
Sparse Incremental Aggregation in
Multi-Hop Federated Learning

Sourav Mukherjee∗, Nasrin Razmi∗, Armin Dekorsy∗, Petar Popovski†∗, Bho Matthiesen∗
∗University of Bremen, Department of Communications Engineering, Germany

†Aalborg University, Department of Electronic Systems, Denmark
email: {mukherjee, razmi, dekorsy, matthiesen}@ant.uni-bremen.de, petarp@es.aau.dk

Abstract—This paper investigates federated learning (FL) in a
multi-hop communication setup, such as in constellations with
inter-satellite links. In this setup, part of the FL clients are
responsible for forwarding other client’s results to the parameter
server. Instead of using conventional routing, the communication
efficiency can be improved significantly by using in-network
model aggregation at each intermediate hop, known as incremental
aggregation (IA). Prior works [1] have indicated diminishing gains
for IA under gradient sparsification. Here we study this issue and
propose several novel correlated sparsification methods for IA.
Numerical results show that, for some of these algorithms, the
full potential of IA is still available under sparsification without
impairing convergence. We demonstrate a 15× improvement in
communication efficiency over conventional routing and a 11×
improvement over state-of-the-art (SoA) sparse IA.

Index Terms—Federated learning, correlated sparsification,
gradient sparsification, cooperative communications, multi-hop
network, in-network computing

I. INTRODUCTION

Federated learning (FL) [2] is an instance of distributed
machine learning (ML) over bandwidth-restricted communi-
cation networks, in which a large number of clients use the
local sets and collaboratively train an ML model. This process
is orchestrated by a central parameter server (PS), which is
responsible for synchronizing intermediate results among the
clients. This involves collecting intermediate results {gt

k}k
from all clients, aggregating these values into a new global
iterate wt+1 of the ML model parameters, and distributing
wt+1 back to all clients. As contemporary ML models can
consist of billions of parameters [3], communication efficiency
in this synchronization phase is paramount.

Here, we are interested in FL over multi-hop (MH) net-
works, where some of the FL clients are responsible for
forwarding other client’s results to the PS. Such a setup arises
in the implementation of FL in satellite constellations [4],
[5], when inter-satellite links are used for communicating
with the PS [1], [6]. Similar setups are also applicable to
FL in wireless mesh and multi-hop sensor networks [7].
It is shown in [1], [6], [7] that a network topology-aware
implementation of FL, leveraging in-network computing, leads
to a massive reduction in the communication load during
the result-collection phase. To elaborate, consider the MH

This work is supported by the German Research Foundation (DFG) under
Grant EXC 2077 (University Allowance).

K K-1 1 PS· · ·

Fig. 1. Multi-hop federated learning system.

network in Fig. 1, where nodes 1, . . . ,K are FL clients. Using
conventional routing to transmit {gt

k}k results in a total of
1 + 2 + · · · + (K − 1) + K = (K2 + K)/2 transmissions
the size of gt

k. However, the PS is primarily interested in the
weighted sum of {gt

k}k to compute the new model iterate. By
computing this weighted sum incrementally within the network,
i.e., each hop combines their own update with the results of
previous hops before forwarding, each node needs only transmit
a single vector of size gt

k, resulting in K transmissions in total.
However, it has been observed in [1] that the efficiency of this
incremental aggregation (IA) procedure is reduced massively
when combined with gradient sparsification methods such as
Top-Q [8], [9]. This is because individual gradient sparsification
at each node leads to (almost) uncorrelated sparsification
supports. The result is that the number of non-zero elements
in the partial aggregate increases with each hop.

In this paper, we consider sparse IA and propose several
approaches to the issues outlined above. After establishing the
system model in Section II, we analyze the shortcomings
of state-of-the-art (SoA) sparse IA and take two different
angles towards improving it in Section III. Both methods
rely on intentionally creating correlation in the sparsification
procedure. In Section IV, we combine our methods with
time correlated sparsification (TCS) [10] to further increase
this correlation. The communication cost of the proposed
algorithms is discussed in Section V, and evaluated numerically
in Section VI.

Notation: The L2 vector norm is ∥x∥, ∥x∥0 is the number
of nonzero elements in x, and 1(x) is the indicator vector
of x. The Hadamard product of two vectors a, b is a ◦ b.
The operations ⌈·⌉ and ⌊·⌉ round to the nearest greater and
nearest integer, respectively. The function S(x, Q) returns the
Top-Q sparsification of x and s(x, Q) = 1(S(x, Q)) returns
the corresponding sparsification mask.

II. SYSTEM MODEL

Consider the MH communication system in Fig. 1 with K+1
nodes, where node k, k = 1, . . . ,K− 1, is connected to nodes

k − 1 and k + 1, node K connects to node K − 1, and node
0, denoted as PS, is connected to node 1. These nodes form
a FL system in which nodes 1, . . . ,K collaborate to solve
an ML training problem minw∈Rd

1
D

∑K
k=1

∑
x∈Dk

f(x;w),
with per-sample loss function f(x;w), d-dimensional model
parameter vector w, and Dk the data set of client k. We define
Dk = |Dk| and the total number of samples D =

∑
k Dk.

Nodes 1, . . . ,K are also referred to as clients.
Local data sets Dk are not shared among clients, making a

distributed solution of the training problem necessary. This is
an iterative procedure orchestrated by the PS. In iteration t,
this PS distributes the current model parameter vector wt to all
clients. Then, each client k computes a local update wt

k to wt,
e.g., by performing one or several steps of stochastic gradient
descent (SGD), and transmits the result to the PS. This is done
in the form of the effective gradient gt

k = wt
k − wt. After

collecting all updates {gt
k}k, the PS computes a new iteration

of the model parameters as

wt+1 = wt +
1

D

∑K

k=1
Dkg

t
k. (1)

This process is repeated until convergence.
We are primarily interested in the aggregation phase. To this

end, we are assuming that the effective gradients {gt
k}k are

obtained by some means at the clients and that the PS is only
interested in their aggregate value

∑K
k=1 Dkg

t
k.

A. Sparse Incremental Aggregation

Observe from (1) that the PS is not interested in individual
updates but only in the weighted sum

∑K
k=1 Dkg

t
k. This is

exploited in IA as follows. Instead of forwarding its own
gradient gt

k and the previous hop’s gradients {gt
j}Kj=k−1

separately, node k waits for all previous nodes and computes
the partial aggregate γt

k =
∑K

i=k Dig
t
i . This is then transmitted

to the PS via the next hop. Applying this approach in each
node k, k = 1, . . . ,K − 1, we observe that node k will only
receive a single transmission from node k + 1 with the partial
aggregate γt

k+1. Then, it computes its own partial aggregate as

γt
k = γt

k+1 +Dkg
t
k (2)

and forwards it to node k − 1. Thus, the PS receives γt
1 =∑K

k=1 Dkg
t
k and computes wt+1 = wt + 1

Dγt
1.

Our goal is to combine IA with Top-Q gradient sparsification
[8], [9]. The Top-Q procedure sets all gradient entries except
the Q largest magnitude values to zero and transmits the
resulting vector in sparse representation. This results in a
significant bandwidth reduction, as only the nonzero entries
(and their indices) need to be transmitted. Top-Q sparsification
is commonly implemented with an error feedback mechanism
to improve convergence. In particular, let et−1

k be node k’s
sparsification error from the last iteration. Then, the error-
compensated effective gradient at node k is g̃t

k = gt
k + et−1

k .
Based on this vector and the incoming γt

k+1, a new sparse
partial aggregate γt

k and error vector etk are computed.
In this paper, we explore several methods for computing

γk from g̃t
k and γt

k+1. The SoA approach [1] is a direct

concatenation of IA and Top-Q sparsification applied to g̃t
k.

That is, node k computes ḡt
k = S(g̃t

k, Q) and etk = g̃t
k −

ḡt
k, where S(·, Q) is the Top-Q sparsification operation. The

outgoing partial aggregate γt
k is then computed as γt

k+1+Dkḡ
t
k.

This results in Algorithm 1 from [1], where lines 2–4 perform
Top-Q sparsification and line 5 implements IA. Note that
scaling by Dk is, equivalently, done in line 2 for consistency
with later algorithms.

Algorithm 1 Sparse incremental aggregation at node k [1]
1: Input gt

k , γt
k+1

2: Error feedback g̃t
k ← Dkg

t
k + et−1

k
3: Sparsification ḡt

k ← S(g̃tk, Q)
4: Update error etk ← g̃t

k − ḡt
k

5: Incremental Aggregation γt
k ← ḡt

k + γt
k+1

6: Return γt
k

III. SPARSE INCREMENTAL AGGREGATION, REVISITED

Consider the sparse IA operation in Line 5 of Algorithm 1.
If ḡt

k and γt
k+1 have their nonzero elements in exactly the

same positions, i.e., they have the same sparsification support,
the outgoing partial aggregate γk will have exactly Q nonzero
elements. This, however, is usually not the case and the number
of nonzero elements in γt

k is max{Q, ∥γt
k+1∥0} ≤ ∥γt

k∥0 ≤
Q+∥γt

k+1∥0, with a strong tendency towards the upper bound
as K increases and Q decreases [1]. Indeed, the results in [1]
indicate that, as K → ∞, the gain of IA over conventional
multiple unicast transmissions completely vanishes for Q < d.

A. An Error Minimization Perspective on Sparse IA

To gain additional insight into this problem, consider a
conventional FL setup with direct client-PS links. Gradient
compression, which includes sparsification, is applied to
conserve bandwidth in the client-PS link. For any compressor
C(x) and node k, the compression error is ∥g̃t

k−C(g̃t
k)∥2 and

a compressor is considered optimal if it minimizes this error.
Restricting the choice of compressors to the set of sparsification
functions S , it is well established that Top-Q sparsification is
optimal under a strict communication budget of transmitting at
most Q nonzero elements per iteration [11, Lemma 2]. That
is, the optimization problem

min
C∈S

∥g̃t
k − C(g̃t

k)∥2 s.t. ∥C(g̃t
k)∥0 ≤ Q, (3)

is solved by C(x) = S(x, Q).
Returning to MH aggregation and Algorithm 1, we can

make two observations: 1) The outgoing transmission is γt
k with

relevant compression error ∥γt
k−C(γt

k)∥2; and 2) the effective
transmissions budget is Q̃ = ∥γt

k+1 + S(g̃t
k, Q)∥0 ≥ Q. Thus,

the error minimization problem corresponding to (3) is

min
C∈S

∥γt
k − C(γt

k+1, g̃
t
k)∥2 s.t. ∥C(γt

k+1, g̃
t
k)∥0 ≤ Q̃. (4)

It is straightforward to show that Algorithm 1 is strictly
suboptimal with respect to (4).

Proposition 1: C(γt
k+1, g̃

t
k) = S(g̃t

k, Q) is strictly subop-
timal with respect to (4) unless the sparsification supports of
γt
k+1 and g̃t

k are identical.
Proof: Let mt

k = s(g̃t
k, Q) = 1(S(x, Q)) be the Top-

Q sparsification mask and m̃t
k+1 = 1(γt

k+1) the mask
corresponding to the sparsification support of γt

k+1, where
1(x) is the indicator vector of x. Consider C(γt

k+1, g̃
t
k) =

γt
k+1+1(m

t
k+m̃t

k+1)◦ g̃t
k. Then, the objective of (4) satisfies∥∥(1− 1(mt

k + m̃t
k+1)

)
◦ g̃t

k

∥∥2
=

∑
i ̸∈I(mt

k)∪I(m̃t
k+1)

|gtk,i|2 ≤
∑

i ̸∈I(mt
k)
|gtk,i|2, (5)

where 1 is the all ones vector, gtk,i is the ith element of
gt
k, and I(x) is a set containing the indices of nonzero

elements in x. The inequality in (5) is strict unless∑
i ̸∈I(m̃t

k+1)\I(m
t
k)
|gtk,i|2 = 0, which is the case either if

the corresponding elements in gt
k are zero or m̃t

k+1 = mt
k.

B. Reduced-Error Sparse Incremental Aggregation

The proof of Proposition 1 suggests a direct way to improve
Algorithm 1 without additional communication cost. Instead of
transmitting only the nonzero elements in gt

k returned by Top-Q
sparsification, node k can transmit additional gradient elements
within the nonzero positions of γt

k+1. This is described in
Algorithm 2, where the sparsification in line 3 of Algorithm 1
is replaced by lines 3–5. In particular, line 3 computes the Top-
Q sparsification mask for gt

k, line 4 retrieves the sparsification
mask of the incoming partial aggregate γt

k+1, and line 5
sparsifies gt

k after combining both sparsification masks.

Algorithm 2 Reduced-error sparse IA at node k

1: Input gt
k , γt

k+1

2: Error feedback g̃t
k ← Dkg

t
k + et−1

k
3: Local sparsification mask mt

k ← s(g̃t
k, Q)

4: Incoming sparsification mask m̃t
k+1 ← 1(γt

k+1)

5: Sparsification ḡt
k ← 1(mt

k + m̃t
k+1) ◦ g̃

t
k

6: Update error etk ← g̃t
k − ḡt

k
7: Incremental Aggregation γt

k ← ḡt
k + γt

k+1
8: Return γt

k

This algorithm has the same communication cost as Al-
gorithm 1 at a lower sparsification error. Since this directly
corresponds to more information being transmitted to the PS,
better training performance (in terms of accuracy) is expected.
However, Algorithm 2 is neither optimal with respect to (4)
nor does it adhere to a strict communication budget.

C. Constant-Length Sparse Incremental Aggregation

Equation (4) also offers insight into the design of a sparse
IA strategy that strictly adheres to a communication budget of
Q nonzero elements per hop. Indeed, the optimal sparsification
strategy with respect to (4) is C(γt

k+1, g̃
t
k) = S(g̃t

k+γt
k+1, Q̃)

and by setting Q̃ = Q, the outgoing partial aggregate γt
k =

S(g̃t
k + γt

k+1, Q) will have at most Q nonzero entries. This
immediately leads to Algorithm 3. Observe that the order of
error feedback and IA in lines 2 and 3 is inconsequential, as
long as the sparsification error in line 5 is tracked correctly.

Algorithm 3 Constant-length sparse IA at node k

1: Input gt
k , γt

k+1

2: Error feedback g̃t
k ← Dkg

t
k + et−1

k
3: Incremental Aggregation γ̃t

k ← g̃t
k + γt

k+1
4: Sparsification γt

k ← S(γ̃t
k, Q)

5: Update error etk ← γ̃t
k − γt

k
6: Return γt

k

IV. TIME-CORRELATED SPARSE IA

In Section III, we improved upon Algorithm 1 in two
different ways. Algorithm 2 has exactly the same commu-
nication cost as Algorithm 1, but utilizes the bandwidth more
efficiently. Instead, Algorithm 3 fixes the issue of increasing
communication cost with each hop and, thus, recovers the
communication efficiency of IA. These strategies represent two
extremes among potential improvements of Algorithm 1: we
can either embrace the increasing communication cost and
reduce the sparsification error, or we can strictly enforce the
communications budget and obtain the superior communication
performance of IA. A controllable trade-off between these
two extremes can be obtained by combining sparse IA with
TCS. The central idea of TCS [10] is to compute a Top-Q
sparsification mask from the global model parameter vector.
This leads to identical sparsification supports at all clients.
Temporal dynamics in the model development are captured
through a small number QL of local additions to the global
mask, which implements the desired trade-off.

A. Time-Correlated Sparse Incremental Aggregation

The combination of IA and TCS operates on the same
principles as Algorithm 2. Let QG and QL denote the number
of nonzero elements in the global and local sparsification masks,
respectively. With wt and wt−1 the current and previous
iteration of the global model parameters, respectively, the
effective gradient for the global model parameters is wt−wt−1.
Then, the global sparsification mask is obtained from Top-QG

sparsification of wt−wt−1, i.e., mt = s(wt−wt−1, QG). The
local sparsification mask mt

k should capture the most relevant
local gradient entries not yet part of the global mask. Thus,
node k computes mt

k from the error-compensated gradient g̃t
k

after applying the global mask, i.e., mt
k = s((1−mt)◦g̃t

k, QL).
Similarly to Algorithm 2, node k can transmit further nonzero
elements within the nonzero positions of γt

k+1. Hence, the spar-
sified effective local gradient is ḡt

k = 1(mt+mt
k+m̃t

k+1)◦g̃t
k

with m̃t
k+1 = 1(γt

k+1)−mt.
Since the global mask mt is known by all participants,

it is not necessary to transmit the indices of these nonzero
entries. This leads to a considerable bandwidth reduction and
a mixed storage format for the outgoing partial aggregate
γt
k = [Γt

k, Λt
k], where Γt

k contains the nonzero elements due
to the global sparsification mask and Λt

k stores the elements
due to local sparsification. Thus, the IA operation is

Γt
k = Γt

k+1 +mt ◦ ḡt
k

Λt = Λt
k+1 + (1−mt) ◦ ḡt

k

(6)

The complete procedure is stated in Algorithm 4, which extends
Algorithm 2 with TCS in lines 3, 4, 6, and 8.

Algorithm 4 Time-correlated sparse IA at node k

1: Input gt
k , γt

k+1 =
[
Γt
k+1, Λt

k+1

]
2: Error feedback g̃t

k ← Dkg
t
k + et−1

k
3: Retrieve global mask mt ← s(wt −wt−1, QG)
4: Local sparsification mask mt

k ← s((1−mt) ◦ g̃t
k, QL)

5: Incoming sparsification mask m̃t
k+1 ← 1(γt

k+1)−mt

6: Sparsification ḡt
k ← 1(mt +mt

k + m̃t
k+1) ◦ g̃

t
k

7: Update error etk ← g̃t
k − ḡt

k
8: Incremental Aggregation as in (6)
9: Return γt

k =
[
Γt
k, Λt

k

]

B. Constant-Length Time-Correlated Sparse IA

The rationale behind communicating a small amount of
locally selected nonzero elements is to allow new elements
to enter the global mask during the training process. This is
also realized by the constant-length sparse IA procedure in
Algorithm 3, which we combine with TCS in Algorithm 5.
The vectors etk and Λt

k are both implemented as d-dimensional
sparse vectors. It is important to apply the error feedback in
g̃t
k (line 2) and not only in the computation of Λ̃t

k (line 4), as
the global mask might change between iterations.

Algorithm 5 Constant-length time-correlated sparse IA
1: Input gt

k , γt
k+1 =

[
Γt
k+1, Λt

k+1

]
2: Error feedback g̃t

k ← Dkg
t
k + et−1

k
3: Retrieve global mask mt ← s(wt −wt−1, QG)
4: Incremental Aggregation Γt

k ← Γt
k+1 +mt ◦ g̃t

k

Λ̃t
k ← Λt

k+1 + (1−mt) ◦ g̃t
k

5: Local sparsification Λt
k ← S(Λ̃t

k, QL)

6: Update error etk ← Λ̃t
k −Λt

k
7: Return γt

k =
[
Γt
k, Λt

k

]

V. COMMUNICATION COST

The primary motivation for sparsification and IA is to reduce
the communication cost of FL. The communication cost (in
iteration t) of Algorithms 1–5 directly depends on the number
of transmitted nonzero elements

∑K
k=1 ∥γt

k∥0 and the storage
representation of each element. For the time-correlated sparse
IA method in Algorithm 4, the number of outgoing nonzero
elements at node k is ∥γt

k∥0 = ∥Γt
k∥0 + ∥Λt

k∥0. While ∥Γt
k∥0

is deterministically QG, ∥Λt
k∥0 is a random number. Each

nonzero element in Λt
k requires ω bit for the numerical value

and additional ⌈log2 d⌉ bit to store its location in γt
k, while

each element in Γt
k only requires a total of ω bit. Thus, the

expected total communication cost for Algorithm 4 is∑K

k=1

(
ωE

[
∥Γt

k∥0
]
+ (ω + ⌈log2 d⌉)E

[
∥Λt

k∥0
])

= KωQG + (ω + ⌈log2 d⌉)
∑K

k=1
E
[
∥Λt

k∥0
]
. (7)

Exact analytical expressions for E [∥Λt
k∥0] are challenging to

obtain. However, the following upper bound can be derived
along the lines of [1, Prop. 1] by observing that Λt

k is effectively

a vector of dimension d − QG. The proof is omitted due to
space limitations.

Proposition 2: The expected number of nonzero elements
due to local sparsification communicated by Algorithm 4 over
K hops is upper bounded as∑K

k=1E [∥Λt
k∥0] ≤ (d−QG)(
K + 1− d−QG

QL

(
1−

(
1− QL

d−QG

)K+1))
(8)

if QL > 0 and zero otherwise.
From a communications cost perspective, Algorithms 1

and 2 are equivalent to Algorithm 4 with QG = 0 and
QL = Q. Furthermore, the communications cost of Algorithm 5
follows from (7) by observing that E [∥Λt

k∥0] = QL as
KωQG + (ω + ⌈log2 d⌉)KQL. Finally, since Algorithm 3
might be regarded as a special case of Algorithm 5 with QG =
0 and QL = Q, its communication cost is KQ (ω + ⌈log2 d⌉).

VI. NUMERICAL EVALUATION

We evaluate the performance of the proposed sparse IA
methods for a logistic regression model with d = 7850 trainable
parameters on the MNIST data set [12]. This model is trained
using SGD with batch size 20 and learning rate 0.1. The first
experiment uses a fixed Q = 78, corresponding to retaining
1 % of nonzero elements. Following [10], we set QL = 8 in
Algorithms 4 and 5 to 10 % of Q, and QG = Q − QL. We
refer to Algorithms 1–5 as SIA, RE-SIA, CL-SIA, TC-SIA,
and CL-TC-SIA, respectively, where CL and TC refer to the
constant-length and time-correlated properties, respectively.

Figure 2a shows the total data transmitted in the aggregation
step of a single iteration, averaged over the complete training
process. As expected, the communication cost for SIA and RE-
SIA is significantly higher than for the other algorithms. The
TC-SIA approach shows the same quadratic growth, but at a
much reduced rate. Finally, the CL algorithms are transmitting
the smallest amount of data. The constant gap between these
two is due to TCS transmitting QG fewer indices.

The communication efficiency of IA, adjusted to exclude
any sparsification effects, is displayed in Fig. 2b. There, we
normalized the total transmitted data of each algorithm with
the size of a single gradient transmission. We also include the
normalized communication costs for the case without any IA,
i.e., conventional routing with multiple unicast transmissions,
and IA without any sparsification. Most notably, we observe that
CL-SIA and CL-TC-SIA are meeting the same performance as
IA without sparsification. This implies that those two algorithms
do not suffer from the decreasing efficiency of IA under
increasing sparsification ratios. We also see that, while not
being able to fully utilize the benefits of IA, SIA and RE-SIA
still show much better performance than conventional routing.

Figure 3 shows convergence of the training process in
terms of the test accuracy for K = 28 clients. The higher
communication cost of SIA and RE-SIA directly translates to
better learning performance. This is not surprising, as these
algorithms send much more information to the PS. However, the
reduced sparsification error of RE-SIA only results in a slight

10 15 20 25 30

0

0.5

1

Number of clients K

To
ta

l
tr

an
sm

itt
ed

da
ta

[M
bi

t/i
te

ra
tio

n]
CL-TC-SIA
TC-SIA
CL-SIA
RE-SIA
SIA

(a) Absolute

10 15 20 25 30

0

200

400

Number of clients K

To
ta

l
tr

an
sm

itt
ed

da
ta

[N
or

m
al

iz
ed

]

Unicast IA
CL-TC-SIA TC-SIA
CL-SIA RE-SIA
SIA

(b) Relative

Fig. 2. Total transmitted data per global iteration for fixed Q = 78 with respect to the number of clients.

0 10 20 30 40 50
0.2

0.4

0.6

0.8

Iteration

Te
st

A
cc

ur
ac

y

CL-TC-SIA
TC-SIA
CL-SIA
RE-SIA
SIA

Fig. 3. Test accuracy for a fixed Q = 78 and K = 28 clients.

edge in convergence speed over SIA. Moreover, convergence
of CL-SIA and TC-SIA is only slightly worse than SIA despite
their much lower communication cost. We further observe that
the convergence speed of CL-TC-SIA is severely impaired.
This is likely due to the much smaller effective QL, resulting
in slower adaption to temporal dynamics.

For a clearer picture of the bandwidth-efficiency, Fig. 4 shows
the test accuracy under approximately equal total bandwidth
usage. To this end, we consider the same scenario as in Fig. 3
but varied Q such that each algorithm transmits the same
amount of data as CL-SIA. For TC-SIA and CL-TC-SIA,
we maintain the split QL = 0.1Q and QG = 0.9Q. The
result is a slightly higher bandwidth usage for CL-TC-SIA and
significantly less for SIA, RE-SIA, and TC-SIA. In terms of
training, we see that CL-SIA, RE-SIA, and TC-SIA converge
much faster than SIA, with CL-SIA having best performance.

VII. CONCLUSIONS

We have considered efficient communication for FL in MH
networks. The SoA approach for collecting intermediate FL
results in such a system is IA [5], [7], which shows diminishing
returns under gradient sparsification [1]. We have developed
four novel algorithms to address this issue and evaluated
their performance numerically. These results show a distinct
advantage of Algorithm 3 over all other methods, both in terms
of communication cost and FL performance. However, our
results also show a minor gap in final test accuracy over the

0 10 20 30 40 50

0.4

0.6

0.8

Iteration

Te
st

A
cc

ur
ac

y

CL-TC-SIA QL = 10QG = 96

TC-SIA QL = 4QG = 42

CL-SIA Q = 78

RE-SIA Q = 6

SIA Q = 6

Fig. 4. Test accuracy for K = 28 clients under (approximately) equal average
bandwidth usage of 98 kbit per global iteration.

SoA. This will be subject to further investigation in future work,
starting with a rigorous convergence analysis of Algorithm 3.

REFERENCES

[1] N. Razmi, B. Matthiesen, A. Dekorsy, and P. Popovski, “On-board
federated learning for satellite clusters with inter-satellite links,” IEEE
Trans. Commun., Jan. 2024.

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Agüera y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artif. Intell. Statist. (AISTATS), Fort Lauderdale, FL, Apr. 2017.

[3] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[4] B. Matthiesen, N. Razmi, I. Leyva-Mayorga, A. Dekorsy, and P. Popovski,
“Federated learning in satellite constellations,” IEEE Netw., May 2023.

[5] N. Razmi, B. Matthiesen, A. Dekorsy, and P. Popovski, “Ground-
assisted federated learning in LEO satellite constellations,” IEEE Wireless
Commun. Lett., vol. 11, no. 4, pp. 717–721, Apr. 2022.

[6] ——, “On-board federated learning for dense LEO constellations,” in
IEEE Int. Conf. Commun., Seoul, Korea, May 2022.

[7] X. Chen, G. Zhu, Y. Deng, and Y. Fang, “Federated learning over
multihop wireless networks with in-network aggregation,” IEEE Trans.
Wireless Commun., vol. 21, no. 6, pp. 4622–4634, Jun. 2022.

[8] A. F. Aji and K. Heafield, “Sparse communication for distributed gradient
descent,” in Conf. Empir. Methods Nat. Lang. Process., Sep. 2017.

[9] D. Alistarh et al., “The convergence of sparsified gradient methods,” in
Adv. Neural Inf. Process. Syst., vol. 31, 2018.

[10] E. Ozfatura, K. Ozfatura, and D. Gündüz, “Time-correlated sparsification
for communication-efficient federated learning,” Jan. 2021. [Online].
Available: http://arxiv.org/abs/2101.08837

[11] A. Sahu et al., “Rethinking gradient sparsification as total error
minimization,” in Adv. Neural Inf. Process. Syst., vol. 34, 2021.

[12] Y. LeCun, C. Cortes, and C. J. C. Burges. The MNIST database of
handwritten digits.

http://arxiv.org/abs/2101.08837

	I Introduction
	II System Model
	II-A Sparse Incremental Aggregation

	III Sparse Incremental Aggregation, Revisited
	III-A An Error Minimization Perspective on Sparse IA
	III-B Reduced-Error Sparse Incremental Aggregation
	III-C Constant-Length Sparse Incremental Aggregation

	IV Time-Correlated Sparse IA
	IV-A Time-Correlated Sparse Incremental Aggregation
	IV-B Constant-Length Time-Correlated Sparse IA

	V Communication Cost
	VI Numerical Evaluation
	VII Conclusions
	References

