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Abstract—In multiple-antenna communication systems, it is
crucial for the base station to acquire accurate downlink Channel
State Information (CSI) to optimize signal transmission through
beamforming. However, with the absence of the channel reci-
procity, the mobile station must follow the process of channel
estimation with feeding the CSI back to the base station. This can
introduce a substantial overhead that increases with the number
of antennas and the bandwidth. Therefore the CSI must be first
compressed and quantized before reporting. In this paper we
introduce a novel approach that based on combining Dynamic
Mode Decomposition (DMD) with Residual Vector Quantization
(RVQ). RVQ adapts the quantization accuracy based on the
DMD output, namely the modes. This strategy allows the system
to prioritize important feedback data and reduce the overhead
bits needed for less critical data. Simulation results show that
our approach can reduce the CSI feedback overhead while
maintaining the target channel reconstruction accuracy.

Index Terms—CSI feedback, Quantization, Time-varying chan-
nels, Dynamic Mode Decomposition.

I. INTRODUCTION

Multi-Input Multi-Output (MIMO) techniques are funda-
mental to modern wireless communication networks. A key
aspect of MIMO transmission is providing the Base Station
(BS) with precise downlink Channel State Information (CSI),
crucial for effective precoding. Typically, the CSI feedback is
derived at the Mobile Station (MS) from the estimated channel
matrix and then transmitted back to the BS. However, as the
number of antennas and/or subcarriers increases, the overhead
associated with uplink CSI feedback becomes increasingly
burdensome. Hence, there is a pressing need to efficiently
compress and quantize the CSI before feeding it back.

CSI compression techniques encompass a variety of ap-
proaches, including Compressive Sensing (CS), matrix decom-
position, and Deep Learning (DL) methods. Traditional Com-
pressive Sensing (CS) methods exploit the assumed sparsity
of the Channel Impulse Response (CIR) in the time domain,
using sparse recovery techniques like Orthogonal Matching
Pursuit (OMP) [1]. These techniques focus on significant
CIR taps but can suffer from inefficiencies and noise vul-
nerability [2]. Matrix decomposition techniques like Singular
Value Decomposition (SVD) reduce the channel matrix by
truncating singular values but risk losing critical informa-
tion. Dynamic Mode Decomposition (DMD) [3] leverages
the channel temporal correlations properties, offering robust
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dimension reduction and predicting future channel states to
reduce frequent CSI updates [4]. Deep learning frameworks,
such as Autoencoders (AEs) [5] and CsiNet [6], compress
the channel matrix similarly to image compression but require
extensive training data and are sensitive to noise.

After compressing CSI data, the next step involves quantiza-
tion, which reduces the range of the data values to a smaller set
of discrete levels. These quantized values are encoded into bits
for transmission. Uniform Quantization (UQ), the most basic
method, evenly spaces quantization levels across the input data
range. Vector Quantization (VQ) represents data by mapping
vectors to discrete symbols or codewords, offering a worthy
alternative. The paper [7] utilize vector quantization and
Variational Autoencoder (VQ-VAE) to compress and quantize
CSI information. Residual Vector Quantization (RVQ) [8], an
extension of VQ, that leverages the residual information to
enhance data quantization efficiency and fidelity.

This paper integrates two powerful frameworks, DMD for
compression and RVQ for quantization, into an approach
called RVQ-DMD. Our strategy dynamically adjusts quantiza-
tion levels based on the significance of DMD output modes.
Key modes receive higher quantization levels for enhanced
accuracy with more bits, while less important modes are
allocated lower quantization levels.

Notations: Throughout this paper, we represent matrices by
uppercase boldface letters, column vectors by bold lowercase
letters, scalars by italic lowercase letters and numbering by
italic uppercase letters. ® represents the Hadamard product.
E{.} denotes the mean.

II. SYSTEM AND CHANNEL MODELS

A. System Model

We consider a MIMO-Orthogonal Frequency Division Mul-
tiplexing (MIMO-OFDM) system with K subcarriers, NV,
transmit antennas at the MS, and NN, receive antennas at
the BS. Channel estimation is conducted over one Resource
Block (RB) spanning duration 7" in time, resulting in an 4D
estimated channel matrix denoted as H € CHK*TxNixNr
The corresponding CSI to be fed back is derived from each
H, ol nnen] ¥y € 1,0, Ny] and V . € [1,..., N,
then quantized and reported to the BS. To facilitate explanation
of our proposed method, we initially illustrate its application
on a matrix channel H € CX*T and subsequently extend this
discussion to the MIMO channel matrix H.



The received CSI at the BS undergoes dequantization and
decompression to reconstruct the channel matrix H essential
for appropriate precoding of downlink user data. However,
due to the compression and quantization errors, H can deviate
from the estimated H, leading to a channel reporting error
that dependent on the compression degree and the quantization
accuracy. To evaluate performance, we employ the Normalized
Mean Square Error (NMSE), defined as

E{|H - H]||3}

NMSE =
E{|H[3}

(1

B. Time-Varying Channel Model

In practical wireless mobile networks, the movement of the
MS causes Doppler frequency shifts in the radiated waves,
resulting in time-varying changes to the channel in the time
domain [9]. One crucial parameter used to characterize these
time-varying channels is the coherence time d.. This param-
eter represents the duration over which the channel remains
temporally correlated and can be defined as:

c
d. = f
Where v, f. and ¢ denote the MS velocity, the signal carrier
frequency and the speed of light, respectively. Essentially,
the Doppler shift is directly proportional to the MS velocity,
thereby making the coherence time inversely proportional to
the Doppler shift.

2

C. Channel Sparsity

The matrix H represents the frequency domain channel
coefficients. Due to the radio propagation environment, it is
accepted that the channel in the time domain exhibits sparsity,
which aligns with the 3GPP channel model [10]. We define:

H = FT(G), 3)

where, FT(.) represents the Fourier Transformation. Here
G € CE*T denotes the channel impulse response in the time
domain. exhibits sparsity along the K dimension, indicating
that only a few taps are significant. The level of the sparsity S,
i.e. the number of the non-zero taps, is considered to remains
constant during the correlation time d.. Additionally, in MIMO
systems, it is assumed that the channel support (positions of
non-zero elements) is common across all MIMO channels [11].

III. CSI COMPRESSION WITH DMD

In this section we explain the fundamental concept of the
DMD method and how it is implemented in a time-varying
channel to reduce the average CSI overhead.

Dynamic Mode Decomposition [3] is a data-driven method
for decomposing dynamical systems into spatiotemporal co-
herent structures that exhibit oscillations at fixed frequencies
which either grow or decay at fixed rates. The method relies on
collecting snapshots from a dynamical system. In the context
of wireless channels, the matrix H comprises 7' channel
snapshots. Specifically, H = [h; hy hr], with each
h; € CK*! representing the channel vector at all subcarriers

over the OFDM symbol ¢, V¢ € [1,...,T]. To use DMD, the
channel vectors need to be arranged into two data matrices:

H =[h; hy .. hy_ ;] € CK*T-1

4
H' = [hg hs ... hT] € (CKXT_l. @

DMD defines a linear approximation, expressing how H"
evolves from H' as:

H' ~ AH, (5)

where A € CK*K is an approximating linear operator, deter-
mined as: A = H"”H'T. This solution minimizes the Frobenius
norm |H” — AH’||r functioning as a linear regression of
data onto the dynamics represented by A. In practice, direct
analysis of the matrix A may be intractable, especially when
the number of subcarriers is extensive. However, the rank of A
is at most 7'—1, since it is constructed as a linear combination
of the T' — 1 columns of H. Therefore, instead of solving
for A, DMD projects the data onto a low-rank subspace
defined by at most 7' — 1 Proper Orthogonal Decomposition
(POD) modes. It then solves for a low-dimensional solution
evolving on these POD mode coefficients. The DMD then
uses this low-dimensional solution to find the leading M
eigenvectors @ € CK*M and eigenvalues A € CM*1, which
are called DMD modes and dynamics, respectively. It has been
demonstrated in [3] that the snapshots are recomposed as:

h; ~ ®A". (6)

Here M denotes the DMD rank truncation. It indicates the
number of used eigendecompositions. Formula (6) implies that
the higher the M, the better the resolution of recomposed
h;. However, it is important to mention that the generated
eigendecompositions are sorted in descending order of signif-
icance. This implies that a few eigendecompositions contain
most of the channel power. Accordingly, it may be sufficient
to take just a few modes and dynamics to ensure an adequate
resolution of the recomposed h;. Moreover, truncation can also
contribute to noise reduction.

One important feature of DMD is its capability for future
state prediction. This can be achieved by extending the appli-
cation of formula (6) by growing the index ¢ beyond 7', such
ast=T+1,T+2,...

Since DMD is able to decompose the channel matrix
into modes that capture the dominant frequencies and their
growth/decay rates. And considering that the channel matrix
shows sparsity in time domain, the resulting DMD modes
will be sparse in the same domain, reflecting those dominant
frequencies.

IV. QUANTIZATION

In this section, we introduce a quantization scheme for
DMD-based CSI feedback. Although direct quantization of
the DMD outputs, i.e. the modes ® is doable, we propose
a further overhead reduction by exploiting the sparse nature
of ® in the time domain, see II. This sparse representation,
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Fig. 1. The proposed framework for DMD-based CSI feedback utilizing A-RVQ
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Fig. 2. The iteration Update of Residual Vector Quantization.

denoted as ®,, € CKXM s obtained through an Inverse
Fourier Transformation (IFT) given by:

Qsp - IFT(Q) © I(maxS)a (7)

where Inaxsy € CH*M is a binary matrix indicates the
positions of the maximum S values in each channel h;. The
non-zero taps in ¥, then arranged in a matrix ¥ € C5*M,
such that: ¥ = &,,[®,, # 0]. Each column in ¥ is called a
featured mode, denoted as .

A. Residual Vector Quantization

We employ Residual Vector Quantization (RVQ) iteratively
to quantize each feature mode separately. To ensure con-
vergence, it’s important to have a suitable dataset size N
such as D = [+,...,9p | obtained by applying DMD
on various channel matrices H. As depicted in Fig 2, the
quantization process begins by initializing the residual matrix
R=][ry,...,ry,] as R=D.

During each iteration i, the codebook C() is updated as
presented in Algorithm 1. The updated C is then used to
quantize the residual R as shown in Algorithm 2. For each
residual vector r,,_ Vns € [1, ..., Ng], the quantization process
can be represented as following:

2, ®

Fn, = £0(n,) = axg_min_ o, = cn,

Vne € [1,...,N.]. Here T is quantized residual vector and
él)(-) denotes quantization function at the i-th iteration.
Accordingly we can define the quantized residual matrix as:

f{(") — [féi)(rl)v fq(i)(rQ)’ * fqi) (I'NS) : (9)

Correspondingly, the Voronoi set of n.-th codeword is denoted
as V(cgfc)) and defined as:

V(el)) = frn, [ VI#ne (e, = |3 < [len, — i3},
, (10)
Codeword c,(f C) is updated to the mean of its Voronoi set as:

i 1
W — 3,

‘V(Cnc )| T, ev(cﬁfz)

(11

The codeword can be updated iteratively until the change of
codeword is below a threshold or the maximum iterations is
reached.

Algorithm 1 Codeword Update at i-th iteration

1: Inputs: Residual to quantize: R = [rq,...,ry_].
2. Initialize: Codebooks C() = [c{"), ,cg\z,)]
3: Repeat:

4 Quantize the residual (Eq. (8)).

5: Update Codebook according to Eq.(11)

6: Until Convergence conditions ‘

7. Outputs: Updated codebooks C( = [c{?), ,cs\z,z]

RVQ uses Ny, iterations to update codebooks C@ where
i = 1,..., Njer. After each iteration, the residual between the
vector before quantization and after quantization is quantized
for the next iteration, as detailed in Algorithm 2.

After obtaining the updated codebooks, the featured mode
1, is quantized iteratively. In each iteration, only the index,
denoted as n., of the selected codeword cSQ in the codebook
C is quantized. The number of iterations for the quantization
process is denoted as Nj., with Nj, < Nje-. This means
that for the quantization process, it is possible to use only
a portion of the codebook obtained from Algorithm 2 to
quantize the data according to the system requirements. When

Ni’ler < Nier, fewer quantization bits are used, resulting in



Algorithm 2 RVQ Codebook Update

: Inputs: DMD modes data D = [¢y, ..., %y ].

Number of iterations Nj,.

. Initialize: Residual R = Dataset D

: for : =1 to Njr do
Update C*) with residual R (Algorithm 1).
Obtain quantized residual R = féz)(R) as Eq. (8).
Update residual R := R — R

end for

: Outputs: Updated codebooks C@), for i = 1, ..., Nier.

R A A ol e

suboptimal performance compared to the case where N, =
Niwer, due to the presence of unquantized residuals. When

ter < Niter, the codebooks used in the quantization process
are the first N/, out of N, codebooks. This approach offers a
significant advantage: as long as the number of codewords N,
remains constant, quantization processes with varying numbers
of iterations can utilize the same set of codebooks. This
eliminates the need to retrain codebooks for each specific
parameter choice, unlike VQ-VAE, which requires retraining
for different parameters.

The quantized index set is defined as Z = {u, ...,LNi{er}.
1; represents the selected index at ¢-th iteration from the
codebook C(), ranging from 1 to N.. The reconstructed

featured mode can be obtained using the following equation:

iter

N/
QZJ(Nm) _ Z CE?? (12)
i=1

and DWier) = WEN‘;”)7 vy 1,[:5\1[\5[‘{“)] as depicted in Fig. 2. After
getting 12) DFT and zero-padding will be performed to get
reconstruction of mode, ¢A>, as depicted in Fig. 1. Then, the
channel matrix can be reconstructed using DMD, as descried
in (6). The quantization of dynamics A is assumed to be done
as a scalar quantization utilizing the uniform quantization,
since the number scalars is limited.

B. Feedback Overhead and Complexity Analysis

Given the number of quantization iterations N}, and the
number of codebooks for each iteration N., the number
of quantization bits for single mode can be calculated as
N, - [logs(N:)]. Additionally, the CSI feedback includes the
positions of non-zero elements in ®,,. These positions are
defined as integer values within a range of length K, and thus
can be measured with S - [log,(K)] bits.

For the complexity of RVQ, each iteration involves finding
the nearest codeword to the current residual from N, code-
words. This results in a complexity of O(N, - S), where S
is the dimension of residuals. Therefore, Therefore, the total

complexity over Ny, iterations is O(Ny,, - Ne - S).

C. Adaptive RVQ for DMD

Building upon the insights from DMD (see Section III),
where modes exhibit varying levels of importance, we employ
Adaptive RVQ (A-RVQ) with different iteration counts N

iter

tailored to each mode. Modes of higher significance undergo
more iterations Ny, resulting in increased bit overhead but
enhanced reconstruction accuracy. Conversely, less critical
modes are quantized with fewer iterations, reducing overhead
and sacrificing some accuracy. This approach optimizes quan-
tization accuracy by allocating more resources to modes cru-

cial for reconstruction while minimizing overall bit overhead.

D. Implementation in MIMO Systems

Considering the temporal correlation of channels discussed
in Section III, DMD operates effectively within a correlation
time d., leveraging the temporal properties of the channel.
Furthermore, dominant modes exhibit sparsity in the time
domain. Additionally, as discussed in Section II, channel spar-
sity remains consistent throughout d. and across all channels
in a MIMO system. To capitalize on these observations, we
can reduce CSI feedback overhead by transmitting position
information of non-zero taps once for all modes and channels.
Instead of transmitting Mn.n,S[log,(K)] bits to represent
the CIR taps positions for the entire matrix H, we reduce it
to S[log,(K)] bits. This technique efficiently transmits the
channel information while minimizing feedback redundancy.

V. SIMULATION RESULTS
A. Simulation Settings

In this section, we perform numerical simulations to evalu-
ate the performance of the DMD-based CSI feedback scheme
combined with the RVQ quantization scheme in an adaptive
manner. The proposed method is compared with various CSI
compression and quantization techniques. For the simulations,
we employ Heterogenous Radio Mobile Simulator (HermesPy)
[12] to generate the channel coefficients. System parameters
are enumerated in Table L.

TABLE I
SIMULATION PARAMETERS
System Parameters Value
Channel model COST 259 [13]

Carrier frequency f. 2 GHz
MS velocity v 50 Km/h

Number of antenna N & N~ 4 &4
Subcarrier spacing 15 KHz
H size K x T 72 x 14

Sparsity S 8

Channel estimating error AWGN

B. Result and Discussion

We compare RVQ-DMD to other CSI feedback compression
and quantization algorithms. The method UQ-DMD quantizes
the DMD featured modes W uniformly on a scalar scale. While
vector quantization variational autoencoder [7] uses an autoen-
coder to compress the channel matrix and trains a codebook
aligned with the encoder and decoder to quantize the latent
variables. Additionally, we compare the proposed adaptive
approach, A-RVQ-DMD, with its non-adaptive variant, namely
RVQ-DMD.



In Fig. 3, the reconstruction NMSEs of channel matrix
are compared. For RVQ-DMD, each iterations, the number
of codewords is set to N, = 256 (8 bits) and here we set
number of iterations Ny, = 4. The number of modes to
reconstruct channel matrix M = 4. Therefore, the total number
of quantization bits is 128 bits for each channel matrix. A-
RVQ-DMD employs the same configuration as RVQ-DMD.
The number of iterations for the four modes is set to 5
iterations to the first mode, 4 iterations for the second and
third modes, 3 iterations for the fourth mode. Therefore, the
total number of quantization bits is still 128. Similarly, the
numbers of quantization bits for VQ-VAE and UQ-DMD (4
bits form each element in the four modes) are also 128. We
find that DMD-based methods perform better than VQ-VAE in
lower-SNR areas since DMD shows robustness against noise,
as discussed III. For higher SNRs, RVQ-DMD achieves lower
MSE, and A-RVQ-DMD further improves the performance.
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Fig. 3. Comparison of channel reconstruction NMSE for different algorithms.
RVQ-DMD achieves the lower NMSE compared to VQ-VAE and UQ-DMD.
A-RVQ-DMD can further improve the accuracy for high SNRs.

Figure 4 compares the RVQ and A-RVQ methods with
iteration counts of Ny, = 2 and N, . = 4 at SNRs of 10 dB
and 40 dB. The x-axis shows the quantization bits per iteration,
with 4 bits corresponding to N, = 16 codewords and 8§ bits
to N. = 256. Points marked with red circles indicate that
2 iterations with 8 bits per iteration outperform 4 iterations
with 4 bits per iteration even though the total numbers of
bits keep the same, the reason is that 2 iterations with 8
bits utilizes 2 x 28 = 512 codewords but 4 iterations with
4 bits uses only 4 x 2% = 64 codewords. In addition, At
10 dB, the performance difference between 2 and 4 iterations
is less due to channel estimation noise, while at 40 dB, where
quantization error dominates, additional iterations offer greater
improvement. Thus, fewer iterations are suitable for low SNR,
and more iterations are beneficial for high SNR.

VI. CONCLUSION

In this paper, we tackle the challenge of substantial CSI
feedback overhead in MIMO systems with a novel approach
that combines DMD and RVQ adaptively. Our method lever-
ages the channel’s temporal correlation and dominant mode

SNR = 10 dB SNR = 40 dB
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Fig. 4. Comparison of channel reconstruction NMSE for different number
of iterations of RVQ-DMD and A-RVQ-DMD. As the number of iteration
increasing, NMSE is reduced. A-RVQ-DMD is able to reconstruct channel
matrices more accurately.

sparsity to adjust quantization accuracy based on mode sig-
nificance. This prioritizes critical feedback data and reduces
bits for less important data, effectively lowering CSI feedback
overhead. Simulations show our strategy maintains channel
reconstruction accuracy while significantly reducing feedback,
offering a promising solution for optimizing MIMO signal
transmission.
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