even faster) growth in computational
complexity and fronthaul rates associated with these tasks
as the number of UEs increases [5]. The User-Centric CF-
mMIMO (UC-CF-mMIMO) approach as the more scalable
version of CF-mMIMO offers several advantages, including

enhanced coverage, improved user fairness, and increased
network capacity [5], [6]. Moreover, by leveraging distributed
processing and cooperation among RAPs, CF-mMIMO enables
efficient resource allocation and interference management,
further enhancing the overall network performance [7].

Despite the promising benefits of CF-mMIMO, its practical
deployment poses challenges, particularly in terms of fron-
thaul capacity and signal processing overhead. The fronthaul
network, responsible for transporting signals from distributed
RAPs to CPU, is a critical bottleneck in these systems. The
massive number of antennas and the high-dimensional signal
processing tasks in the uplink impose stringent requirements
on the fronthaul capacity. To alleviate this bottleneck, signal
compression techniques play a crucial role in reducing the
amount of data transmitted over the fronthaul while preserving
the essential information for accurate signal recovery at
CPU. Thus, efficient compression algorithms tailored to the
characteristics of massive MIMO signals are essential for
realizing the full potential of CF-mMIMO systems in future
wireless networks. To address the performance bottleneck
highlighted previously, several fronthaul compression schemes
have been developed, see, e.g., [8]–[10]. These schemes usually
focus on the uniform quantization. In this work, we consider
the Information Bottleneck (IB) method [11], [12] to design
the compression schemes for fronthaul rate reduction at the
uplink of CF-mMIMO systems.

The central concept of IB lies in compressing a Random
Variable (RV) such that its information content with respect to
a statistically correlated (relevant) variable is preserved to a
significant extent. This ability to retain information is highly
adaptable and can be adjusted by manipulating a parameter
that governs a fundamental trade-off between the compactness
and informativity of the resultant outcome. The IB method
formulates this basic trade-off in a symmetric manner, utilizing
the Mutual Information (MI) [13] to quantify both aspects.
The applications of the IB method in various parts of modern
communication systems range from A/D converters for receiver
front ends [14], to discrete channel decoding schemes [15],
[16], task/goal-oriented communications [17], [18], and more.

In the following, starting with the point-to-point setup of the
original IB method for (remote) source coding, we gradually
build up a comprehensive discussion on the generalizations to
the uniterminal joint source-channel coding and multiterminal
techniques for both source and joint source-channel coding
that are applicable to the architecture of CF-mMIMO systems.
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Fig. 1. Considered system model for a given UE in the CF-mMIMO network. Multiple RAPs compress noisy observations y1, . . . , yJ from a common source
signal x to z1, . . . , zJ , and send to CPU via fronthaul links. The CPU should retrieve the source signal from the received signals t1, . . . , tJ .

Notation: According to the distribution, p(a), the realiza-
tions, a∈A, of the (discrete) random variable, a, happen. With
boldface counterparts, the same holds true for the (discrete)
random vector, a1:J = {a1, · · · , aJ} and a−j

1:J = a1:J \{aj}.
Moreover, I(· ; ·) and DKL(·∥·) stand for the Mutual Information
and Kullback-Leibler (KL) divergence [13], respectively.

II. INFORMATION BOTTLENECK COMPRESSION FOR
CELL-FREE MASSIVE MIMO SYSTEMS

Let us consider the uplink transmission in a UC-CF-mMIMO
system with M UEs and K RAPs connected to a CPU by K
(error-free/error-prone) rate-limited fronthaul links. We presume
a linear equalization [19] at each RAP to cancel the spatial
interference of different UEs (which get served by it) and
separate their signals. We consider a given UE served by
J RAPs where J ≤ K. The interrelation between the UE
signal, x, and the corresponding output of the linear equalizer,
i.e., yj , at each RAP j where j = 1, 2, . . . , J , is termed the
access channel j in Figure 1 which is modeled by a Discrete
Memoryless Channel (DMC). Each RAP j compresses yj to
zj to transmit to CPU through a fronthaul channel with a
limited rate of Rj . The CPU should retrieve the source signal
from the received signals t1, . . . , tJ . To design the IB-based
compression, the source distribution, p(x) as well as both
the access and fronthaul transition probabilities, p(yj |x) and
p(tj |zj), respectively, are supposed to be known. For the case
of the error-free fronthaul channels, all fronthaul transition
probability matrices p(tj |zj) are evidently identity matrices. It
is further presumed that the counterpart signals of different
branches are conditionally independent, given the source signal,
x. Then the design problem can be formulated as a basic trade-
off between two MI terms. The first term is the MI of the
source signal and the corresponding received signal(s) at CPU
which is called the relevant information. The second term is
the MI of the noisy observation(s) of the source signal and the
outcome of the compressor(s) which is called the compression
rate. The goal of IB-based compression is to maximize the
relevant information such that the compression rate does not

exceed the capacity of the corresponding fronthaul channel(s).
To do so, we consider two scenarios; designing a compressor
at each RAP separately from other RAPs and designing all
local compressors at RAPs jointly.

A. Separate Design

1) Error-Free Fronthauling: Consider a single RAP that
receives a noisy observation yj from a single source x with
distribution, p(x), through a DMC described by transition
probabilities, p(yj |x). It must then compress yj to the signal zj
and forward it to the CPU through an error-free and rate-
limited channel with the capacity, Rj . The IB framework
[11] formulates the design problem as a trade-off between
the relevant information, I(x; zj) and the compression rate,
I(yj ; zj). The objective is to design a compressor p(zj |yj) that
maximizes the relevant information while the compression rate
does not exceed the capacity of the fronthaul channel. The
design problem is written as follows:

p∗(zj |yj) = argmax
p(zj |yj):I(yj ;zj)≤Rj

I(x; zj), (1)

where 0 ≤ Rj ≤ log2 |Zj | bits, sets an upper-bound on the
compression rate, I(yj ; zj). Using the method of Lagrange
Multipliers (LM) [20], one can formulate (1) as the following
unconstrained optimization (up to the validity of the quantizer
mapping)

p∗(zj |yj) = argmax
p(zj |yj)

I(x; zj)− λjI(yj ; zj), (2)

where λj ≥ 0 is associated with Rj in the original formulation.
By exploiting the Variational Calculus, the form of stationary
solution for the (non-convex) design problem (2) is obtained
(for each pair (yj , zj)∈Yj×Zj) in [11] as follows:

p(zj |yj) =
p(zj)

ψzj(yj , βj)
exp

(
−βjDKL

(
p(x|yj)∥p(x|zj)

))
, (3)

where βj = λ−1
j , and ψzj(yj , βj), is a partition function to

ensure the validity of the compressor mapping. Additionally,



an iterative algorithm, the Iterative IB (IIB), has been presented
in [11] to address the design problem, which performs the fixed-
point iterations [21] on the derived implicit solution (3).

2) Error-Prone Fronthauling: In practice, it happens quite
often that, the fronthaul channels (to the CPU) are error-
prone. Therefore, the impacts of the noisy fronthaul channels
should also be considered within the design formulation of
the compressors. Here, the fronthaul transition probabilities,
p(tj |zj) are supposed to be known in addition to p(x) and
p(yj |x). By following the IB philosophy, the design problem has
been formulated in [22] as a trade-off between two MI terms,
i.e., the relevant information, I(x; tj), and the compression rate,
I(yj ; zj). The objective here is to maximize the informativity
while the compression rate does not exceed the fronthaul
channel capacity, Rj , namely,

p∗(zj |yj) = argmax
p(zj |yj):I(yj ;zj)≤Rj

I(x; tj). (4)

This problem can be reformulated as an unconstrained opti-
mization using LM as follows:

p∗(zj |yj) = argmax
p(zj |yj)

I(x; tj)− λjI(yj ; zj). (5)

The stationary solution has been derived in [22] (for each pair
(yj , zj)∈Yj×Zj) as follows:

p(zj |yj) =
p(zj)

ψzj(yj , βj)
exp

(
−βj

∑
tj∈Tj

p(tj |zj)×

DKL
(
p(x|yj)∥p(x|tj)

))
,

(6)

where βj = λ−1
j , and ψzj(yj , βj), is a partition function to

ensure the validity of the compressor mapping. An iterative
algorithm, the Forward-Aware Vector IB (FAVIB), has also
been presented in [22] for addressing this design problem
together with its convergence proof to a stationary point of the
pertinent objective functional. By this, [22] fully extends the
original IB framework for point-to-point Noisy Source Coding
(NSC) [23] to the Joint Source-Channel Coding (JSCC) [24].

B. Joint Design

Compared to the separate design of local compressors, the
joint design targets a more efficient usage of the correlations
among signals of different RAPs, thereby leading to a better
overall performance as we will see in the numerical results.
Consider the system model in Figure 1 where J RAPs want
to jointly compress their noisy observations, y1, . . . , yJ , of the
source signal x to z1, . . . , zJ and forward them to the CPU
through the error-free and rate-limited fronthaul links. Similar
to the separate IB method, to formulate the design problem
for the joint compression, one should specify the responsible
terms regarding both the informativity and compactness of
the outcomes. The end-to-end transmission rate, I(x; z1:J),
(i.e., the amount of information that the compressed signals
collectively preserve about the data source) is naturally chosen
as the term measuring the informativity. In contrast, there is
no natural and unique choice for compactness and different

meaningful expressions can be applied. Herein, two separate
sets of constraints are considered to determine the compactness,
corresponding to the parallel [25] and successive [26] (retrieval)
processing strategies at CPU.

1) Error-Free Fronthauling: In the parallel processing, no
side-information is used at CPU to retrieve the source signal,
x. Explicitly, let P ∗ = {p∗(z1|y1), . . . , p∗(zJ |yJ)} denote the
optimal set of compressors at RAPs. The design problem is
formulated in [25] as follows:

P ∗ = argmax
P : ∀j I(yj ;zj)≤Rj

I(x; z1:J), (7)

where 0 ≤ Rj ≤ log2 |Zj | bits, sets an upper-bound on the
j-th compression rate, I(yj ; zj). Using the method of LM, the
design problem (7) can be stated as the following unconstrained
optimization (up to the validity of the corresponding mappings):

P ∗ = argmax
P

I(x; z1:J)−
J∑

j=1

λjI(yj ; zj), (8)

where λj ≥ 0 is associated with the rate, Rj in (7). The form
of stationary solution for the (non-convex) design problem (8)
is obtained in [25] for each pair (yj , zj)∈Yj×Zj as follows:

p(zj |yj) =
p(zj)

ψzj(yj , βj)
exp

(
−βjdNSC

Par (yj , zj)
)
, (9)

where βj =λ−1
j , and ψzj(yj , βj), is a normalization function

that ensures the validity of pertinent quantizer mapping, and
the relevant distortion, dNSC

Par (yj , zj), is given by

dNSC
Par (yj , zj) =

∑
z−j
1:J

p(z−j
1:J |yj)DKL

(
p(x|yj , z−j

1:J)∥p(x|z1:J)
)
.

(10)
An iterative algorithm, the MultiIB, has also been presented in
[25] for addressing this design problem. Principally, it applies
the multivariate fixed-point iterations on the derived implicit
solutions (9).

In the successive processing scheme, as the second choice
regarding the set of imposed constraints, unlike the parallel
scheme, from a compression perspective, side-information is
used when handling the signal, yj . The main idea behind this
scheme is fully aligned with the well-known Wyner-Ziv [27],
[28] setup for source coding, where a statistically correlated
signal is used as side-information at the decoder. The design
problem is formulated in [26] for the optimal set of compressors,
P ∗={p∗(z1|y1), . . . , p∗(zJ |yJ)} as follows:

P ∗ = argmax
P : ∀j I(yj ;zj |z1:j−1)≤Rj

I(x; z1:J), (11)

where 0 ≤ Rj ≤ log2 |Zj | bits, sets an upper-bound on the
j-th conditional compression rate, I(yj ; zj |z1:j−1). By using
the LM method, the design problem (11) can be stated as the
following unconstrained optimization (up to the validity of the
corresponding quantizer mappings):

P ∗ = argmax
P

I(x; z1:J)−
J∑

j=1

λjI(yj ; zj |z1:j−1), (12)



where λj ≥ 0 is associated with the rate, Rj in (11). The form
of stationary solution for the (non-convex) design problem (12)
is obtained in [26] for each pair (yj , zj)∈Yj×Zj as follows:

p(zj |yj) =
p(zj)

ψzj(yj , βj)
exp

(
−βjdNSC

Suc (yj , zj)
)
, (13)

where βj =λ−1
j , and ψzj(yj , βj), is a normalization function

that ensures the validity of pertinent quantizer mapping, and
the relevant distortion, dNSC

Suc (yj , zj), is given by

dNSC
Suc (yj , zj) =

∑
z−j
1:J

p(z−j
1:J |yj)DKL

(
p(x|yj , z−j

1:J)∥p(x|z1:J)
)

− λj
∑

z1:j−1

p(z1:j−1|yj) log p(z1:j−1|zj)

−
J∑

k=j+1

λk
∑
z−j
1:J

p(z−j
1:k|yj) log p(zk|z1:k−1).

(14)

It can be observed that, by considering the side-information
in the design problem (11), two extra terms appear in the
relevant distortion (14) compared to the derived distortion for
the parallel scheme in (10). An iterative algorithm, the GDIB,
has also been presented in [26] for addressing this design
problem that, analogous to the parallel processing, applies
the multivariate fixed-point iterations on the derived implicit
solutions (13).

2) Error-Prone Fronthauling: The error-prone fronthaul
channels shall be considered for practical implementation of
CF-mMIMO systems. Therefore, the impacts of the noisy
fronthaul channels should be considered within the design
formulation for the IB-based compression. The above parallel
and successive processing schemes have been extended for the
case of error-prone fronthaul links in [29].

For the parallel processing, the design problem is formulated
as finding the optimal set, P ∗ = {p∗(z1|y1), . . . , p∗(zJ |yJ)}
given by

P ∗ = argmax
P : ∀j I(yj ;zj)≤Rj

I(x; t1:J), (15)

where 0 ≤ Rj ≤ log2 |Zj | bits, sets an upper-bound on the
j-th compression rate, I(yj ; zj). Using the method of LM, the
design problem (15) can be restated as the following uncon-
strained optimization (up to the validity of the corresponding
mappings):

P ∗ = argmax
P

I(x; t1:J)−
J∑

j=1

λjI(yj ; zj), (16)

where λj ≥ 0 is associated with the rate, Rj in (15). The form
of stationary solution for the (non-convex) design problem (16)
is obtained in [29] for each pair (yj , zj)∈Yj×Zj as follows:

p(zj |yj) =
p(zj)

ψzj(yj , βj)
exp

(
−βjdJSCC

Par (yj , zj)
)
, (17)

where βj =λ−1
j , and ψzj(yj , βj), is a normalization function

that ensures the validity of pertinent quantizer mapping, and
the relevant distortion, dJSCC

Par (yj , zj), is given by

dJSCC
Par (yj , zj) =

∑
z−j
1:J

p(z−j
1:J |yj)

∑
t1:J

p(t1:J |z1:J)×

DKL
(
p(x|yj , z−j

1:J)∥p(x|t1:J)
)
,

(18)

wherein, from the presumed conditional independence relations,
it applies p(t1:J |z1:J)=

∏J
j=1 p(tj |zj). Note that, by bringing

the error-prone fronthaul channels into the design problem
(15), their statistics, p(t1:J |z1:J), directly appear in the derived
relevant distortion (18). An iterative algorithm, the M-FAVIB
(Parallel), has also been proposed in [29] for addressing this
design problem alongside its convergence proof to a stationary
point of the pertinent objective functional.

For the successive processing scheme to gain benefit from
the side-information to retrieve the source signal, x, at CPU,
the design problem is presented as looking for the optimal set
of compressors, P ∗ = {p∗(z1|y1), . . . , p∗(zJ |yJ)} as follows:

P ∗ = argmax
P : ∀j I(yj ;zj |t1:j−1)≤Rj

I(x; t1:J), (19)

where 0 ≤ Rj ≤ log2 |Zj | bits, sets an upper-bound on the
j-th conditional compression rate, I(yj ; zj |t1:j−1). By using
the LM method, the design problem (19) can be stated as the
following unconstrained optimization (up to the validity of the
corresponding quantizer mappings):

P ∗ = argmax
P

I(x; t1:J)−
J∑

j=1

λjI(yj ; zj |t1:j−1), (20)

where λj ≥ 0 is associated with the rate, Rj in (19). The form
of stationary solution for the (non-convex) design problem (20)
is obtained in [29] for each pair (yj , zj)∈Yj×Zj as follows:

p(zj |yj) =
p(zj)

ψzj(yj , βj)
exp

(
−βjdJSCC

Suc (yj , zj)
)
, (21)

where βj =λ−1
j , and ψzj(yj , βj), is a normalization function

that ensures the validity of pertinent quantizer mapping, and
the relevant distortion, dJSCC

Suc (yj , zj), is given by

dJSCC
Suc (yj , zj) =

∑
z−j
1:J

p(z−j
1:J |yj)

∑
t1:J

p(t1:J |z1:J)×

DKL
(
p(x|yj , z−j

1:J)∥p(x|t1:J)
)

− λj
∑
t1:j−1

p(t1:j−1|yj) log p(t1:j−1|zj)

−
J∑

k=j+1

λk
∑

t−j
1:J ,zk

p(tj |zj)×

p(t−j
1:k−1, zk|yj) log p(zk|t1:k−1).

(22)

An iterative algorithm, the M-FAVIB (Successive), has also
been presented in [29] for addressing this design problem
alongside its convergence proof to a stationary point of the
pertinent objective functional.



(a) (b)
Fig. 2. (a) A comparison between IIB (3), FAVIB (6) and Lloyd-Max [30] as the methods for separate design of compressors and joint design using MultiIB
(9) and M-FAVIB (Parallel) (17). (b) M-FAVIB (Parallel) (17) versus M-FAVIB (Successive) (21) as the methods for joint design of compressors.

III. NUMERICAL RESULTS

Here, we present some numerical results regarding typical
transmission scenarios in the uplink of a CF-mMIMO system
in which we apply different types of compression in the RAPs.
To compare these schemes, we use the overall transmission rate,
i.e., the MI between the source signal and the received signals
at CPU, I(x; t1:J), as the performance indicator, and since these
approaches are initialized randomly, for the sake of fairness, the
same starting points are applied for the schemes and the best
outcomes are retained out of 100 trials. We assume a DMC that
approximates a discrete-time, discrete-input, and continuous-
output AWGN (Additive White Gaussian Noise) channel with
identical noise variance, σ2

n , for all access connections from
the UE to the RAPs where we consider J =3 RAPs in our
simulation setup.

For the first experiment, we consider an equiprobable source
signaling from a bipolar 8-ASK (Amplitude Shift Keying)
constellation with σ2

x =24 to J=3 RAPs while σ2
n=1 in the

AWGN access channels and 100 samples per access channel
have been generated, following a Monte Carlo approach. We
compare the performance of the separate and joint methods
to design the compressors at RAPs. For the separate design,
we used FAVIB (6) to compress each noisy observation yj to
signal zj at each RAP as well as the Lloyd-Max quantization
[30] to design the compressors at each RAP. For the joint
compression, the M-FAVIB (Parallel) (17) has been applied to
compress the noisy observations at RAPs. Note that, for FAVIB
and M-FAVIB (Parallel), we choose βj →∞ as we want to
maximize the overall transmission rate, i.e., I(x; t1:3). With
N = |Zj | denoting the allowed number of output clusters of
compressors, we consider an N×N symmetric channel model
in each fronthaul link, characterized by the reliability parameter,
η, as follows: each input symbol is correctly received with
probability 1−η and incorrectly (to any other output symbol)
with probability η

N−1 . Therefore, higher η values indicate less

reliable transmission and vice versa. We consider a symmetric
setup, i.e., the same σ2

n for access links and the same η for
fronthaul links. Figure 2(a) illustrates the obtained results.

Specifically, for two cases of error-free fronthaul (η=0) and
error-prone fronthaul (η=0.05), the allowed number of output
clusters (per link) has been varied from N = 2 to 6, and the
overall transmission rate has been calculated. It is observed
that the joint design of local compressors performs better than
the separate design. To clearly justify this, it should be noted
that, from the presumed independence relations, it applies

I(x; t1:3) =
3∑

j=1

I(x; tj)−
(
I(t1; t2) + I(t1:2; t3)

)
. (23)

While the separate design of local quantizers focuses solely on
maximizing the first component at the right side of (23), the
joint design strikes a good balance between maximizing the first
component and simultaneously keeping the second component
as low as possible. Moreover, it is seen that the conventional
Lloyd-Max algorithm (applied separately on different RAPs)
yields an inferior performance since it does not directly consider
the source/user signal, x, by minimizing the Mean-Square-Error
(MSE) between the input and output of the local compressors.

For the second experiment, we compare the parallel and
successive schemes for the joint design of compressors. To that
end, we apply the same system setup described for the joint
design compression in the previous experiment, except for the
choice of source signaling, where we consider a standard QPSK
(Quadrature Phase Shift Keying) constellation with σ2

x = 1
and σ2

n = 0.3 for the access channels. The allowed output
clusters of compressors are set to N = 4 and βj ∈ (0.1, 0.2)
for j=1, 2, 3. Figure 2(b) illustrates the obtained results for
different reliability values of the fronthaul links. It can be
observed that the usage of the available side-information can
decrease the required total fronthaul rate to have a desired
overall transmission rate. In parallel processing, the side-



information that comes from the correlations between different
fronthaul channels is failed to care for. To justify this, note
that from the presumed independence relations, it applies

I(yj ; zj |t1:j−1) = I(yj ; zj)− I(zj ; t1:j−1)︸ ︷︷ ︸
≥0

. (24)

Therefore, it is directly inferred that conditioning on previous
fronthaul channel output signals can either deduct from the
current unconditional compression rate, I(yj ; zj), or keep it
unchanged as the MI is non-negative.

IV. CONCLUSIONS

In this work, we focused on the separate and joint design
of Information Bottleneck (IB)-based compression schemes
for fronthaul rate reduction at the uplink of Cell-Free massive
MIMO systems where several Radio Access Points receive
noisy observations of a common user/source and compress
their signals prior to a forward transmission through several
rate-limited fronthaul channels to the Central Processing Unit.
We considered both scenarios of dealing with error-free and
error-prone fronthaul links, thereby addressing the respective
distributed (remote) source and joint source-channel coding
problems. The stationary solutions were provided for both
separate and joint design, with different types of processing
for the latter. Through some numerical simulations, we clearly
demonstrated the effectiveness of the IB-based compression
schemes, alongside the fact that the joint design of local
compressors is advantageous compared to the simpler approach
of separately designing the local compressors. The IB-based
design of compressors for a fully centralized scheme, without
equalization at RAPs, is an interesting point for further research.
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N. Wehn, “Minimum-Integer Computation Finite Alphabet Message
Passing Decoder: From Theory to Decoder Implementations towards 1
Tb/s,” Entropy, vol. 24, no. 10, Art. no. 19, October 2022.
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