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Abstract—In this study, we introduce an innovative signal to in-
terference and noise ratio (SINR) time sequence feedback scheme
based on vector quantization variational autoencoder (VQ-VAE).
We compress the SINR sequence at the user equipment (UE) side
and reconstruct it at the base station (BS) side. The reconstructed
sequence is then utilized for SINR prediction at the BS. The
VQ-VAE framework compresses SINR sequences into a compact
embedding space involving several embedding vectors. Instead
of transmitting the entire compressed SINR sequence back, we
only need to transmit the index of the corresponding embedded
vector. Based on the index, the sequence will be reconstructed.
Moreover, a principal component analysis (PCA) based method
is employed to reshape the distribution of the embedding space
and compression performance is improved consequently. Our
numerical simulations demonstrate that VQ-VAE combined with
PCA achieves superior reconstruction and prediction accuracy
while requiring fewer quantization bits compared to 3GPP
commonly used method, differential quantization. Therefore, the
proposed scheme is a promising solution for enhancing SINR
sequence compression and prediction in wireless communication
systems.

Index Terms—SINR feedback/CQI, machine learning, quanti-
zation, sequence compression, .

I. INTRODUCTION

In modern wireless communication systems, link adaptation
(LA) is a commonly applied technique that involves selecting
the appropriate modulation and coding scheme (MCS) based
on the signal to interference and noise ratio (SINR) [1], [2].
To achieve this, user equipments (UE) report channel quality
indicators (CQI) to the base station (BS) in order to provide
SINR information. Due to factors like transmission delay in
CQI feedback and the dynamic nature of the channel and
interference, CQI information can become outdated because
of channel aging [3]. Therefore, 3GPP also lists channel state
information (CSI) compression and prediction as important use
cases of artificial intelligence for 5G New Radio [4].

This issue has been tackled using various methods such as
extrapolation [5], linear prediction with stochastic approxi-
mation [6], and Wiener filtering [7]. However, in the afore-
mentioned works, prediction is assumed to take place at the
UE side, primarily due to the inaccuracies and extra overhead
of CQI feedback. Nevertheless, UE computational resources,
particularly for low-cost devices, are severely constrained. In
our research, we introduce SINR feedback schemes based on
the vector quantized variational autoencoder (VQ-VAE) [8],
which employs an autoencoder to compress SINR sequences,
followed by the vector quantization of trainable embedding
vectors. The decoder in VQ-VAE is able to reconstruct SINR

sequences according to quantized embedding vectors. Thus,
the proposed scheme enables SINR sequence prediction at the
BS side.

Our contribution involves: i) introducing a VQ-VAE based
scheme for SINR sequence compression, ii) proposing the
principal component analysis binary splitting (PBS) re-
initialization method to enhance the performance of compres-
sion and quantization, and iii) demonstrating through numer-
ical results that, compared to the commonly used differential
quantization (Diff-Quant) methods in 3GPP standardization
[9], our proposed VQ-VAE combined with the PBS scheme
can significantly reduce the number of quantization bits re-
quired for CSI feedback.

II. SYSTEM MODEL

Considering a downlink (DL) transmission from BS to the
UE in the presence of interferers denoted by a set Z, and white
Gaussian noise, w ~ N (0, 02), the SINR in dB scale of DL
transmission at time ¢ can be written as:

|hs[t]] - pslt]
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where hg and p, represent the channel gain and transmission
power from BS to UE, respectively. The channel gain of

interferers is denoted as h; and the interferers power as p;. The
channel gain can be modeled using the following equation:

[A[E][* = nle]* - wlt] - C[t), 2

where n[t], 1[t], and ¢[t] stand for circular symmetric Gaussian
distributed small scale fading [10], exponential path loss [11],
and log-normal distributed shadowing [12], respectively.

The proposed SINR compression and prediction scheme
is depicted in Fig. 1. At first, the channel state information
reference signal (CSI-RS) is transmitted by the BS to estimate
the SINR at the UE side. The SINR sequence at time £,
x; € RE, includes the SINR values in the previous L time
slots and it can be written as:

Xt = [7[t_L+1]77[t_L+2]""”7[tHT' (3)

To reduce CSI feedback overhead, we compress sequence X
into z; € RP with D < L, and transmit it to the BS side
as shown in Fig. 1. On the BS side, an estimate of the SINR
sequence X, is recovered based on z;. Then SINR sequence
is predicted for the next M time slots, denoted by:

ye = Y[t + 1], 79[t + 2, ..., y[t + M])T. 4)
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Fig. 1. Proposed scheme of SINR prediction at BS using SINR sequence
compression for CSI feedback.

III. SINR SEQUENCE COMPRESSION AND PREDICTION

We use a vector quantized variational autoencoder (VQ-
VAE) [8] to compress and quantize the SINR sequence at the
UE. The SINR sequence will be predicted using LSTM models
at the BS side.
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Fig. 2. The structure of VQ-VAE based CSI feedback consisting of encoder,
vector quantizer, and decoder.

Decoder

A. VQ-VAE CSI Feedback

The input of the encoder at time ¢, x; € RE, according to
Eq. (3) is defined as a sequence of SINR values. As depicted
in Fig. 2, fen(:) and f4e(+) represent functions of encoder and
decoder, correspondingly. The latent variable i, i.e., the output
of the encoder is denoted as i; = fen(x;) € RP. The latent
variable is discretely represented by a specific embedding
vector, e, € RP, from the embedding space E € RDXK,
which is defined as:

.,eK]. (5)

The output of the vector quantizer (VQ) layer, quantized
latent vector z;, is chosen as the embedding vector with the
minimum squared Euclidean distance to i;:

E = [e1, e, ..

2 = fo(ir) = arg min [li; - exl3. (6)

The Voronoi set of embedding vector e contains the encoder
outputs closest to it and can be defined as:

Vi={i|Vl#k |i—el3 <lli—ell3}. (7
The decoder uses the quantized latent vector z to recover X,

Xt = fae(2t). (®)

With VQ-VAE, the CSI feedback process consists of fol-
lowing steps: 1) the UE estimates SINR and obtains SINR
sequence X;; 2) X; is then compressed to iz, and mapped to the
nearest embedding vector, ey; 3) the index, k, is transmitted
back to the BS; 4) the BS recovers the SINR sequence X
according to ey.

B. VQ-VAE Training

In this section, two training strategies for VQ-VAE will be
introduced. To improve the readability of the explanations, the
subscript ¢ will be omitted in the following.

1) Loss function with Embedding Loss (EL): The loss func-
tion of VQ-VAE comprises three components: reconstruction

loss, commitment loss, and embedding loss, defined as [8]:
commitment loss
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embedding loss

Lep = |lx—x3
—_——

reconstruction loss

where sg(-), the stop gradient operator, indicates that the
included parameters are non-updated constants during the back
propagation. The reconstruction loss updates encoder and de-
coder parameters similar to the conventional autoencoder. The
commitment loss trains the encoder to align latent variables
with assigned embedding vectors, depicted as blue arrows in
Fig. 3. Scaling factor for the commitment loss is denoted by
B and we set 8 = 0.25 according to [8]. The embedding
loss updates embedding vectors to converge towards the latent
variables in the corresponding Voronoi set, drawn as the red
arrows in the right part of Fig. 3.
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Fig. 3. The training process of commitment loss and embedding loss. Latent
variables with the same color as the embedding vector are in the corresponding
Voronoi cell. Commitment loss (blue) shifts latent variables closer to their
assigned embedding vectors, while embedding loss (red) updates embedding
vectors to be nearer to their corresponding latent variables.

2) Loss function with Exponential Moving Averages (EMA):
Also in [8], EMA is introduced to update embedding vectors.
When using EMA, the loss function of VQ-VAE only includes
the reconstruction loss and the commitment loss:

Leva = [|x — %[5 + B ||i — sg(2)]]3- (10)

The embedding vectors are not updated using the above loss
function. Instead, the embedding vectors are updated through
EMA as follows:

m” =2 m "V +a-2 Y i (11a)
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where 7 is iteration index. )\ is decaying factor and we set
A = 0.99. The helper variable m,i) represents the EMA

accumulation. nk |Vk[ ]| is the cardinality of Voronoi cell

defined as:

Vilr] = V(e V) = (i) | Vi # &,

17 — e V113 < 117 — eV}
Finally, IV, (™) is the normalization factor, which is calculated in
terms of number of samples used to update m(T) in Eq. (11a).
In [8], EMA and EL methods are listed as two separate
methods. However, according to our derivation listed in the
following, the EMA method can be transformed into the form

of EL gradient descent with an adaptive learning rate.

Proposition 1. Define Loy, = ||z —sg(i)||3, the EMA update

Egs. (11a), (11b), and (11c) can be written as:
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Proof. From Egs. (11a), (11b), and (11c), we can obtain (see
Appendix):

el(c‘r) el(: 1)
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According to Eq. (6), the embedding vector ey, is only affected
by encoder outputs in corresponding Voronoi set. For the 7-th

iteration, the gradient can be approximated as follows:

8£emb 1 (t—1) s
~ E 2. Z i),
Do 0 Lo (e i)
k i;ev, 7]

(14)

With the adaptive learning rate defined as (™) = (1 — \) -

n()
N(*)’ the update of embedding vector e, can be written in

the form of Eq. (12). ]

Hence, based on our derivation, the EMA method can be
regarded as a gradient descent with adaptive learning rate
which depends on the number of samples included in the
the corresponding Voronoi set. The influence of the EMA
method on the distribution of latent variables and correspond-
ing embedding vectors will be illustrated and explained in the
simulation section.

C. Embedding Initialization

The vector quantization described by Eq. (6) can be re-
garded as a clustering problem. In this context, embedding
vectors act as centroids and encoder outputs as data points.
For the clustering problem, centroids need to be initialized
sufficiently dispersed within the data points distribution to
capture underlying patterns [13].

In our work, we propose a method called PCA binary
splitting (PBS) to initialize centroids. The data points space

is iteratively split in a binary manner into K segments. The
center points of these segments are then used to initialize
embedding vectors. For each time of splitting, N data points
are denoted as I = [if,...,iy] € RP*N. At first, the
covariance matrix C € RP*P of I will be calculated as:

C_N

where I' = [i; —1i,...,iny — i] represent the zero-meaned data
points and i = % Y n_y in is the average of the data points.
The covariance matrix C can be decomposed into eigenvectors
and eigenvalues as:

-1, (15)

C=Q-A-Q7"

where Q = [qy, -..,qp]| € RP*P contains eigenvectors of C
as its columns and A is the diagonal matrix whose diagonal
elements are the corresponding eigenvalues.

The principal axis q’ is selected as the eigenvector from
Q with the largest corresponding eigenvalue and it represents
the direction in the feature space along which the data exhibits
the maximum variance. Then the projection of average of data
points on the principal axis can be regarded as the reference
to split. The segment function is defined as:

_ 0 ifif
fseg(l”):{l ifi%

(16)
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where T is the projection of the average of data points on
the principal axis. The projections of data points, i. - q’ are
compared with T to split the data space equally.

The number of embeddings K is a power of 2 to maximize
transmission efficiency. After log, K iterative segmentation

steps, we can obtain K segments, denoted as Si, ..., Sk . The
average points of the segments, iy for £k = 1, ..., K, are used
to initialize embedding vectors ey:
e, =i, = i fork=1,. (18)
|5k| 21

ieSk

However, during the training phase of VQ-VAE, not only
centroids (embedding vectors) are updated, but also data points
(encoder outputs) are updated. Therefore, centroids need to be
re-initialized repeatedly to guarantee the centroids are properly
distributed in the data points space. As listed in Algorithm 1,
the first Ny epochs are regarded as initialization phase during
which frequent re-initialization will occur, and embedding
vectors are re-initialized every Nipervar €pochs.

D. Complexity Analysis

The computational complexity of VQ-VAE is analyzed
across the three main components: the encoder, the VQ layer,
and the decoder. Taking the two-layers encoder and decoder
as an example, the first encoder layer and the last decoder
layer have the same dimension of L, the hidden layers in
encoder and decoder have G neurons. Since the encoder and
the decoder have symmetric structures, the complexities of
both sides are the same: O(L-G+ G- D). VQ layer calculates
distances between a latent variable and K embedding vectors



Algorithm 1 VQ-VAE Training with PBS Re-initialization
1: Inputs: Training set X.
2: Initialize: [e1,es,...,ex] initialized randomly
3: for 7 =1 to Nepochs do
4: update encoder, decoder, and embedding vectors using
Eq. (9) or EMA method (11a), (11b), and (11c).
if 7 mod Nipervat = 0 and 7 < Njyi; then
6: Calculate P = fen(X)
7: Re-initialize embedding vectors using PBS, using
Egs. (15) to (18).
: end if
9: end for

W

with the dimension of D, therefore, the complexity for the
VQ-layer is O(K - D). The overall complexity of VQ-VAE
can be represented as O(2-L-G+2-G-D+ K - D).

The complexity of the PBS algorithm primarily arises from
two components: the calculation (Eq. (15)) and the decom-
position (Eq. (16)) of the covariance matrix. The calculation
of the covariance matrix involves of matrix multiplication of
I’ = RP*N and its transpose, so the complexity is O(D?- N).
The eigendecomposition of the covariance matrix C € RP*P
entails a complexity of O(D3). The total complexity of the
PBS algorithm is O(D? + D? - N). PBS operates log, K
iterations until we have K segments. Each iteration divides
the number of samples N by 2, but increases the times of
segmentations by 2. Hence, the total complexity of the iterative
PBS algorithm is (%% )1 020 . (D3 4 D2 . X)),

E. Prediction Method

As depicted in Fig. 1, to predict future changes in SINR,
the SINR sequence y; = [Yei1, Yet2, - Yernr]? is predicted
on the BS side after recovering x. Long short-term memory
(LSTM) is employed for sequence-to-sequence prediction, as
demonstrated in [14]. In this work, a single layer LSTM model
is utilized to predict SINR sequences as follows:

Vi = fistm(Xe). (19)

It is noteworthy that during the training of the LSTM model,
we deliberately use the true sequence, x, rather than the
reconstructed sequence, X, to ensure that the LSTM model
learns directly from the original data, preserving the inherent
temporal dependencies and patterns of data.

IV. NUMERICAL RESULTS
A. Simulation Settings

An SINR sequence is generated following Eq. (1). It is
assumed that three interference sources move around the UE in
a20 m x 20 m two-dimensional space with random directions
and the speed of 2 m/s. The sampling frequency is set to
1kHz. Parameters for interference scenarios are provided in
Table 1. Noise power is much lower than BS and interference
transmission power, because here it is at the receiver end
and will not experience any channel attenuation. In [15],
our implementation codes are provided and further simulation
details can be found in the repository.

TABLE I
SIMULATION SETTINGS FOR INTERFERENCE SCENARIO
Parameters Values
Interferer Model
Number of Interfers 3
Velocity of Interfers 2 m/s

Mobile model
Channel Model
Path loss exponent 2.5

Shadow fading variance 5

Carrier frequency 3 GHz

Small Scale fading Jakes fading model [10]
Normalized Power

BS Tx power 1

Interferer Tx Power 0.02

Noise Rx Power 3e-4

Random Directional

The autoencoder features a compact structure with two
dense layers in both the encoder and decoder. The structures
of encoder and decoders are listed in Table II. The length of
sequence X; is L = 40, therefore, the shape of the input layer
of the encoder is also 40. The embedding space of vector
quantization layer consists of 64 embedding vectors and the
number of quataiztion bits is log, 64 = 6. The number of
prediction steps is set to M = 10. A single layer LSTM model
is adopted for SINR prediction.

According to the selection of loss function and the use of
PBS initialization methods, four VQ-VAE algorithms are listed
in Table III. For the algorithms using PBS, we set Nj; = 100
and Nipervar = 20, which means that embedding vectors are
re-initialized every 20 epochs in the first 100 training epochs.

TABLE II
NETWORK STRUCTURE OF ENCODER, DECODER, AND LSTM
Type Params #  Output shape  Activation
Encoder  Input 0 40 None
Dense 820 20 ReLU
Dense 420 20 ReLLU
Decoder  Dense 420 20 ReLLU
Dense 840 40 Linear
LSTM LSTM 16896 64 Tanh
Dense 650 10 Linear
TABLE III
VQ-VAE METHODS VARIANTS
EMA | EL | No Re-Init. | PBS Re-Init.
VQ-VAE-EMA v v
VQ-VAE-EL v v
VQ-VAE-EMA-PBS | v v
VQ-VAE-EL-PBS v v

B. Numerical Results

The reconstruction loss is illustrated in Fig. 4. VQ-VAE-
EL-PBS has the lowest reconstruction loss and the smallest
variance. We also observe that EL-based methods exhibit
faster convergence than EMA-based methods. Furthermore,
when comparing methods with PBS re-initialization and those
without, PBS is able to reduce the reconstruction loss. The
advantage brought by PBS to EL methods is more obvious
than that to EMA methods.
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Fig. 4. Reconstruction loss of VQ-VAE algorithms. VQ-VAE-EL-PBS
exhibits the lowest reconstruction loss, while the other three algorithms
demonstrate similar levels of reconstruction loss.

Fig. 5 compares the number of updated embedding vectors.
Methods with PBS re-initialization are able to use all 64
embedding vectors during the training process, but VQ-VAE-
EL-PBS can utilize embedding space fully after only 20
epochs, much faster than VQ-VAE-EMA-PBS. For VQ-VAE-
EMA and VQ-VAE-EL, not all embedding vectors can be used
by the end of training, leading to the under-utilization of the
embedding space and reducing the ability to capture patterns
of sequences in the compact embedding space.
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Fig. 5. Number of updated embedding vectors of VQ-VAE algorithms. PBS-
based algorithms are able to utilize all 64 embedding vectors. Additionally,
VQ-VAE-EMA is capable of utilizing more embedding vectors than VQ-VAE-
EL

Besides the number of embedding vectors, we are also
interested in the distribution of the latent variables on the
embedding vectors. The entropy of the latent variables from
different methods are illustrated in Fig. 6. The entropy is cal-
culated as: H = — Z,{il(p;€ log px) , where pp = % is
the probability of latent variables assigned to k-th erﬁﬁedéing
vector and Vj is the Voronoi set defined in Eq. (7). Inter-
estingly, even though both PBS methods have utilized all the
embedding vectors, VQ-VAE-EL-PBS has higher entropy and
the latent variables are distributed more evenly. Therefore, it
is easier for VQ layers to capture underlying patterns.

Based on the above comparison, we can observe that the
EMA with PBS method does not perform as well as EL with
PBS does. As derived in proposition 1, the EMA method has a

learning rate dependent on the number of samples assigned to
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Fig. 6. Entropy of latent variables in VQ-VAE models. VQ-VAE-EL-PBS
exhibits the highest entropy, allowing its VQ layers to capture underlying
patterns more effectively. Consequently, VQ-VAE-EL-PBS also achieves the
lowest reconstruction loss.

embedding vectors. The non-consistent learning rates would
results in the concentration of latent variables around a few
more frequently updated embedding vectors and the uneven
distribution of latent variables for EMA, as also reflected in
Fig. 6.
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Fig. 7. Reconstruction and Prediction NMSE versus the number of quantiza-
tion bits. Solid lines represent reconstructions and dash lines represent predic-
tions. VQ-VAE-EL-PBS achieves the lowest NMSE for both reconstruction
and prediction.

Fig. 7 presents a comparison of the normalized mean
squared errors (NMSE) of the reconstruction and prediction,
calculated as Egl’z;";”g} and Egl{s"l;ﬁz”f}, respectively. It is
observed that the VQ—QVAE—EL—PBS model achieves the lowest
NMSE for both reconstruction and prediction tasks. Further-
more, the ranking of models based on reconstruction NMSE
aligns with their ranking based on prediction NMSE. This
consistency underscores the critical importance of effective
compression and quantization to achieve accurate predictions.

For link adaptation algorithms, according to the system
requirements, the required accuracy for prediction is also
different. In Figure 8, the required numbers of quantization bits
to achieve prediction NMSE below the target NMSE are com-
pared for VQ-VAE-EL-PBS and Diff-Quant [9]. Diff-Quant is
the common quantization method in 3GPP standardization; it
first takes samples from the sequence and then quantizes the
differences between adjacent samples. According to [9], we set




the number of quantization bits for a single sampling point to
4 bits and the quantization step to 1 dB. Therefore, the number
of quantization bits for Diff-Quant must be a multiple of 4.
In this comparison, we assume that the number of samples
can be adjusted to meet various system requirements. After
reconstruction from Diff-Quant, we use the same LSTM model
to perform the prediction and compare it to VQ-VAE-EL-PBS.
We can observe that the VQ-VAE-EL-PBS scheme is able to
significantly reduce the required number of quantization bits.
It is worthwhile to mention that when the number of bits is set
to 40 for Diff-Quant, the NMSE decreases directly to below
0.015, skipping the range [0.015, 0.020], so the number of bits
remains at 40 for both target NMSE values of 0.015 and 0.02.
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Fig. 8. Comparison of Required Number of Quantization for VQ-VAE-PBS
and Diff-Quant. Compared to Diff-Quant, VQ-VAE-EL-PBS can achieve the
same prediction NMSE range while requiring significantly fewer quantization
bits

V. CONCLUSION

In this work, we introduce a SINR sequence feedback
scheme based on VQ-VAE, enabling SINR sequence predic-
tion at the BS side. To enhance the efficiency of compression
algorithms, we incorporate the PBS re-initialization algorithm
with VQ-VAE to optimize the distribution of the embedding
space. Our numerical simulations demonstrate the advantages
of the VQ-VAE approach for sequence compression and
prediction. By incorporating PBS, we achieve even greater
reductions in feedback overhead and a significant improvement
in reconstruction and prediction accuracy. In our future work,
we plan to expand the scenarios to include MIMO systems
and integrate our approach with the link adaptation problem.

APPENDIX
DERIVATION OF EQUATION (13)

The Eq. (11c) can be rewritten as:
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