
Received 14 June 2024; accepted 7 July 2024. Date of publication 10 July 2024; date of current version 25 July 2024.

Digital Object Identifier 10.1109/OJCOMS.2024.3426049

Multi-Source Distributed Data Compression
Based on Information Bottleneck Principle

SHAYAN HASSANPOUR (Member, IEEE), ALIREZA DANAEE (Member, IEEE),
DIRK WÜBBEN (Senior Member, IEEE), AND ARMIN DEKORSY (Senior Member, IEEE)

Department of Communications Engineering, University of Bremen, 28359 Bremen, Germany

CORRESPONDING AUTHOR: S. HASSANPOUR (e-mail: hassanpour@ant.uni-bremen.de)

This work was supported in part by the German Ministry of Education and Research (BMBF) under Grant 16KISK109 (6G-ANNA),
Grant 16KISK016 (Open6GHub), and Grant 16KISK068 (6G-TakeOff).

ABSTRACT In this article, we focus on a generic multiterminal (remote) source coding scenario in which,
via a joint design, several intermediate nodes must locally compress their noisy observations from various
sets of user / source signals ahead of forwarding them through multiple error-free and rate-limited channels
to a (remote) processing unit. Although different local compressors might receive noisy observations
from a / several common source signal(s), each local quantizer should also compress noisy observations
from its own, i.e., uncommon source signal(s). This, in turn, yields a highly generalized scheme with
most flexibility w.r.t. the assignment of users to the serving nodes, compared to the State-of-the-Art
techniques designed exclusively for a common source signal. Following the Information Bottleneck (IB)
philosophy, we choose the Mutual Information as the fidelity criterion here, and, by taking advantage
of the Variational Calculus, we characterize the form of stationary solutions for two different types of
processing flow / strategy. We utilize the derived solutions as the core of our devised algorithmic approach,
the GEneralized Multivariate IB (GEMIB), to (efficiently) address the corresponding design problems.
We further provide the respective convergence proofs of GEMIB to a stationary point of the pertinent
objective functionals and substantiate its effectiveness by means of numerical investigations over a couple
of (typical) digital transmission scenarios.

INDEX TERMS 6G, distributed remote source coding, information bottleneck, multi-user data
compression.

I. INTRODUCTION

THE Information Bottleneck (IB) method for data
compression was first introduced in [1]. Its original

formulation was based upon the seminal work of Shannon
on lossy source coding [2] (specifically, the single-letter
characterization of the Rate-Distortion function) with a
twist stemming from a fresh and intuitive idea: rather than
upper-bounding an expected distortion term, pinpoint a rele-
vant / target variable and lower-bound a Mutual Information
term. Why? Simply since in plenty of real-world applications
in which the data compression must be performed, it is
much easier to identify a relevant / target variable (whose
information should be retained) than figuring out the proper
distortion function. Later on, it was realized (see, e.g., [3])
that the basic constrained optimization problem which the IB
framework is established upon, determines the boundary of

achievable rate-distortion region for a remote / indirect source
coding problem with the certain choice of Logarithmic Loss
distortion [4]. Interested readers are referred to [5] for
further in-depth discussions on different aspects of the IB
principle (from the standpoints of both the Learning and
Information Theory), together with its connections to several
other interesting problems, including (but not confined to) the
Wyner-Ahlswede-Körner problem [6], [7], the efficiency of
investment information [8], and the privacy funnel [9], [10].
Moreover, to get a better view on the more recent works
regarding both the theory and applications of the IB method,
interested readers are referred to [11].

The IB principle has also been leveraged as a theoretical
framework to better understand the underlying dynamics of
deep learning models [12], [13], [14]. Further, it has been
applied to various aspects of deep learning, from the
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optimization of neural network parameters to the design of
novel network architectures, and even as an effective means
to reduce the problem of overfitting in complex inference
tasks [15], [16], [17], [18].
Aside from purely theoretical studies, the IB method

has already found its place and been implemented in
(various parts of) modern digital data transmission schemes.
To mention a few examples, one can list miscella-
neous applications, i.a., in Analog-to-Digital converters
for receiver front ends [19], in (efficient) construction
of Polar Codes [20], [21], in discrete channel decod-
ing schemes [22], [23], [24], in forward-aware vector
quantization [25], [26], [27], and, last but not least, in
Semantic / Task-Oriented Communications [28], [29], [30].
In the pertinent literature on this subject, it has also been

considered how the original IB framework can be generalized
to the multiterminal / distributed scenarios (see, e.g., [31],
[32], [33], [34], [35]). Such extended schemes mainly focus
on a particular setup where multiple noisy observations
from one common source signal are compressed by several
intermediate nodes (at potentially different rates, and also
according to various strategies) to preserve (collectively) as
much information as possible about that source signal. In
practice, it happens (rather) frequently that alongside the
common source signals, local compression units should serve
uncommon source signals as well. In this context, a common
source is referred to the one getting served by at least two
intermediate nodes, and an uncommon source is the one
getting served by only one intermediate node. Extending the
IB framework to a hybrid case with both types of sources
is the main focus here.

A. CONTRIBUTIONS
Within the scope of this article, we develop novel distributed
(remote) source coding schemes for a (generic) multiterminal
setup in which several intermediate nodes compress various
sets of noisy observations from (potentially) common and
uncommon source signals, before forwarding their signals
via several error-free and rate-limited channels to a (remote)
processing unit. Specifically, based upon the Information
Bottleneck framework, we choose the Mutual Information as
the fidelity criterion, and, by means of Variational Calculus,
we derive the stationary solutions of the challenging design
problems. Thereupon, we present an iterative algorithm,
the GEneralized Multivariate IB (GEMIB), to efficiently
address the design problems, and, via a detailed analysis,
we also provide the convergence proofs to a stationary
point of the objective functionals. As the final puzzle piece
of our comprehensive theoretical support, via an in-depth
mathematical analysis, we further justify the behavior of
GEMIB over the whole gamut of its main input parameters.
To get a crisp feeling about the generality of our results

in this article, it should be noted that the considered
distributed scenario appears in a broad variety of applications
regarding the fifth (5G) and sixth (6G) generations of
wireless network technologies, i.a., in (distributed) inference

sensor networks with rate-limited channels to the fusion
center [36], in cooperative relaying schemes with the
Quantize-and-Forward strategy [37], [38], and also in Cloud-
based Radio Access Networks (Cloud-RANs) [39], [40], as
well as (User-Centric) Cell-Free massive Multiple-Input
Multiple-Output ((UC) CF-mMIMO) systems with limited
fronthaul rates [41], [42], [43].

B. OUTLINE
The centralized IB-based noisy source coding is briefly dis-
cussed in Section II as a prelude to the distributed extensions.
The considered system model is then presented in Section III,
together with two distinct design problems for the parallel
and successive processing. In Section IV, two theorems are
provided to fully characterize the form of stationary solutions
for both processing strategies. Subsequently, in Section V,
an iterative algorithm, namely, the GEneralized Multivariate
IB (GEMIB), is presented to address both design problems,
together with its proof of convergence as well as an in-depth
mathematical discussion on the behavior of this algorithm
over the entire range of its main parameters. In Section VI,
several numerical investigations are presented to corroborate
the effectiveness of the proposed approach. Finally, a brief
wrap-up in Section VII concludes this article. The detailed
proofs of two main theorems are relegated to the Appendix.

C. NOTATIONS
According to the distribution, p(a), the realizations, a ∈ A,
of the (discrete) random variable, a, happen. With boldface
counterparts, the same holds true for the (discrete) random
vector, a1:J = {a1, . . . ,aJ}. Furthermore, a−j1:J = a1:J \ {aj},
and PaG•a denotes the parent nodes of random variable, a,
in the Bayesian Network, G•. Moreover, DKL(·‖·), H(·),
D{·,·}JS (·‖·), and I(·; ·), stand for the Kullback-Leibler (KL)
divergence, the Shannon’s entropy, the Jensen-Shannon (JS)
divergence, and the Mutual Information [44], respectively.
Also, the expectation operator is denoted by E•.

II. IB-BASED NOISY SOURCE CODING: POINT-TO-POINT
CASE IN A NUTSHELL
Consider the system model in Fig. 1. Specifically, the noisy
observation, y, from a single source, x, shall be compressed
at an Intermediate Node (IN) to the signal, z, before getting
forwarded through an Ideal Rate-limited Channel (IRC) with
the capacity, R, to the Remote Processing Unit (RPU). The
interrelation between x and y is established via a Discrete
Memoryless Channel (DMC) whose transition probabilities,
p(y|x), as well as its input distribution, p(x), are presumed
to be known. By following the Information Bottleneck (IB)
framework [1], the design problem is then formulated as a
basic trade-off between two Mutual Information terms.

The first term, I(x; z), is called the relevant information,
and quantifies the informativity of outcome, and the second
term, I(y; z), is called the compression rate, and quantifies
its compactness. The goal is then to maximize the relevant
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FIGURE 1. System model for IB-based point-to-point noisy source coding. DMC, IN, IRC, and RPU stand for Discrete Memoryless Channel, Intermediate Node, Ideal
Rate-limited Channel, and Remote Processing Unit, respectively.

information such that the compression rate does not exceed
the capacity, R, of the forward link to RPU. For the design
of compressor, p(z|y), it holds1

p∗(z|y) = argmax
p(z|y): I(y; z)≤R

I(x; z), (1)

wherein, 0 ≤ R ≤ log2 |Z| bits, sets an upper-bound on the
compression rate. By making use of the method of Lagrange
Multipliers [45], this design problem can be recast into an
unconstrained optimization (up to the validity of compressor
mapping)

p∗(z|y) = argmax
p(z|y)

I(x; z)− λI(y; z), (2)

wherein, λ ≥ 0, denotes the counterpart of upper-bound, R,
in (1). Given R, the corresponding λ value can be found,
e.g., by performing a bi-section search over a finite range.
The form of stationary solution for the (non-convex) design
problem (2) has been characterized in [1] as

p(z|y) = p(z)

ψ(y, β)
exp(−βDKL(p(x|y)‖p(x|z))), (3)

for each pair (y, z) ∈ Y × Z , wherein β = 1
λ
, and ψ(y, β),

is a partition function to ensure the compressor mapping’s
validity. Specifically, for each realization y ∈ Y , the sum of
calculated terms in (3) (ignoring ψ) over all output clusters
z ∈ Z acts as the partition function. Furthermore, an iterative
algorithm has been presented in [1] to address the design
problem, carrying out the Fixed-Point Iterations [46] on the
derived implicit solution (3).

III. DISTRIBUTED EXTENSIONS: SYSTEM MODEL AND
PROBLEM FORMULATION
We consider the system model illustrated in Fig. 2. A total
number, Ntot., of source / user signals must be served by J
intermediate nodes. Every node, INj with j ∈ {1, . . . , J},
receives (non-interfering) noisy observations, {y(j)m�}, from the
set of source signals, {xm�}, that it must serve, and then
quantizes them to a (compressed) representative, zj, ahead of
a forward transmission via an error-free link with capacity,
Rj, to RPU. In the presented notations, m ∈ {1, . . . , J}, is the
index of the intermediate node to which a user is allocated.
Further, � ∈ {1, . . . ,Nm}, is the index of the user within the
allocated user set, and, Nm, is the number of users allocated
to the m-th intermediate node. Moreover, the interrelation
between xm� and y(j)m� is modeled through a DMC whose
transition probabilities, p(y(j)m�|xm�), and input distribution,
p(xm�), are presumed to be known.

1Refer to [3] for the (asymptotic) remote source coding formulation with
the Logarithmic Loss distortion function [4].

Following a certain processing flow / strategy (which will
be specified in the design formulation), all individual source
signals should be retrieved in RPU. One should note that,
in this description, a common user that gets served by more
than one intermediate node, will be allocated to only one of
them, such that

∑
m Nm = Ntot., which is the total number of

users. This is done just for the sake of a clear enumeration
and to simplify the mathematical formulation of the design
problems. As another assisting tool in that regard, based
upon the utilized formalism in [47], we take advantage of
two Bayesian Networks (BNs) as graphical models to portray
various aspects of the design problems. More specifically, the
input BN, Gin, in Fig. 2 depicts “what is compressing what”
in a fashion that every compression variable, zj, quantizes
its parents in Gin. Further, the statistical (in)dependencies
between all involved random variables are encoded by the
structure of Gin (through the basic rule that every variable is
conditionally independent of all its non-descendants, given
the value of its parents). The output BN, Gout, in Fig. 2,
on the other hand, illustrates “what must retain information
about what” in a sense that each compression variable,
zj, appears as a parent for any source signal it should be
informative of.
The design problem is then formulated as a (constrained)

optimization, setting a fundamental trade-off between the
informativity and compactness of resultant outcomes. The
informativity is naturally quantified by the sum of Mutual
Information terms between each source signal, xm� with
m ∈ {1, . . . , J}, � ∈ {1, . . . ,Nm}, and its parents in Gout
(denoted by vxm� ), i.e., the set of all compression variables
that must preserve information about xm�. However, the other
side of the trade-off offers no natural, unique choice. Hence,
different meaningful expressions can be employed. In the
following part, two distinct constraint sets are considered
to quantify the compactness of outcomes. Subsequently, by
taking advantage of the Variational Calculus, we derive the
stationary solutions for all (local) compressors and utilize
them as the core of our (iterative) algorithm to efficiently
address both design problems. The convergence proofs to a
stationary point of the pertinent objective functionals will be
presented as well.

A. PARALLEL SCHEME: IGNORING SIDE-INFORMATION
As the first choice of the processing strategy, we consider
a parallel scheme in which no side-information is utilized
at RPU, when retrieving the source signals. In this case, the
design problem is formulated as the following optimization
(with P∗ = {p∗(z1|y1), . . . , p

∗(zJ |yJ)} and ym = PaGin
zm , i.e.,
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FIGURE 2. Considered system model for distributed noisy source coding, together with the corresponding input / output Bayesian Networks (BNs). The input BN, Gin, portrays
the compression side and the output BN, Gout, portrays the information preservation side. For each common source, the connections to other (i.e., not allocated) serving INs are
depicted by dashed lines.

the set of variables to be compressed by the m-th IN)

P∗ = argmax
P:∀m I(ym; zm)≤Rm

J∑

m=1

Nm∑

�=1

I
(
xm�;vxm�

)
, (4)

wherein, 0 ≤ Rm ≤ log2 |Zm| bits, sets an upper-bound on
the m-th compression rate, I(ym; zm).2 By making use of the
method of Lagrange Multipliers [45], the design problem (4)
can be recast into the unconstrained optimization (up to the
validity of all compressor mappings)

P∗ = argmax
P

J∑

m=1

Nm∑

�=1

I
(
xm�;vxm�

)−
J∑

m=1

λmI
(
ym; zm

)
, (5)

with λm ≥ 0, as the counterpart of the rate, Rm, in (4).

B. SUCCESSIVE SCHEME: USING SIDE-INFORMATION
As the second choice of the processing flow, we consider
a successive scheme wherein the side-information from the
already retrieved signals is utilized at RPU, when recov-
ering a particular source signal. Compared to the previous
approach, generally, this leads to a superior “informativity-
compactness” trade-off, but at the expense of (processing)
complexity. Essentially, this scheme follows the Wyner-Ziv
setup for source coding [48] in which, statistically correlated
signals are utilized as side-information at the decoder. The
respective design problem is then formulated as

P∗ = argmax
P:∀m I(ym; zm|z1:m−1)≤Rm

J∑

m=1

Nm∑

�=1

I
(
xm�;vxm�

)
, (6)

2Besides one-shot formulations, a multi-letter description is required for
the (asymptotic) coding problems in Section III.

where, 0 ≤ Rm ≤ log2 |Zm| bits, sets an upper-bound on the
m-th conditional compression rate, I(ym; zm|z1:m−1). Note
that, here, there is an extra degree of freedom, that is the
processing order. Generally, it affects the performance and
should be optimized (e.g., through a brute-force search).
Henceforth, we continue our discussion with a fixed choice
of ordering. Like the parallel processing, by making use
of the method of Lagrange Multipliers [45], the design
problem (6) can be recast into the unconstrained optimization
(up to the validity of all compressor mappings)

P∗ = argmax
P

J∑

m=1

Nm∑

�=1

I
(
xm�; vxm�

)−
J∑

m=1

λmI
(
ym; zm|z1:m−1

)
, (7)

with λm ≥ 0, as the counterpart the rate, Rm, in (6).
Please note that, for the special case of full-informativity,

corresponding to letting λm→ 0 for m = 1 to J, the objective
functionals of parallel and successive processing schemes
coincide. To clearly perceive this, note that the difference
in the objective functionals in (5) and (7) is in their second
term that vanishes, when letting λm→ 0.

IV. CHARACTERIZATION OF STATIONARY SOLUTIONS
This part of the article is dedicated to the characterization
of stationary solutions of the design problems for parallel
and successive processing schemes. As will be perceived
later on, these solutions become the core components of
our devised iterative algorithm to efficiently tackle both
design problems by solving a Multivariate Fixed-Point
System [46].
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A. PARALLEL PROCESSING
The following theorem delivers the stationary solutions for
local compressors when addressing the design problem for
the parallel processing scheme.
Theorem 1 (Parallel Scheme): Presume that the joint

distribution of input variables (i.e., all nodes in Gin except
the leaves) and λm are given for all m ∈ {1, . . . , J}.
The set of local compressors, {p(zj|yj) |j ∈ {1, . . . , J}},
is a stationary point of the Lagrangian for parallel
scheme

LPar. =
J∑

m=1

Nm∑

�=1

I
(
xm�;vxm�

)−
J∑

m=1

λmI
(
ym; zm

)
(8)

iff for each pair, (yj, zj) ∈ Y j × Zj, it holds true that

p
(
zj|yj

) = p
(
zj
)

ψPar.
zj

(
yj, βj

) exp
(−dPar.

(
yj, zj

))
, (9)

where, ψPar.
zj (yj, βj), is a normalization function that ensures

the validity of pertinent quantizer mapping, and the relevant
distortion, dPar.(yj, zj), is calculated as

dPar.
(
yj, zj

)

= βj
∑

(m,�): zj∈ vxm�

E
p
(
v−jxm�
|yj
)
{
DKL

(
p
(
xm�|yj, v−jxm�

)
‖p(xm�|vxm�

))}
,

(10)

with βj = 1
λj
, yj = PaGin

zj , vxm� = PaGout
xm� , and v−jxm� =

vxm� \ {zj}.
The proof has been presented in Appendix-A.
It is noteworthy that Theorem 1 generalizes the obtained

results in [49]. There, the input to every local compressor
was a noisy observation of a single common user. In contrast,
here, alongside the potentially common users, different local
compressors quantize various sets of noisy observations from
different (i.e., uncommon) users as well.
The derived relevant distortion in (10) quantifies the

degree of proximity / closeness of the conditional distribu-
tions in which yj is involved to those where yj is substituted
by its compressed representative, zj. For example, if a certain
cluster zj ∈ Zj behaves more similarly to yj ∈ Y j compared
to another cluster, z′j ∈ Zj, it holds dPar.(yj, zj) < dPar.(yj, z

′
j),

which implies p(zj|yj) > p(z′j|yj). In other words, if zj is
a good representative of yj the corresponding membership
probability, p(zj|yj), is increased accordingly.

B. SUCCESSIVE PROCESSING
The following theorem delivers the stationary solutions for
local compressors when addressing the design problem for
successive processing.
Theorem 2 (Successive Scheme): Presume that the joint

distribution of input variables (i.e., all nodes in Gin except the
leaves) and λm are given for all m ∈ {1, . . . , J}. The set of

local compressors, {p(zj|yj) |j ∈ {1, . . . , J}}, is a stationary
point of the Lagrangian for successive scheme

LSuc. =
J∑

m=1

Nm∑

�=1

I
(
xm�;vxm�

)−
J∑

m=1

λmI
(
ym; zm|z1:m−1

)

(11)

iff for each pair, (yj, zj) ∈ Y j × Zj, it holds true that

p
(
zj|yj

) = p
(
zj
)

ψSuc.
zj

(
yj, βj

) exp
(−dSuc.

(
yj, zj

))
, (12)

where, ψSuc.
zj (yj, βj), is a normalization function that ensures

the validity of pertinent quantizer mapping, and the relevant
distortion, dSuc.(yj, zj), is calculated as

dSuc.
(
yj, zj

)

= βj
∑

(m,�): zj∈ vxm�

E
p
(
v−jxm�
|yj
)
{
DKL

(
p
(
xm�|yj, v−jxm�

)
‖p(xm�|vxm�

))}

−
∑

z1:j−1

p
(
z1:j−1|yj

)
log p

(
z1:j−1|zj

)

− βj
J∑

k=j+1

1

βk

∑

z−j1:k

p
(
z−j1:k|yj

)
log p(zk|z1:k−1), (13)

with βj = 1
λj
, yj = PaGin

zj , vxm� = PaGout
xm� , and v−jxm� =

vxm� \ {zj}.
The proof has been presented in Appendix-B.
It is noteworthy that Theorem 2 generalizes the presented

results in [50]. There, like in [49], the input signal to every
local compressor was a noisy observation of a single common
source signal. In contrast, here, analogous to the setup for the
parallel processing, alongside the potentially common source
signals, different (local) compressors quantize various sets
of noisy observations from different (i.e., uncommon) source
signals as well. The main difference, compared to the parallel
scheme, lies in the consideration of side-information at the
compression rates to further leverage the (potentially present)
correlations in the output signals of (local) compressors.
This extra level of complexity in the design formulation

reflects itself in the obtained stationary solutions. Comparing
the derived relevant distortion (13) for successive processing
with its counterpart (10) for parallel scheme reveals that it
extends it by two extra terms appearing due to conditioning
the compression rates which translates into the consideration
of side-information in the respective design problem.

V. AN ITERATIVE DESIGN ROUTINE
In this part, we present an iterative algorithm to address
the challenging design problems for both parallel and
successive processing schemes. To that end, the common
structure in the derived stationary solutions will be leveraged.
Furthermore, through an in-depth analysis, we provide the
proof of convergence (to a stationary point of the objective
functionals) for both parallel and successive processing
schemes. We further delve into the behavior of our proposed
algorithmic approach over the entire range of its main input
parameters.
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A. THE DEVISED ALGORITHM
To achieve a generic algorithm, note that irrespective of the
selected strategy, i.e., the parallel or successive scheme, the
calculated stationary solution for each pair, (yj, zj) ∈ Y j×Zj,
of the (local) compressors takes the implicit form below

p
(
zj|yj

) = p
(
zj
)

ψ r
zj

(
yj, βj

) exp
(−dr

(
yj, zj

))
, (14)

with r ∈ {Par.,Suc.}. All the (local) compressor mappings
come into play in the calculation of the relevant distortion,
dr(yj, zj). Therefore, we can interpret the right side of (14)
as a functional, featuring all (local) compressors as its input
arguments. As a direct result, by sweeping through all
(local) compressors, we achieve a non-linear system of equa-
tions, extending the structure of Multivariate Fixed-Point
Systems [46]. Particularly, here, the functionals of multiple
mappings replace the functions of multiple variables:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

p
(
z1|y1

) = F1
(
p
(
z1|y1

)
, . . . , p

(
zJ |yJ

))

p
(
z2|y2

) = F2
(
p
(
z1|y1

)
, . . . , p

(
zJ |yJ

))

...

p
(
zJ |yJ

) = FJ
(
p
(
z1|y1

)
, . . . , p

(
zJ |yJ

))
,

(15)

with Fj, denoting a certain functional. To solve this system,
the conventional (iterative) methods can be leveraged. In this
article, we propose an algorithm, featuring the synchronous
updating rule, which is reminiscent of the Jacobi method for
linear systems [46].

Particularly, we initialize with a set of random mappings,
{p(0)(zj|yj) |j}. Subsequently, (till convergence by ε � 1)
we update the mappings for local compressors iteratively via

p(i+1)(zj|yj
) = p(i)

(
zj
)

ψ
r (i+1)
zj

(
yj, βj

) exp
(
−d(i)r

(
yj, zj

))
, (16)

wherein, i, denotes the iteration counter. By the synchronous
updating, it is meant that at each iteration, all local compres-
sor mappings, {p(i+1)(zj|yj) |j}, are updated based upon the
previous configuration of the same set, i.e., {p(i)(zj|yj) |j}.
The pertinent pseudo-code of this algorithm, the GEneralized
Multivariate IB (GEMIB), has been presented in Alg. 1.
In the following section, we show that GEMIB converges

to a stationary point of the functionals for both parallel and
successive schemes. Since the quality of outcome depends on
the choice of initialization, as a popular workaround to avoid
poor local optima, one can repeat GEMIB with different
starting points, {p(0)(zj|yj) |j}, and retain the best outcome.

B. CONVERGENCE PROOFS
Herein, first we reformulate the design problems for both
parallel and successive processing schemes as an alternating
minimization w.r.t. the set of all compressors, P, and
another set of (auxiliary) distributions, Q. To do so, we
introduce a (tight) variational upper-bound, F̄r(P,Q), on
the pertinent objective functional, Fr(P). Then, with an
unfolding trick, we show that the main update step of our

Algorithm 1 GEneralized Multivariate IB (GEMIB)

Input: Joint input distribution, convergence parameter
ε > 0, βj = 1

λj
> 0, r ∈ {Par.,Suc.}

Output: A (generally soft) partition zj of Y j into |Zj| bins

Initialization: i = 0, random mappings {p(0)(zj|yj) |j}
while True do
for j = 1:J do
• p(i)(zj)←∑

yj
p(i)(zj|yj)p(yj) ∀zj ∈ Zj

• Calculate the i-th update for all distributions involved
in the relevant distortion dr(yj, zj)

• p(i+1)(zj|yj)← p(i)(zj)

ψ
r (i+1)
zj

(yj,βj)
exp
(
−d(i)r (yj, zj)

)

end for
if ∀j,∀yj:D{

1
2 ,

1
2 }

JS

(
p(i+1)(zj|yj)‖p(i)(zj|yj)

) ≤ ε then
Break
else
i← i+ 1
end if
end while

proposed iterative algorithm is obtained by merging the
respective updates for P and Q. By this, it is inferred that,
principally, GEMIB lies within the class of successive upper-
bound minimization3 [51]. Consequently, its convergence to
a stationary point is immediately ensured. It is noteworthy
that similar road maps have been followed in [33] and [34]
to verify the convergence of their devised algorithms.

1) PARALLEL PROCESSING

We can recast the design problem for parallel processing
into minimizing the following functional over P

FPar.(P) =
J∑

m=1

Nm∑

�=1

H(xm�)− LPar.

=
J∑

m=1

λmI
(
ym; zm

)+
J∑

m=1

Nm∑

�=1

H
(
xm�|vxm�

)
. (17)

By defining a set of auxiliary conditional probability distri-
butions Q = {q(xm�|vxm� ) |m ∈ {1, . . . , J}, � ∈ {1, . . . ,Nm}}
and the functional

F̄Par.(P,Q) =
J∑

m=1

λmI
(
ym; zm

)

−
J∑

m=1

Nm∑

�=1

E xm�,vxm�

{
log q

(
xm�|vxm�

)}
, (18)

the next four Lemmas hold:

3The underlying idea is to optimize a sequence of approximate objective
function(al)s (which satisfy some mild assumptions), instead of directly opti-
mizing the original non-convex and / or non-smooth objective function(al).
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Lemma 1: The following equivalence holds

min
P

FPar.(P) = min
P

min
Q

F̄Par.(P,Q) . (19)

Proof: The difference of FPar.(P) and F̄Par.(P,Q) equals

F̄Par.(P,Q)− FPar.(P)

=
J∑

m=1

Nm∑

�=1

∑

vxm�

p
(
vxm�

)
DKL

(
p
(
xm�|vxm�

)‖q(xm�|vxm�
)) ≥ 0,

(20)

with the equality iff q(xm�|vxm� ) = p(xm�|vxm� ) for every
m ∈ {1, . . . , J} and � ∈ {1, . . . ,Nm}.
Lemma 2: The functional F̄Par.(P,Q) is separately convex

in P and Q.
Proof: It is immediately deduced from the application of

log-sum inequality [44].
Lemma 3: Given P, a unique Q minimizes F̄Par.(P,Q),

namely,

q∗
(
xm�|vxm�

) = p
(
xm�|vxm�

)
, (21)

with p(xm�|vxm� ), getting calculated from P.
Proof: It is directly inferred from the proof of Lemma 1.
Lemma 4: Given Q, there exists a P which minimizes

F̄Par.(P,Q), namely,

p∗
(
zj|yj

) = p
(
zj
)

ψ̄Par.
zj

(
yj, βj

) exp
(−d̄Par.

(
yj, zj

))
, (22)

for each (yj, zj) ∈ Y j × Zj, with ψ̄Par.
zj (yj, βj), acting as the

partition function which ensures the validity of compressor
mapping. The distortion, d̄Par.(yj, zj), is calculated by

d̄Par.
(
yj, zj

)

= βj
∑

(m,�): zj∈ vxm�

E
p
(
v−jxm�
|yj
)
{
DKL

(
p
(
xm�|yj, v−jxm�

)
‖q(xm�|vxm�

))}
.

(23)

Proof: The derivation follows the same road map as in
the proof of Theorem 1, noting that

δ
(∑J

m=1
∑Nm
�=1 E xm�,vxm�

{
log q

(
xm�|vxm�

)})

δp
(
zj|yj

) = p
(
yj
)

×
∑

(m,�): zj∈ vxm�

E
p
(
v−jxm�
|yj
)

{
∑

xm�

p
(
xm�|yj, v−jxm�

)
log q

(
xm�|vxm�

)
}

.

(24)

When we merge the results for P and Q from the last two
Lemmas, we obtain the main update step of our proposed
algorithm for every (local) compressor. Hence, it is ensured
by [51, Thm 1] that GEMIB converges to a stationary point
since F̄Par.(P,Q) and FPar.(P) satisfy [51, Proposition 1]. �

2) SUCCESSIVE PROCESSING

Analogous to the previous case, we can recast the respective
design problem for successive processing into minimizing
the following functional over P

FSuc.(P) =
J∑

m=1

Nm∑

�=1

H(xm�)− LSuc. =
J∑

m=1

λmI
(
ym; zm

)

−
J∑

m=2

λmI(zm; z1:m−1)+
J∑

m=1

Nm∑

�=1

H
(
xm�|vxm�

)
.

(25)

By defining Q = {q(z2|z1), . . . , q(zJ |z1:J−1), q(xm�|vxm� )}
for m ∈ {1, . . . , J}, � ∈ {1, . . . ,Nm} and the functional

F̄Suc.(P,Q) =
J∑

m=1

λmI
(
ym; zm

)

−
J∑

m=2

λm E z1:m

{

log
q(zm|z1:m−1)

p(zm)

}

−
J∑

m=1

Nm∑

�=1

E xm�,vxm�

{
log q

(
xm�|vxm�

)}
, (26)

the next four Lemmas hold:
Lemma 5: The following equivalence holds

min
P

FSuc.(P) = min
P

min
Q

F̄Suc.(P,Q) . (27)

Proof: The difference of FSuc.(P) and F̄Suc.(P,Q) equals

F̄Suc.(P,Q)−FSuc.(P)

=
J∑

m=1

Nm∑

�=1

∑

vxm�

p
(
vxm�

)
DKL

(
p
(
xm�|vxm�

)‖q(xm�|vxm�
))

+
J∑

m=2

λm
∑

z1:m−1

p(z1:m−1)DKL(p(zm|z1:m−1)‖q(zm|z1:m−1))

≥ 0, (28)

where the equality holds true iff q(xm�|vxm� ) = p(xm�|vxm� )

and q(zm|z1:m−1) = p(zm|z1:m−1) for m ∈ {1, . . . , J} and
� ∈ {1, . . . ,Nm}.
Lemma 6: F̄Suc.(P,Q) is separately convex in P and Q.
Proof: It is immediately deduced from the application of

log-sum inequality [44].
Lemma 7: Given P, a unique Q minimizes F̄Suc.(P,Q),

namely,

q∗
(
xm�|vxm�

) = p
(
xm�|vxm�

)

q∗(zm|z1:m−1) = p(zm|z1:m−1), (29)

for m ∈ {1, . . . , J}, � ∈ {1, . . . ,Nm}, with p(xm�|vxm� ) and
p(zm|z1:m−1), calculated from P.
Proof: It is directly deduced from the proof of Lemma 5.
Lemma 8: Given Q, there exists a P which maximizes

F̄Suc.(P,Q), namely,

p∗
(
zj|yj

) = p
(
zj
)

ψ̄Suc.
zj

(
yj, βj

) exp
(−d̄Suc.

(
yj, zj

))
, (30)
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for each (yj, zj) ∈ Y j × Zj, with ψ̄Suc.
zj (yj, βj), acting as a

partition function which ensures the validity of compressor
mapping. The distortion, d̄Suc.(yj, zj), is calculated by

d̄Suc.
(
yj, zj

)

= βj
∑

(m,�): zj∈ vxm�

E
p
(
v−jxm�
|yj
)
{
DKL

(
p
(
xm�|yj, v−jxm�

)
‖q(xm�|vxm�

))}

−
∑

z1:j−1

p
(
z1:j−1|yj

)
log

q
(
zj|z1:j−1

)

p
(
zj
)

− βj
J∑

k=j+1

1

βk

∑

z−j1:k

p
(
z−j1:k|yj

)
log q(zk|z1:k−1). (31)

Proof: The derivation follows the same road map as in
the proof of Theorem 2, noting that

δ
(
E z1:j

{
log

q(zj|z1:j−1)
p(zj)

})

δp
(
zj|yj

)

= p
(
yj
)∑

z1:j−1

p
(
z1:j−1|yj

)
log

q
(
zj|z1:j−1

)

p
(
zj
) , (32)

and for j < m ≤ J
δ
(
E z1:m

{
log

q(zm|z1:m−1)
p(zm)

})

δp
(
zj|yj

)

= p
(
yj
)∑

z−j1:m

p
(
z−j1:m|yj

)
log

q(zm|z1:m−1)

p(zm)
. (33)

Like the previous case, when we merge the results for P and
Q from the last two Lemmas, we obtain the main update
step of our proposed algorithm for every (local) compressor.
Consequently, it is ensured by [51, Thm 1] that GEMIB
converges to a stationary solution since F̄Suc.(P,Q) and
FSuc.(P) satisfy [51, Proposition 1] as well. �

C. MATHEMATICAL DISCUSSION
In this part, we provide some insights into the behavior of
the GEMIB algorithm over the whole range of its main input
parameters, thereby answering the important questions of
what to expect from the algorithm and, more importantly,
how to justify its observed behavior when working in various
regimes of the input parameters. Further, we shortly discuss
an important extension of the GEMIB algorithm to the case
of uneven user signal recovery preferences.
1) Presuming fixed p(zm|ym) and (finite) λm for all

m = 1 to J and m 
= j, and by letting βj → 0, the design
problem for parallel scheme boils down to the minimization
of j-th compression rate, I(yj; zj), w.r.t. the j-th local
compressor, p(zj|yj). This extreme case leads to the state of
full diffusion in which, each realization, yj ∈ Y j, is allocated
equiprobably to all output clusters, zj ∈ Zj. In this fashion,
the input and output of the j-th (local) compressor become
statistically independent, and, consequently, the pertinent
compression rate, I(yj; zj), becomes zero that is its global
minimum.

When βj takes finite (non-zero) values, usually the
compressor mapping, p(zj|yj), becomes soft / stochastic. On
the other hand, by letting βj → ∞, a hard / deterministic
mapping is generated, corresponding to the state of full
concentration for this other extreme case. To justify this
behavior, note that by letting βj → ∞, the design
problem for parallel processing boils down to the following
optimization

p∗
(
zj|yj

) = argmax
p
(
zj|yj

)

∑

(m,�): zj∈vxm�

I
(
xm�;vxm�

)
, (34)

that is a convex maximization problem. To realize that, first it
must be noted that I(xm�;vxm� ) is convex w.r.t. p(vxm� |xm�),
when p(xm�) is given [44]. Since the interrelation between
p(vxm� |xm�) and p(zj|yj) is established through

p
(
vxm� |xm�

) = p
(
zj|xm�

)
p
(
v−jxm� |xm�

)

=
⎛

⎝
∑

yj

p
(
zj|yj

)
p
(
yj|xm�

)
⎞

⎠p
(
v−jxm� |xm�

)
, (35)

which is an affine transform preserving convexity [52,
Sec. 3.2], it is deduced that I(xm�;vxm� ) is also convex w.r.t.
p(zj|yj). Further, as the sum of several convex functions is
also a convex function, it is immediately inferred that the
objective in (34) is a convex function of the j-th (local)
compressor, p(zj|yj). A (quite well-known) theorem from
convex maximization theory asserts that a convex function
that is defined over a closed and convex set reaches its global
maximum at an extreme point of that set [53, Ch. 4]. This
theorem implies that it is sufficient to solely focus on the
hard / deterministic mappings in this case (i.e., when letting
βj→∞). To clearly discern this, note that the search space,
i.e., the space of (valid) probability mappings, p(zj|yj), is a
closed and convex polytope which is generated from the
Cartesian product of |Y j| probability simplices [54]. The
corners / vertices of this polytope are its extreme points, and
each corner corresponds to the Cartesian product of some
corners of the constituent probability simplices, yielding a
hard / deterministic mapping in the end.
2) Regarding the successive processing, a similar behavior

is observed, and hence, an analogous justification is made.
Particularly, once again, by presuming fixed p(zm|ym) and
(finite) λm for all m = 1 to J and m 
= j, by letting βj → 0,
the design problem for successive processing boils down to
the minimization of the j-th conditional compression rate,
I(yj; zj|z1:j−1), w.r.t. the j-th (local) compressor, p(zj|yj).
Like the parallel processing scheme, this extreme case
also leads to the state of full diffusion in which, every
realization, yj ∈ Y j, is allocated equiprobably to all output
bins / clusters, zj ∈ Zj. In this manner, the input and output of
the j-th local compressor become statistically independent.
Thus, the conditional compression rate, I(yj; zj|z1:j−1),
becomes zero, since it is non-negative and upper-bounded by
I(yj; zj) = 0.
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FIGURE 3. Considered setup for numerical simulations regarding distributed noisy source coding with two common (x12 and x21) and two uncommon (x11 and x22) sources,
along with the corresponding input / output BNs.

Similarly, when βj takes finite (non-zero) values, usually
the compressor mapping, p(zj|yj), becomes soft / stochastic.
On the other hand, by letting βj → ∞, the state of
full concentration is reached wherein hard / deterministic
mappings are obtained. An analogous line of argumentation
as in the parallel processing applies here, too. By letting
βj → ∞, the design problem for successive scheme boils
down to4

p∗
(
zj|yj

)

= argmax
p
(
zj|yj

)

∑

(m,�): zj∈vxm�

I
(
xm�;vxm�

)+
J∑

m=j+1

λmI(zm; z1:m−1).

(36)

This, again, is a convex maximization problem. To perceive
that, it totally suffices to show that I(zm; z1:m−1) is a convex
function of the j-th (local) compressor mapping, p(zj|yj),
as if so, the second term on the right side of (36) is also
convex w.r.t. p(zj|yj), since λm is non-negative and the
sum of several convex functions is also a convex function.
To conclude the claimed proposition’s proof, note that
I(zm; z1:m−1) is a convex function of p(z1:m−1|zm), when
p(zm) is given [44]. Since the relation between p(z1:m−1|zm)
and p(zj|yj) is established by

p(z1:m−1|zm) =
∑

y1:m
p
(
y1:m

)
p
(
z−j1:m|y−j1:m

)
p
(
zj|yj

)

p(zm)
,

(37)

which is an affine transform that preserves convexity, it is
inferred that I(zm; z1:m−1) is also convex w.r.t. p(zj|yj).

4To clearly see this, note that, from the Markovian relations, it is deduced
that I(ym; zm|z1:m−1) = I(ym; zm)− I(zm; z1:m−1).

3) Finally, it is worth mentioning that GEMIB can be
easily adapted to the case in which, via a “normalized
preference” set, {0 ≤ αm� ≤ 1 |m ∈ {1, . . . , J}, � ∈
{1, . . . ,Nm}}, the user signal recoveries are prioritized based
upon their importance. In this case, the informativity is
quantified by the weighted sum of relevant information
terms, i.e.,

J∑

m=1

Nm∑

�=1

αm� I
(
xm�;vxm�

)
. (38)

This does not change the form of derived stationary solutions
for both parallel and successive processing schemes in (10)
and (13), up to a multiplicative prefactor, αm�, in front of the
expected values in the first term of both solutions. Hence,
in case of uneven recovery preferences, the corresponding
set, {0 ≤ αm� ≤ 1 |m ∈ {1, . . . , J}, � ∈ {1, . . . ,Nm}}, is fed
as another input to the GEMIB algorithm.

VI. NUMERICAL RESULTS
In this section, by performing several numerical simulations,
we intend to corroborate the effectiveness of our proposed
(distributed) multi-source compression schemes. Throughout
our investigations, we focus on a particular setup, illustrated
in Fig. 3, including four user signals and two intermediate
nodes. Specifically, two of these user signals, x11 and x22,
are uncommon as they get served by a single intermediate
node, namely, IN1 and IN2, respectively. The other two
source signals are common since they get served by both
intermediate nodes. We (arbitrarily) assign x12 to IN1, and
x21 to IN2. To formalize both compression and informativity
sides of the design problem(s), the pertinent input / output
BNs have also been presented in Fig. 3, indicating that each
intermediate node should jointly compress its incoming noisy
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FIGURE 4. Total relevant information of GEMIB (Parallel) and K-Means vs. a) number of output clusters and b) total forward rate. Equiprobable bipolar 4-ASK source signaling
(σ 2

xm�
= 5) over AWGN access channels (σ 2

n = 0.3, 0.4, 0.5), with λm = 0.01 for m = 1, 2, and convergence parameter ε = 10−3.

observations, while preserving information about the original
source signals (being served by it).
In the following part, first we present the overall dynamics

of our devised IB-based compression scheme and compare it
with one of the most popular methods regarding the vector
quantization, i.e., the K-Means algorithm [55]. Subsequently,
we present the individual dynamics of all four source signals.
For these investigations, we focus on the parallel processing
scheme. Finally, we compare the obtained performance from
both parallel and successive processing schemes, confirming
the fact that by leveraging the potential correlations in signals
of different intermediate nodes, the latter can yield a superior
“information-compression” trade-off.

A. OVERALL SYSTEM DYNAMICS
For this investigation, we consider a standard bipolar 4-ASK
(Amplitude Shift Keying) source signaling for all four users.
Moreover, for all access connections from the users to the
intermediate nodes, we consider a DMC that approximates a
discrete-time, discrete-input, and continuous-output AWGN
(Additive White Gaussian Noise) channel, characterized
by the same noise variance, σ 2

n . To get the transition
probability matrices, rather than prequantizing the output
signals and by following a purely “Monte Carlo” approach,
40 samples are generated per access link. We set both trade-
off parameters, λ1 and λ2 to 0.01, indicating that through a
hard clustering, the focus will be mainly on the information
preservation.
To perform vector quantization at each intermediate node,

we applied the following two algorithms: GEMIB (parallel)
and standard K-Means [55]. To avoid poor local optima, we
initialized both algorithms 100 times and retained the best
outcome. We repeated this procedure for 100 regenerations
of access transition matrices and averaged the outcomes. The
obtained results have been illustrated in Fig. 4.

Specifically, in Fig. 4a, we illustrated the obtained total
relevant information, namely,

∑
m
∑
� I(xm�;vxm� ), when

varying the number of output bins / clusters (per intermediate
node). In Fig. 4b, we presented the respective overall system
dynamics in the “information-compression” plane. As the
main takeaway from both results, it is clearly observed that
the GEMIB (parallel) algorithm yields superior performance
compared to the standard K-Means routine. This performance
superiority reflects itself in both aspects of the informativity
and compactness. As a concrete example, by considering the
depicted results for σ 2

n = 0.3, it is observed that, to support
5 bits of total relevant information, the obtained solution
with the GEMIB algorithm requires around 6 bits of total
forward rate, that is notably less than that of the K-Means
algorithm, which requires around 7.4 bits. If, on the other
hand, the total forward rate is fixed to 6 bits, it is observed
that the GEMIB algorithm can support up to around 5 bits
of total relevant information, that is notably more than the
K-Means algorithm, which can only support up to 4.2 bits.

Expectedly, by loosening the compression bottleneck via
increasing the number of output clusters, the performance
(in terms of the overall relevant information) enhances.
Naturally, the same holds true for better access link qualities,
corresponding to lower σ 2

n values, since by increasing the
capacity of access channels, more information about user
signals will be flown into the system. This, in turn, leads to a
nested sequence of achievable rate-information regions (note
that the union of all the points on and below each curve in
Fig. 4b constitutes the achievable region for a given σ 2

n ).

B. INDIVIDUAL SYSTEM DYNAMICS
In this part, we intend to investigate the individual dynamics
regarding various source signals. To that end, we apply the
same procedure described for the overall system dynamics
in the previous part (which we do not repeat for the sake of
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FIGURE 5. Individual relevant information vs. number of output clusters for GEMIB (Parallel). Equiprobable QPSK source signaling (σ 2
xm�

= 1) over AWGN access channels
(σ 2

n = 0.3, 0.4, 0.5), with λm = 0.01 for m = 1, 2, and convergence parameter ε = 10−3.

brevity), except for the choice of source signaling, where we
consider a standard QPSK (Quadrature Phase Shift Keying)
constellation. In Fig. 5, we illustrated the individual (i.e.,
per user) relevant information, I(xm�;vxm� ), when varying
the number of output bins / clusters (per intermediate node).
Specifically, two distinct types of results are observed.

The top-right and the bottom-left results belong to the users
being served by both intermediate nodes. Further, the top-
left and the bottom-right results belong to the users being
served by only one intermediate node. Due to the present
symmetry in our considered setup the obtained results in
each of these two groups are quite similar. Principally, the
same trend as in the overall dynamics is observed here as
well, that is, the looser the compression bottleneck and the
better the access channel qualities, the higher the relevant
information. It must be noted that the users served by both
nodes exhibit a better performance compared to those served
by a single node.

C. PARALLEL VS. SUCCESSIVE PROCESSING
In the last part of our numerical investigations, we intend to
compare the obtained performance of parallel and successive
processing schemes. Like previous case, we apply the
same procedure described for the overall system dynamics.
Here, we consider both (equiprobable) 4-ASK and QPSK
source signaling. Furthermore, we fix the number of output
clusters (per intermediate node) to 32 and vary the trade-
off parameters λm for m = 1, 2 over a certain range.
We then calculate the obtained total relevant information
and the required total forward rate for supporting it. The
corresponding results have been illustrated in Fig. 6.

First, it should be noted that, by varying the values of λm
for m = 1, 2, one can sweep through different points in the
“information-compression” plane. Specifically, small values
of λm correspond to the solutions with more focus on the
informativity, and conversely, large values of λm correspond
to the solutions with more focus on the compactness.
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FIGURE 6. Total relevant information vs total forward rate for a) 4-ASK and b) QPSK source signaling over AWGN access channels (σ 2
n = 0.1 to 0.3), with 32 output clusters per

intermediate node and convergence parameter ε = 10−3, a) 0.25 ≤ λm ≤ 0.30 and b) 0.25 ≤ λm ≤ 0.33 for m = 1, 2.

As the main takeaway, it is clearly seen from both results
that, irrespective of the certain choice of model parameters,
the successive scheme outperforms the parallel one, yielding
superior information-compression trade-offs. This, indeed, is
obtained by leveraging the present correlations in the signals
of intermediate nodes (as both commonly serve x12 and x21).
Note that the Markovian relations imply that the conditioning
on previous signals can help to reduce the forward rate since
the conditional compression rate can be decomposed as

I
(
ym; zm|z1:m−1

) = I
(
ym; zm

)− I(zm; z1:m−1)︸ ︷︷ ︸
≥0

. (39)

The larger the access links’ Signal-to-Noise Ratios (SNRs),
the higher becomes the correlations between signals of two
intermediate nodes. Consequently, the higher becomes the
gain of utilizing the side-information, and, hence, the more
widens the gap between the performance curves of parallel
and successive processing schemes.

VII. SUMMARY
In this article, the Information Bottleneck (IB) principle was
fully generalized to design multiterminal / distributed remote
source coding schemes for a (generic) scenario appearing in
a variety of real-world applications. The considered scenario,
with highest flexibility w.r.t. the assignment of users to the
serving nodes, went beyond the State-of-the-Art techniques
designed exclusively for a single (common) source signal.
Specifically, the Mutual Information was selected here as the
fidelity criterion, and, by taking advantage of the Variational
Calculus, the stationary solutions for two different types of
processing were derived and exploited later on as the core of
our devised (iterative) algorithm, the GEMIB, to efficiently
address both challenging design problems. Based upon an in-
depth analysis, it was further proven that GEMIB converges
to a stationary point of the pertinent objective functionals.

At the end, the effectiveness of the introduced compres-
sion schemes was substantiated as well by a couple of
numerical simulations over typical digital data transmission
scenarios.

APPENDIX

This part of the article details the proof of two main theorems
for the stationary solutions of parallel and successive
schemes. To obtain these solutions, the concept of functional
derivative in Variational Calculus plays the key role, since
it generalizes the concept of gradient to the case in which
functions of multiple functions, known as functionals, should
be optimized over their input functions.

A. PROOF OF THEOREM 1 (PARALLEL PROCESSING)
The Lagrangian for parallel scheme, LPar., is a functional that
features all the individual local compressors, {p(zj|yj) |j}, as
its input arguments. Hence, to obtain a stationary solution,
all functional derivatives w.r.t. local compressors should be
equated to zero. To incorporate the validity conditions into
the analysis, we further associate a Lagrange multiplier, λym ,
to every realization, ym ∈ Ym, of the m-th compressor’s
input set of variables, ym = PaGin

zm , and introduce the overall
Lagrangian for parallel processing, LOv.

Par., as

LOv.
Par. =

J∑

m=1

Nm∑

�=1

I
(
xm�;vxm�

)−
J∑

m=1

λmI
(
ym; zm

)

+
J∑

m=1

∑

ym

λym

(
∑

zm

p
(
zm|ym

)− 1

)

, (40)

wherein, vxm� = PaGout
xm� . Next, the functional derivative of the

overall Lagrangian, LOv.
Par., w.r.t. the j-th compressor, p(zj|yj),
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is calculated in some steps. To that end, it should be noted
that the following applies

δ
(∑J

m=1
∑Nm
�=1 I

(
xm�; vxm�

))

δp
(
zj|yj

) = p
(
yj
)

×
∑

(m,�): zj∈ vxm�

E
p
(
v−jxm�
|yj
)

⎧
⎨

⎩

∑

xm�

p
(
xm�|yj, v−jxm�

)
log

p
(
xm�|vxm�

)

p
(
xm�|v−jxm�

)

⎫
⎬

⎭
.

(41)

Furthermore, the following holds true

δ
(∑J

m=1 λmI
(
ym; zm

))

δp
(
zj|yj

) = λj
δI
(
yj; zj

)

δp
(
zj|yj

)

= λj p
(
yj
)

log
p
(
zj|yj

)

p
(
zj
) , (42)

and

δ

(
∑J

m=1
∑

ym
λym

(
∑

zm
p
(
zm|ym

)− 1

))

δp
(
zj|yj

) = λyj . (43)

Applying the stationary condition, namely,
δLOv.

Par.
δp(zj|yj) = 0, and

by noting that p(yj) > 0, from (41), (42) and (43), and by
definition of the KL divergence, it is deduced that

−
∑

(m,�): zj∈ vxm�

E
p
(
v−jxm�
|yj
)
{
DKL

(
p
(
xm�|yj, v−jxm�

)
‖p(xm�|vxm�

))}

− λj log
p
(
zj|yj

)

p
(
zj
) + λ̃Par.yj

= 0, (44)

in which, it applies

λ̃Par.yj
= λyj

p
(
yj
) +

∑

(m,�): zj∈ vxm�

E
p
(
v−jxm�
|yj
)
{
DKL

(
p
(
xm�|yj, v−jxm�

)
‖p
(
xm�|v−jxm�

))}
.

(45)

Next, the following steps are made: the second term in (44)
is brought into the other side of equality, both sides are first
multiplied by βj = 1

λj
and then exponentiated, and, finally,

both sides are again multiplied by p(zj). Then, it applies

p
(
zj|yj

) = p
(
zj
)

exp
(
−dPar.

(
yj, zj

)+ βjλ̃Par.yj

)
. (46)

By enforcing the quantizer mapping’s validity condition, i.e.,∑
zj p(zj|yj) = 1, we can simply treat exp(−βjλ̃Par.yj

) as the

partition function, ψPar.
zj , to obtain the presented solution in

the statement of Theorem 1. �

B. PROOF OF THEOREM 2 (SUCCESSIVE PROCESSING)
Similar to the previous case, the Lagrangian for successive
processing, LSuc., is a functional that features all individual
local compressors, {p(zj|yj) |j}, as its input arguments.
Thus, to have a stationary solution, all functional derivatives

w.r.t. local compressors should be equated to zero. Like
before, first we associate a Lagrange multiplier, λym , to each
realization, ym ∈ Ym, of the m-th compressor’s input set of
variables, ym = PaGin

zm , to bring the validity conditions into
the analysis. Then, we introduce the overall Lagrangian for
successive processing, LOv.

Suc., as

LOv.
Suc. =

J∑

m=1

Nm∑

�=1

I
(
xm�;vxm�

)−
J∑

m=1

λmI
(
ym; zm|z1:m−1

)

+
J∑

m=1

∑

ym

λym

(
∑

zm

p
(
zm|ym

)− 1

)

, (47)

wherein, vxm� = PaGout
xm� . Then, the functional derivative of the

overall Lagrangian, LOv.
Suc., w.r.t. the j-th (local) compressor,

p(zj|yj), is calculated. Note that, we should only calculate
the derivative of the second term on the right side of (47)
since the derivatives of the other terms have already been
calculated in (41) and (43). To do so, first it should be noted
that the following holds true

δ
(∑J

m=1 λmI
(
ym; zm|z1:m−1

))

δp
(
zj|yj

)

=
δ
(∑J

m=j λmI
(
ym; zm|z1:m−1

))

δp
(
zj|yj

) , (48)

as the first j− 1 terms in the summation do not depend on
the mapping p(zj|yj). Further, the following relations apply

δI
(
yj; zj|z1:j−1

)

δp
(
zj|yj

) = δ
(
I
(
yj; zj

)− I(zj; z1:j−1
))

δp
(
zj|yj

)

= p
(
yj
)
⎡

⎣log
p
(
zj|yj

)

p
(
zj
) −

∑

z1:j−1

p
(
z1:j−1|yj

)
log

p
(
z1:j−1|zj

)

p
(
z1:j−1

)

⎤

⎦,

(49)

and for j < m ≤ J
δI
(
ym; zm|z1:m−1

)

δp
(
zj|yj

) = δH(zm|z1:m−1)

δp
(
zj|yj

) − δH
(
zm|ym

)

δp
(
zj|yj

)

︸ ︷︷ ︸
0

= δH(zm|z1:m−1)

δp
(
zj|yj

)

= p
(
yj
)∑

z−j1:m

p
(
z−j1:m|yj

)
log

1

p(zm|z1:m−1)
.

(50)

Applying the stationary condition, namely,
δLOv.

Suc.
δp(zj|yj) = 0, and

by noting that p(yj) > 0, from (41), (43), (49), (50), and by
definition of the KL divergence, the following is inferred

−
∑

(m,�): zj∈vxm�

E
p
(
v−jxm�
|yj
)
{
DKL

(
p
(
xm�|yj, v−jxm�

)
‖p(xm�|vxm�

))}

− λj log
p
(
zj|yj

)

p
(
zj
) + λj

∑

z1:j−1

p
(
z1:j−1|yj

)
log p

(
z1:j−1|zj

)
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+
J∑

k=j+1

λk
∑

z−j1:k

p
(
z−j1:k|yj

)
log p(zk|z1:k−1)+ λ̃Suc.yj

= 0, (51)

wherein, it applies

λ̃Suc.yj
= −λj

∑

z1:j−1

p
(
z1:j−1|yj

)
log p

(
z1:j−1

)+ λyj

p
(
yj
)

+
∑

(m,�): zj∈ vxm�

E
p
(
v−jxm�
|yj
)
{
DKL

(
p
(
xm�|yj, v−jxm�

)
‖p
(
xm�|v−jxm�

))}
.

(52)

Next, analogous to the previous case, the following steps
are made: the second term in (51) is brought into the other
side of equality, both sides are first multiplied by βj = 1

λj
and then exponentiated, and, finally, both sides are again
multiplied by p(zj). Subsequently, it applies

p
(
zj|yj

) = p
(
zj
)

exp
(
−dSuc.

(
yj, zj

)+ βjλ̃Suc.yj

)
. (53)

By enforcing the quantizer mapping’s validity condition, i.e.,∑
zj p(zj|yj) = 1, we can simply treat exp(−βjλ̃Suc.yj

) as the

partition function, ψSuc.
zj , to obtain the presented solution in

the statement of Theorem 2. �
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[33] Y. Uğur, I. Estella-Aguerri, and A. Zaidi, “Vector Gaussian CEO
problem under logarithmic loss and applications,” IEEE Trans. Inf.
Theory, vol. 66, no. 7, pp. 4183–4202, Jul. 2020.

[34] I. Estella-Aguerri and A. Zaidi, “Distributed variational representation
learning,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 1,
pp. 120–138, Jan. 2021.

[35] S. Hassanpour, D. Wübben, and A. Dekorsy, “Forward-aware
information bottleneck-based vector Quantization: Multiterminal
extensions for parallel and successive retrieval,” IEEE Trans.
Commun., vol. 69, no. 10, pp. 6633–6646, Oct. 2021.

[36] S. Movaghati and M. Ardakani, “Distributed channel-aware quanti-
zation based on maximum mutual information,” Int. J. Distrib. Sens.
Netw., vol. 12, no. 5, May 2016, Art. no. 3595389.

[37] G. Zeitler, G. Bauch, and J. Widmer, “Quantize-and-forward schemes
for the orthogonal multiple-access relay channel,” IEEE Trans.
Commun., vol. 60, no. 4, pp. 1148–1158, Apr. 2012.

[38] I. Avram, N. Aerts, H. Bruneel, and M. Moeneclaey, “Quantize
and forward cooperative communication: Channel parameter estima-
tion,” IEEE Trans. Wireless Commun., vol. 11, no. 3, pp. 1167–1179,
Mar. 2012.

4184 VOLUME 5, 2024



[39] D. Wübben et al., “Benefits and impact of cloud computing on 5G
signal processing: Flexible Centralization through cloud-RAN,” IEEE
Signal Process. Mag., vol. 31, no. 6, pp. 35–44, Nov. 2014.

[40] S.-H. Park, O. Simeone, O. Sahin, and S. S. Shitz, “Fronthaul
compression for cloud radio access networks: Signal processing
advances inspired by network information theory,” IEEE Signal
Process. Mag., vol. 31, no. 6, pp. 69–79, Nov. 2014.

[41] H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta,
“Cell-free massive MIMO versus small cells,” IEEE Trans. Wireless
Commun., vol. 16, no. 3, pp. 1834–1850, Mar. 2017.

[42] E. Björnson and L. Sanguinetti, “Scalable cell-free massive MIMO
systems,” IEEE Trans. Commun., vol. 68, no. 7, pp. 4247–4261,
Jul. 2020.

[43] M. Bashar, P. Xiao, R. Tafazolli, K. Cumanan, A. G. Burr, and
E. Björnson, “Limited-fronthaul cell-free massive MIMO with local
MMSE receiver under Rician fading and phase shifts,” IEEE Wireless
Commun. Lett., vol. 10, no. 9, pp. 1934–1938, Sep. 2021.

[44] T. M. Cover and J. A. Thomas, Elements of Information Theory,
2nd ed. Hoboken, NJ, USA: Wiley, 2006.

[45] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier
Methods. Cambridge, MA, USA: Academic, 1982.

[46] J. H. Mathews and K. D. Fink, Numerical Methods Using MATLAB,
4th ed. Hoboken, NJ, USA: Pearson Prentice-Hall, 2004.

[47] N. Slonim, N. Friedman, and N. Tishby, “Multivariate information bot-
tleneck,” Neural Comput., vol. 18, no. 8, pp. 1739–1789, Aug. 2006.

[48] A. Wyner and J. Ziv, “The rate-distortion function for source coding
with side information at the decoder,” IEEE Trans. Inf. Theory, vol. 22,
no. 1, pp. 1–10, Jan. 1976.

[49] S. Hassanpour, D. Wübben, and A. Dekorsy, “A novel approach
to distributed Quantization via multivariate information bottleneck
method,” in Proc. IEEE Glob. Commun. Conf., 2019, pp. 1–6.

[50] S. Hassanpour, D. Wübben, and A. Dekorsy, “Generalized distributed
information bottleneck for fronthaul rate reduction at the cloud-RANs
uplink,” in Proc. IEEE Glob. Commun. Conf., 2020, pp. 1–6.

[51] M. Razaviyan, M. Hong, and Z.-Q. Luo, “A unified convergence
analysis of block successive minimization methods for nonsmooth
optimization,” SIAM J. Optim., vol. 23, no. 2, pp. 1126–1153,
Jun. 2013.

[52] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[53] R. Horst, P. M. Pardalos, and N. Van Thoai, Introduction to Global
Optimization, 2nd ed. New York, NY, USA: Springer, 2000.

[54] S. Hassanpour, D. Wübben, A. Dekorsy, and B. M. Kurkoski, “On the
relation between the asymptotic performance of different algorithms
for information bottleneck framework,” in Proc. IEEE Int. Conf.
Commun., 2017, pp. 1–6.

[55] A. K. Jain, “Data clustering: 50 Years beyond K-means,” Pattern
Recognit. Lett., vol. 31, no. 8, pp. 651–666, Jun. 2010.

SHAYAN HASSANPOUR (Member, IEEE) received
the B.Sc. degree in electrical engineering (elec-
tronics) from the University of Mazandaran, Iran,
in 2011, the M.Sc. degree (with outstanding
performance) in communications engineering from
the University of Ulm, Germany, in 2014, and
the Dr.-Ing. degree (summa cum laude) in elec-
trical engineering from the University of Bremen,
Germany, in 2022, where he is currently working
as a Postdoctoral Researcher with the Department
of Communications Engineering. Over the last

couple of years, he has been prolifically contributing to the top-level
international journals and IEEE flagship conferences on his Ph.D. topic,
i.e., the Information Bottleneck method. His other research interests include
information theory, MU/MIMO systems, wireless/mobile communications,
statistical signal processing, and the application of machine learning in the
design of communication systems. He won the 2021’s VDE ITG Prize
and the 2023’s OHB Ph.D. Prize for an outstanding scientific publication
and his doctoral dissertation, respectively.

ALIREZA DANAEE (Member, IEEE) received the
bachelor’s degree in electronic engineering from
the University of Kurdistan, Sanandaj, Iran, in
2008, the master’s degree in electrical engi-
neering from Shahid Rajaee Teacher Training
University, Tehran, Iran, in 2013, and the Ph.D.
degree in electrical engineering, in the area
of signal processing, automation and robotics
from the Pontifical Catholic University of Rio
de Janeiro, Brazil, in 2022. He is currently a
Postdoctoral Researcher with the Department of

Communications Engineering, University of Bremen, Germany. His current
research interests center around statistical signal processing, information
theory, and machine learning with applications to wireless communications
and distributed data processing.

DIRK WÜBBEN (Senior Member, IEEE) received
the Dipl.-Ing. (FH) degree in electrical engineering
from the University of Applied Science Münster,
Germany, in 1998, and the Dipl.-Ing. (Uni.) and
Dr.-Ing. degrees in electrical engineering from
the University of Bremen, Germany, in 2000 and
2005, respectively, where he is currently a Senior
Research Group Leader and a Lecturer with the
Department of Communications Engineering. He
has published more than 140 papers in interna-
tional journals and conference proceedings. His

research interests include wireless communications, signal processing,
multiple antenna systems, cooperative communication systems, channel
coding, information theory, and machine learning. He has been an Editor
of IEEE WIRELESS COMMUNICATIONS LETTERS. He is a Board Member
of the Germany Chapter of the IEEE Information Theory Society and a
member of VDE/ITG Expert Committee “Information and System Theory.”

ARMIN DEKORSY (Senior Member, IEEE) is
currently the Head of the Department of
Communications Engineering, University of
Bremen. He has more than ten years of industrial
experience in leading research positions, such as
an DMTS with Bell Labs Europe and the Head of
Research Europe Qualcomm, Nuremberg, and by
conducting international research projects (more
than 25 BMBF/BMWI/EU Projects) in affiliation
with his scientific expertise shown by more
than 200 journals and conference publications

and holds more than 19 patents. He investigates new lines of research
in wireless communication and signal processing for the baseband of
transceivers of future communication systems, the results of which are
transferred to the pre-development of industry through political and strategic
activities. His current research focuses on distributed signal processing,
compressed sampling, information bottleneck method, and machine learning
leading to the further development of communication technologies for
5G/6G, industrial wireless communications, and NewSpace satellite
communications. He is a Senior Member of the IEEE Communications
and Signal Processing Society, the Head of VDE/ITG Expert Committee
“Information and System Theory,” and a member of Executive Board of
the Technologie-Zentrum Informatik und Informationstechnik, University
of Bremen.

VOLUME 5, 2024 4185



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


