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Abstract—This paper presents a mathematically rigorous
framework of remarkably-robust signal recovery over networks.
The proposed framework is based on the minimax concave
(MC) loss, which is a weakly convex function so that it at-
tains (i) remarkable outlier-robustness and (ii) guarantee of
convergence to a solution of the posed problem. We present a
novel problem formulation which involves an auxiliary vector
so that the formulation accommodates statistical properties of
signal, noise, and outliers. We show the conditions to guarantee
convexity of the local and global objectives. Via reformulation, the
distributed triangularly preconditioned primal-dual algorithm is
applied to the posed problem. The numerical examples show
that our proposed formulation exhibits remarkable robustness
under devastating outliers as well as outperforming the existing
methods. Comparisons between the local and global convexity
conditions are also presented.

Index Terms—distributed optimization, outlier robustness,
minimax concave penalty, proximity operator

I. INTRODUCTION

ROBUST methods in the presence of outliers (or impulsive
noise) have been studied in a variety of fields including

statistics [2]–[5], control [6], optimization [7], machine learn-
ing, as well as signal processing [8]–[10]. Outliers happen
frequently in wireless communication channels, radar/sonar
systems, biomedical sensors, load prediction/monitoring sys-
tems, image/video sensors, and many others. Robust methods
have been studied in distributed settings as well [11]–[15],
where data are scattered over a network. The distributed
optimization framework is useful particularly in solving large-
scale problems where the data volume is too large to store
at a single computer so that the data need to be stored and
processed at each local node. There are two key aspects in the
distributed signal recovery task: (i) the problem formulation to
characterize the target signal as a minimizer of cost functions,
and (ii) the algorithm to solve the formulated problem in a
distributed fashion [16]–[22] (see also [23] for an extensive
survey of distributed optimization algorithms). The major
contributions of this work concern the former aspect basically.

Decentralized systems (having no central node) are con-
sidered in the present study, possessing advantages in many
aspects: (i) no single point of failure, (ii) no need to collect
data at a single node, (iii) no need for infrastructures, and
(iv) suitability for edge computing. The significance of those
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advantages can be seen by considering the application of
wireless sensor networks, for instance, where the whole system
may break down due to potential node/link failures. In some
applications, moreover, data are not allowed to be collected at
a single point for privacy reasons.

As outliers are typically sparse, we consider a linear
model where the observation vector at each node i ∈ V :=
{1, 2, . . . , N} is given by

yi = Aix⋆ + εi⋆ + oi⋄ ∈ Rmi , (1)

where Ai ∈ Rmi×n is the system matrix, x⋆ ∈ Rn is the
signal to be recovered obeying the i.i.d. zero-mean Gaussian
distribution with variance σ2

x⋆ > 0, εi⋆ ∈ Rmi is the i.i.d. zero-
mean Gaussian noise vector with variance σ2

ε⋆ > 0, and
oi⋄ ∈ Rmi is the sparse outlier vector. Here, the subscripts
⋆ and ⋄ symbolize Gaussian and sparse vectors, respectively.
For simplicity, the Gaussian noise vectors are assumed to share
the same distribution over the nodes. The same applies to the
outlier vectors. The model in (1) has previously been studied
in centralized (non-distributed) settings [24], [25], but it has
not been studied well in the distributed settings. We also
mention that, although distributed robust optimization under
model uncertainty has been studied in the literature [26], [27],
distributed robust signal recovery in the presence of outliers
has not been investigated well so far.

With the variable vectors x and εi to model x⋆ and εi,⋆,
respectively, our primal focus in the present study is on the
following problem formulation:

min
x∈Rn

εi∈Rmi

(i∈V)

∑
i∈V

(
ΦMC

γ (Aix+εi−yi)+
σ−2
x

2µiN
∥x∥22+

σ−2
ε

2µi
∥εi∥22

)
,

(2)
where µi > 0 is the regularization parameter, σ2

x > 0 is the
signal power estimate, σ2

ε > 0 is the noise power estimate,
and

ΦMC
γ (x) :=

m∑
i=1

ϕMC
γ (xi) = ∥x∥1 −

γ∥·∥1 (x) , (3)

is the MC penalty [28], [29], defined with ϕMC
γ (x) :={

|x| − x2/2γ, if |x| ≤ γ,

γ/2, if |x| > γ.
Here, γ > 0 is the “saturation”

factor to control the saturation points from which ΦMC
γ be-

comes constant on each side of the real line. See Section II-B
for the definition of the Moreau envelope γ∥·∥1 of the ℓ1 norm.
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Each term of the summands in (2) accommodates the prior
information about the random vectors. Specifically, the first
term ΦMC

γ (Aix+εi−yi) reflects the sparseness of the outlier
vector oi⋄ = yi − (Aix⋆+εi⋆), and the second and third
terms, σ−2

x

2µiN
∥x∥22 and σ−2

ε

2µi
∥εi∥22, reflect the Gaussianity of

the signal vector x⋆ and the noise vector εi⋆, respectively. We
mention here that the MC function ϕMC

γ is known to bridge
the ℓ0 norm (the direct discrete measure of sparseness) and
the ℓ1 norm (its convex relaxation) by the single parameter γ
[30].

The introduction of εi in our formulation together with the
MC loss function ΦMC

γ (Aix+εi−yi) is the key to realize
both outstanding robustness and “stability” (see the beginning
of Section IV). Intuitively, a small σ−2

ε (a large noise power
estimate) allows the term ∥εi∥22 to be large, modeling large
Gaussian noise appropriately. We call the formulation in (2)
distributed stable outlier-robust signal recovery (D-SORR),
because it gives “stable” estimates in the sense of [31]. The
MC loss at each local node is nonconvex, as it is only weakly
convex.

Our research questions concerned in this paper are presented
below.

i) When is the problem (2) solvable by an iterative algo-
rithm efficiently?

ii) How robust is the D-SORR estimator against outliers
compared to existing methods?

To answer the first question, we study the convexity condition
for the cost function in (2) using the framework called linearly-
involved Moreau-enhance-over-subspace (LiMES) model de-
veloped in [32], [33].1 The second question will be addressed
experimentally via computer simulations. The major contribu-
tions of this paper are summarized below.

a) We start by considering a simplified version of (2) which
does not involve the variable vectors εi to display the
technical developments of the present work in a simpler
manner. We show that each local objective is ensured
to be convex under a certain condition on the regular-
ization parameter (Proposition 1) based on the LiMES
framework. We also show that the proposed formulation
is solvable by the TriPD-Dist algorithm [21] via refor-
mulation using Moreau’s decomposition. A condition to
ensure convexity of the global objective is also derived
(Proposition 2); the condition is weaker than the local
convexity condition.

b) We then study the formulation (2) which accommodates
statistical properties of the noise and outliers, and which
is thus more robust against perturbations caused by
Gaussian noise as well as large outliers. See Section
IV for the motivation of this specific formulation. In
analogy with the first formulation, the local and global
convexity conditions are presented (Propositions 4 and 5).
We mention here that both local and global convexity con-

1The LiMES model has been developed inspired by the linearly-involved
generalized Moreau enhanced (LiGME) model [30], which includes the
MC penalty [31], the generalized MC penalty [29], and many others, as
its special cases. The LiMES model envisions an application to robust
regression/classification as a particular example.

ditions in the distributed setting differ from the central-
ized one. More precisely, the distributed local-convexity
condition is stronger compared to the centralized case,
while the distributed global-convexity condition involves
the auxiliary vectors εi to model the noise vectors at each
individual node.

c) The numerical examples show that our proposed methods
lead to remarkable robustness even in catastrophic situa-
tions where data are contaminated by many and/or huge
outliers, outperforming the existing methods in a variety
of situations. Comparisons between the local and global
convexity conditions are also presented.

We emphasize that the proposed methods have the following
two properties simultaneously: (i) convergence guarantee to a
solution based on the convexity condition (to be presented in
Propositions 1 and 4), and (ii) remarkable robustness against
outliers (to be shown by simulations) owing to the use of the
nonconvex loss. This is in sharp contrast to the prior works
which use either a convex loss with limited robustness or
a nonconvex loss with, at most, a convergence guarantee to
a stationary point. As a by-product, the convexity condition
reduces the number of tuning parameters. We finally note that
our approach is deterministic, and a study of the formulation
(2) from the statistical perspective is beyond the scope of the
present study.

A. Why to use nonconvex loss in the presence of outliers?

The least absolute deviation (LAD) loss ψ(e) := |e| is less
sensitive to outliers than the least square loss ϕ(e) := 1

2e
2,

because it only grows linearly instead of quadratically.2 Here,
e ∈ R is the estimation residual. Residing between those two
loss functions, Huber’s loss function [3] is quadratic when
|e| is small, while it is linear when |e| is large (see Section
VI-A for the precise definition of Huber’s loss). Because of
this, Huber’s loss is insensitive to small perturbations while
possessing the same level of robustness as LAD.

The LAD and Huber’s losses are convex and thus math-
ematically tractable, but their robustness is limited from the
aspect of the so-called influence function [3], for which the M-
estimator is proportional to the derivative ψ(e) := ϕ′(e) (de-
fined at those points where the loss function is differentiable).
Ideally, the influence of outliers, and thus the derivative, is
desired to vanish for sufficiently large |e|. The derivative of
Huber’s loss, indeed, does not vanish and stays constant away
from zero when |e| exceeds a threshold. In fact, no convex
function has a vanishing gradient, as long as such a class
of loss functions are considered that satisfy the following
conditions: (i) ϕ(0) = 0, (ii) ϕ(e) > 0 for all e ̸= 0, and
(iii) ϕ is differentiable everywhere but the origin [33].

This simple observation motivates us to explore nonconvex
loss functions. Among many others [3]–[5], Tukey’s biweight
loss is a popular nonconvex loss function possessing the so-
called redescending property; i.e., the derivative increases as
the magnitude |e| of the residual increases from zero, and
it then redescends and keeps decreasing until it vanishes

2We consider the one dimensional case for simplicity, but the arguments
here can be extended to the multi-dimensional case straightforwardly.
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completely at some point (see Section VI-A for the definition
of Tukey’s loss). Thanks to this property, Tukey’s biweight loss
could be fairly insensitive to large outliers, but convergence to
a solution3 is not guaranteed in general. The simulation results
to be presented in Section VI will show that the formulation
in (2) based on the MC loss performs better than Tukey’s loss
in a variety of situations.

B. Related works

In the previous work [34], the sparse signal recovery prob-
lem has been studied in a distributed setting under the use
of the MC penalty to promote sparsity of estimates, where
the proximal gradient EXTRA (PG-EXTRA) algorithm [19],
an extension of EXTRA [18], was exploited. The algorithm,
however, cannot be used in the present case because the
proximity operator of the MC loss is hardly available due
to the involvement of the linear composition. The recently-
developed convex solver called distributed triangularly pre-
conditioned primal-dual (TriPD-Dist) algorithm [21] can be
applied to the present case as it encompasses the case when the
objective function involves a composition of a “proximable”
function and a linear operator based on operator splitting [35]–
[41]. Here, the term “proximable” is used when the proximity
operator can be computed efficiently.

Recall that the MC loss is a nonconvex (weakly convex)
function. Nonconvex methods for distributed optimization
have been studied actively both in signal processing and ma-
chine learning communities [42]. Recent developments include
the heuristic approach based on the notion of graduated non-
convexity [43]. This approach starts with a relaxed (convex)
version of the nonconvex loss, which gradually shifts to the
original nonconvex loss for reducing the chance to be trapped
by a local minimum. The graduated nonconvexity method has
been used recently for outlier-robust distributed optimization
[44] but with no guarantee of convergence to a solution (i.e., a
global minimizer of the cost). More importantly, this approach
cannot deal with a composition of a proximable function and
a linear operator in analogy with most of the other existing
methods. We also mention that some related problems have
been studied in [45], [46] in the framework of the saddle-point
problems.

Finally, when dealing with the nonconvex MC penalty term,
an important question is whether convergence to a global
minimizer can be guaranteed if the whole cost is convex,
but the local cost at each node is not necessarily convex.
Several works exist that establish the convergence to a global
minimizer for distributed algorithms for nonconvex local loss
functions, when the global loss function is convex [47].
For example, the in-network successive convex approxima-
tion (NEXT) algorithm demonstrates asymptotic convergence
towards a local solution for the sum of a smooth (possibly
nonconvex) loss function and a convex (possibly nonsmooth)
regularization term at each node [48]. Another example is
the distributed gradient descent algorithm, which is proven
to converge towards a critical point for smooth and possibly

3The term “solution” always means a “global” minimizer of the objective
function in the present work.

nonconvex loss functions at each node [49]. However, these
algorithms cannot be applied to our proposed formulation (2)
involving the nonsmooth nonconvex MC loss function. This is
because the local nonsmooth functions are different from each
other, and also because the MC loss function is composed with
the affine operator. In Section III-D, the convergence properties
for the cases of local and global convexity are discussed for the
TriPD-Dist algorithm [21], which is applicable to our proposed
formulation. To the best of the authors’ knowledge, no pre-
vious work guarantees convergence to a global minimizer of
the whole cost when the composition of the MC loss function
with a linear operator is involved in the distributed setting.

II. PRELIMINARIES

We first present the notation and the assumptions used
throughout the paper. We then present the convex analytic tools
and briefly introduce the TriPD-Dist algorithm. We finally
present the linear model in a distributed setting as well as
the MC penalty.

A. Notation and assumptions

Vectors are written in boldfaced lowercase letters, and ma-
trices are written in boldfaced uppercase letters. The transpose
of a matrix A is denoted by A⊤. Let Rn denote the n
dimensional Euclidean space. We define the inner product
⟨x,y⟩ := x⊤y between x ∈ Rn and y ∈ Rn. The n×n iden-
tity matrix is denoted by In. The m×n zero matrix is denoted
by Om×n; the n×n square zero-matrix and the length-n zero
vector are particularly denoted by On and 0n, respectively.
The largest and smallest eigenvalues of a symmetric matrix
A are denoted by λmax(A) and λmin(A), respectively. Given
any symmetric matrix A ∈ Rn×n, A ⪰ On means that A
is a positive semidefinite matrix. The ℓ1 norm of a Euclidean
vector x ∈ Rn is defined by ∥x∥1 :=

∑n
k=1 |xk|, and the ℓ2

norm is defined by ∥x∥2 :=
(∑n

k=1 x
2
k

)1/2
.

We consider decentralized systems equipped with a network
of N nodes represented by the undirected graph G(V, E),
where V := {1, 2, .., N} is the set of nodes (vertices), and E is
the set of edges. Here, (i, j) ∈ E if node i ∈ V is connected to
node j ∈ V . The set of neighbors of node j is denoted by Nj ,
where j ∈ Nj for every j ∈ V . Throughout, we solely consider
connected graphs; i.e., there exists a path among every pair of
nodes when one follows the edges.

B. Convex analytic tools

A function f : Rn → (−∞,+∞] := R∪{+∞} is convex if
f(tx+(1−t)y) ≤ tf(x)+(1−t)f(y) for any x,y ∈ domf :=
{x ∈ Rn : f(x) ∈ R} and every t ∈ [0, 1]. A function f is a
proper convex function, if additionally domf ̸= ∅. A convex
function f is lower-semicontinuous (or closed) on Rn, if the
level set lev≤af :=

{
x ∈ RN : f(x) ≤ a

}
is closed for any

a ∈ R. All continuous functions are lower-semicontinuous. A
function f is µ-weakly convex, if f(x) + µ

2 ∥x∥22 is convex
for some µ > 0.

Suppose that f : Rn → (−∞,+∞] is a proper lower-
semicontinuous convex function. Then, its Fenchel conjugate
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is defined by f∗(x) := supy∈Rn (⟨x,y⟩ − f(y)) [50], which
is again a proper lower-semicontinuous convex function.
The proximity operator of f of index γ > 0 is defined
by proxγf (x) := argminy∈Rn

(
f(y) + 1

2γ ∥x− y∥22
)

[50], [51], and the minimum value γf(x) :=

miny∈Rn

(
f(y) + 1

2γ ∥x− y∥22
)

= f(proxγf (x)) +

1
2γ

∥∥x− proxγf (x)
∥∥2
2

achieved by the proximity operator is
called the Moreau envelope of f [50], [51].

C. TriPD-Dist: Distributed convex optimization algorithm

The TriPD-Dist algorithm is a convex analytic solver for
distributed optimization problems in the following form [21]:

min
x1,...,xN∈Rn

∑
i∈V

Fi(xi) +Gi(xi) +Hi(Aixi)

s.t. Bijxi +Bjixj = dij , (i, j) ∈ E ,
(4)

where each variable vector xi is updated at each node with
information exchanges allowed over the given network rep-
resented by the graph G(V, E). Here, Fi : Rn → R is a
differentiable convex function with a Lipschitz continuous
gradient, Gi : Rn → (−∞,+∞] and Hi : Rmi → (−∞,+∞]
are (possibly nonsmooth) convex functions, and Ai ∈ Rmi×n.
The consensus constraint xi = xj ,∀i, j ∈ V , can be expressed
by letting Bij := In, Bji := −In, and dij := 0n for all
(i, j) ∈ E .

The TriPD-Dist algorithm [21] is given in Algorithm 1. In
this study, the agents in the distributed network are assumed to
be time synchronized, and therefore we adopt the synchronous
version of the distributed algorithm. The UNLocBoX toolbox
was used to evaluate the proximity operator in the implemen-
tation [52].

III. CONVEX ANALYTIC FRAMEWORK FOR DISTRIBUTED
OUTLIER-ROBUST SIGNAL RECOVERY USING MC LOSS

We present our first problem formulation for distributed
outlier-robust signal recovery using the MC loss function. We
then analyze the convexity of the local objective, and present
the optimization algorithm. We finally present additional dis-
cussions about convexity of the global objective with a remark
on parameter design.

A. Distributed outlier-robust signal recovery — formulation

We start by considering the global objective func-
tion 1

2µ ∥x∥22 +
∑

i∈V ΦMC
γ (Aix − yi) for some constant

µ > 0. The “global” regularizer 1
2µ ∥x∥22 can then be

shared by N nodes equally so that the objective becomes∑
i∈V

(
ΦMC

γ (Aix− yi) +
1

2µN ∥x∥22
)

. Allowing µ to be de-
signed independently at each node, our first formulation, which
we call distributed outlier-robust signal recovery (D-ORR), is
given as follows:

min
x∈Rn

∑
i∈V

(
ΦMC

γ (Aix− yi) +
1

2µiN
∥x∥22

)
, (5)

where µi > 0 is the regularization parameter.

Algorithm 1: Distributed Triangular Preconditioned
Primal-Dual (TriPD-Dist) algorithm from [21]
Inputs: primal variable xi(0)∈Rn for i ∈ V , dual

variable zi(0)∈Rmi for i ∈ V , edge variable
wij(0)∈Rn for (i, j) ∈ E , step size τi > 0, dual step
size ςi > 0, and link weights κij > 0

for k = 0, 1, . . . do
local updates

for all neighbors j of agent i do
wij(k) =

1
2 [wij(k) +wji(k)] +

κij

2 [Bijxi(k) +Bjixj(k)− dij ]
end
zi(k) = proxςiH∗

i
[zi(k) + ςiAixi(k)]

xi(k + 1) = proxτiGi
[xi(k)− τiA

⊤
i zi(k)−

τi
∑

j∈Ni
Bijwij(k)−τi∇Fi(xi(k))]

zi(k + 1) = zi(k) + ςiAi [xi(k + 1)− xi(k)]
for all neighbors j of agent i do

wij(k + 1) =
wij(k) + κijBij [xi(k + 1)− xi(k)]

end
transmission of information

send xi(k + 1) and each estimate wij(k + 1)
to each neighbor j

end

B. Convexity condition for local objective of D-ORR

The objective function of the D-ORR formulation in (5) can
be split into smooth and nonsmooth terms as follows:

min
x∈Rn

∑
i∈V

(
1

2µiN
∥x∥22 −

γ∥·∥1 (Aix− yi)︸ ︷︷ ︸
FD-ORR

i (x)

)
+∥Aix− yi∥1︸ ︷︷ ︸

HD-ORR
i (Aix)

,

(6)
where

FD-ORR
i (x) :=

1

2µiN
∥x∥22 −

γ∥·∥1 (Aix− yi) , (7)

HD-ORR
i (v) := ∥v − yi∥1 , v ∈ Rmi . (8)

The local functions FD-ORR
i (x) and HD-ORR

i (Aix) at each
node i need to be convex to guarantee convergence of the
TriPD-Dist algorithm to a solution of the problem [21]. The
function HD-ORR

i (v) is a convex function, because it is the
ℓ1 norm with a translation by yi. Hence, its composition (the
nonsmooth term) HD-ORR

i (Aix) with the linear operator Ai

is also convex without any condition. We therefore present a
necessary and sufficient condition below for convexity of the
smooth term FD-ORR

i .

Proposition 1. [Convexity condition of local objective
FD-ORR
i (x)]

(a) For each i ∈ V , the local objective function FD-ORR
i (x)

is convex if
µiNλmax(A

⊤
i Ai) ≤ γ. (9)

(b) Assume in particular that Ai has full column rank or that
Aix− yi = 0mi

for some x ∈ Rn. Then, FD-ORR
i (x) is

convex if and only if (9) is satisfied.
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Proof: See Appendix A. ■

We briefly mention that Proposition 1 allows to design
µi systematically, leaving only γ as a tuning parameter (see
Remark 1 in Section III-D for details).

C. Distributed optimization algorithm for D-ORR

Using the local variable vector xi ∈ Rn at each node of
the graph G(V, E), the D-ORR problem to be solved by the
TriPD-Dist algorithm (over the network) can be written as
follows:

min
x1,...,xN∈Rn

∑
i∈V

FD-ORR
i (xi)︸ ︷︷ ︸

smooth

+HD-ORR
i (Aixi)︸ ︷︷ ︸

nonsmooth

subject to xi = xj , (i, j) ∈ E .
(10)

The problem in (10) is exactly in the form of (4) with Gi := 0.
Recall here that the consensus constraint in (10) is a linear
constraint with Bij := In, Bji := −In, and dij := 0n for
all (i, j) ∈ E . Note that xi = xj , ∀(i, j) ∈ E ⇔ xi =
xj , ∀i, j = 1, 2, . . . , N , i.e., consensus between every pair
(i, j) ∈ V implies consensus among all nodes, because the
graph is assumed to be connected.

Invoking Moreau’s identity [35], the proximity opera-
tor proxςiH∗

i
can be computed by proxςiH∗

i
(y) = y −

ςiproxς−1
i Hi

(ς−1
i y), y ∈ Rmi , where proxς−1

i HD-ORR
i

(v) = yi+

proxς−1
i ∥·∥1

(v−yi). On the other hand, the proximity operator
for Gi = 0 is given simply by proxτiGi

(x) = x, x ∈ Rn. We
mention that the primal-dual formulation decouples the linear
operator Ai from the function HD-ORR

i , because the proximity
operator of the composition HD-ORR

i ◦Ai has no closed-form
expression. The gradient of the Moreau envelope term is given
by

∇ γ∥·∥1 (Aix− yi) = A⊤
i

Aix− yi − proxγ∥·∥1
(Aix− yi)

γ
.

The following result gives a Lipschitz constant for the
gradient of FD-ORR

i .

Lemma 1. The function FD-ORR
i has a Lipschitz continuous

gradient operator ∇FD-ORR
i with constant

βD-ORR
i := 1/(µiN) +

1

2γ
(λmax(A

⊤
i Ai)− λmin(A

⊤
i Ai)).

(11)

Proof: See Appendix B. ■

Note here that the bound βD-ORR
i given in (11) is tighter

than the bound 1/(µiN)+
λmax(A

⊤
i Ai)

γ , which is immediately
obtained from (7) using the fact that the gradient of the Moreau
envelope of index γ is 1/γ-Lipschitz continuous [50], [51]. In
typical situations, we have mi < n so that λmin(A

⊤
i Ai) = 0,

which reduces (11) to βD-ORR
i := 1/(µiN)+ 1

2γλmax(A
⊤
i Ai).

Under the convexity condition (9) and the step size condition

τi <
1

βD-ORR
i /2 + ςi

∥∥A⊤
i Ai

∥∥+∑j∈Ni
κij

, (12)

where
∥∥A⊤

i Ai

∥∥ is the spectral norm of A⊤
i Ai, the sequence

(xi(k))k∈N generated by the TriPD-Dist algorithm at every

node i converges to a common solution of (5), provided that
the graph is connected (see Appendix C for details about
the convergence). Note that the problem in (5) always has
a solution because the objective function is clearly coercive,
i.e., it tends to infinity as ∥x∥2 → +∞.

The condition in (12) can be used to design the primal step-
size τi. In the present study, the dual step sizes of the algorithm
are set to ςi = 0.065, and the link weights are set to κij := 1,
if (i, j) ∈ E , and κij := 0, otherwise.

D. Convexity condition for global objective of D-ORR

The TriPD-Dist algorithm provably converges to a solution
under convexity of “the local objective at each node”, which
has been analyzed in Proposition 1. Nevertheless, there may
be a possibility for the algorithm to converge to a solution
under a weaker condition. We present below a condition for
convexity of “the global objective over the entire network”,
which is weaker than that of the local objective, because the
sum of convex functions is again a convex function.

Proposition 2 (Convexity condition of global objective
FD-ORR(x) =

∑
i∈V F

D-ORR
i (x)). Let µ1 = · · · = µN =:

µ > 0. Assume that the matrix Ai has full column rank for
every i ∈ V . Then, the smooth part

FD-ORR(x) =
∑
i∈V

(
1

2µN
∥x∥22 −

γ∥·∥1 (Aix− yi)

)
(13)

of the global objective function in (6) is convex if and only if

µλmax(A
⊤A) ≤ γ, (14)

where A := [A⊤
1 A⊤

2 · · · A⊤
N ]⊤.

Proof: The proof is omitted as it is obtained in an analogous
way to the proof of Proposition 5 presented in Section IV. ■

Remark 1 (Parameter design for D-ORR). The D-ORR for-
mulation involves two kinds of parameters; i.e., the saturation
factor γ and the regularization parameters µi. Our recom-
mended way of choosing those parameters is the following:
tune γ by grid search with µi (or µ) set to its upper bound
based on (9) (or on (14)) for each given γ.

We now compare the convexity condition of the global
objective in (14) with that of the local one in (9). To do so,
we rewrite the D-ORR formulation in (5) as

min
x∈Rn

(
1

N

∑
i∈V

µ−1
i

)
1

2
∥x∥22 +

∑
i∈V

ΦMC
γ (Aix− yi), (15)

where 1
N

∑
i∈V µ

−1
i can be regarded as the global regulariza-

tion parameter, which scales the impact of the Tikhonov regu-
larization 1

2 ∥x∥
2
2 over the entire network. Simple inspections

of (9) and (14) suggest that

(9), ∀i ∈ V ⇔ γµ−1
i ≥ Nλmax(A

⊤
i Ai), ∀i ∈ V

⇒ γ

N

∑
i∈V

µ−1
i ≥

∑
i∈V

λmax(A
⊤
i Ai) =: αlocal, (16)

(14) ⇔ γ

N

∑
i∈V

µ−1 = γµ−1 ≥ λmax(A
⊤A) =: αglobal. (17)
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Inequalities (16) and (17) imply that γ
N

∑
i∈V µ

−1
i needs to

be sufficiently large to ensure the convexity of each objective.
At the same time, however, each of the quantities γ and
1
N

∑
i∈V µ

−1
i is also desired to be reasonably “small” from

different aspects. Specifically, γ is desired to be small for
robustness against outliers, and 1

N

∑
i∈V µ

−1
i is desired to

be small to reduce extra estimation biases caused by the
regularization.

Because the convexity of the local objective is stronger
than that of the global objective as mentioned previously, the
condition in (16) should be stricter than that in (17). This is
stated formally as follows.

Proposition 3. The lower bounds of γ
N

∑
i∈V µ

−1
i given in

(16) and (17) satisfy the following inequality:

αlocal ≥ αglobal. (18)

Proof: This is a direct consequence of the eigenvalue
inequality [53, Lemma 4.2]: λmax

(∑
i∈V A⊤

i Ai

)
≤∑

i∈V λmax(A
⊤
i Ai). ■

Simulation studies will be given in Section V-B to compare
the convexity conditions for the global and local objectives,
as well as the performances when the parameters γ and µi

are designed based on each of those conditions. A theoretical
convergence analysis under the global convexity condition is
left as a future work.

IV. DISTRIBUTED STABLE OUTLIER-ROBUST SIGNAL
RECOVERY USING MC LOSS AND AUXILIARY VECTOR

The derivative ψMC
γ := d

dxϕ
MC
γ : R\{0} → [−1, 1] of ϕMC

γ

is given by ψMC
γ : x 7→

{
sign(x)− x/γ, if |x| ∈ (0, γ),

0, if |x| ≥ γ.

We inspect the behavior of the derivative ψMC
γ on the positive

side of the real line. (We can also make essentially the same
arguments for the negative side of the real line.) Start at
x = γ/2 and increase x gradually. Then, ψMC

γ (x) decreases
linearly, and it vanishes at x = γ. This property makes the
MC loss remarkably robust against huge outliers in analogy
with Tukey’s biweight loss. Let us go back to the point
x = γ/2 and now “decrease” x gradually. One can easily
see that limx↓0 ψ

MC
γ (x) = 1, meaning that the derivative does

not vanish at the origin. This is an intrinsic difference from
Tukey’s biweight loss in addition to the weak convexity of the
MC loss.

The non-vanishment of the derivative ψMC
γ mentioned above

implies that the MC loss sharply increases by small deviations
from zero (as the LAD loss does), and thus it would not allow
small errors originated by Gaussian noise. As such, the MC
loss would make the error Aix− yi in (5) be a sparse vector
which does not model the “nonsparse” vector Aix⋆ − yi (=
−εi⋆−oi⋄) well. This model mismatch may cause sensitivity
to Gaussian noise. Our proposed solution for this issue is the
introduction of the auxiliary vectors εi ∈ Rmi involved in
the D-SORR formulation (2), which is studied in this section.
The employment of εi brings significant improvements of the
performance in the case when the Gaussian noise is dominant
compared to the outliers, as will be shown by simulations in
Section VI.

A. Convexity condition for local objective of D-SORR

For convenience, we define ξi := [x⊤
i ε⊤i ]

⊤ ∈ Rn+mi .
The objective function in (2) can be split into smooth and
nonsmooth terms as follows:4

min
x∈Rn, εi∈Rmi

(i∈V)

∑
i∈V

(
∥Aix+ εi − yi∥1︸ ︷︷ ︸

HD-SORR
i (Aix+εi)

+
σ−2
x

2µiN
∥x∥22+

σ−2
ε

2µi
∥εi∥22−

γ∥·∥1 (Aix+εi−yi)︸ ︷︷ ︸
FD-SORR

i (ξi)

)
. (19)

Here, the nonsmooth term HD-SORR
i (Aix+ εi), defined with

HD-SORR
i (v) := ∥v − yi∥1 , (20)

is a convex function in the space Rn×Rmi of the pair (x, εi)
of variable vectors in analogy with the case of D-ORR by
considering the linear operator (x, εi) 7→ Aix + εi. The
convexity condition for the smooth term

FD-SORR
i (ξi) :=

σ−2
x

2µiN
∥x∥22 +

σ−2
ε

2µi
∥εi∥22

−γ∥·∥1 (Aix+ εi − yi) (21)

is analyzed below.

Proposition 4 (Convexity condition of local objective
FD-SORR
i (x, εi)). For each i ∈ V , the local function
FD-SORR
i (x, εi) is convex in (x, εi) ∈ Rn×Rmi if and only if

µi(σ
2
ε +Nσ2

xλmax(A
⊤
i Ai)) ≤ γ. (22)

Proof: One can replace σ2
x by Nσ2

x and let µ := µi, ε :=
εi, A := Ai, y := yi in [33, Proposition 3] to obtain the
result. ■

The local convexity condition for the distributed setting is
from a technical standpoint similar to the centralized setting,
because every local node can be regarded as an individual
centralized setting for the derivation of the convexity condi-
tion. Note however that the set of local convexity conditions
differs from the overall convexity condition in the centralized
case, as the set of local convexity conditions is stronger.
Our simulations in Section V, moreover, will give important
insights into the distributed setting by investigating how the
proposed methods and its parameters behave when the data
are distributed among different numbers of nodes.

B. Distributed optimization algorithm for D-SORR

We reformulate the D-SORR problem with the local vari-
ables xi ∈ Rn into a suitable form to the TriPD-Dist
algorithm. Note that the unknown vector x⋆ is common to
all nodes in (1), while the noise vectors εi⋆ are different
among the nodes. This means that the consensus constraint
is required among the xi’s, but it is not required for the
εi’s. The “partial” consensus constraint xi = xj can be
expressed by Ĩiξi = Ĩjξj with Ĩi := [In On×mi

] ∈

4The existing methods, such as NEXT [48] and the distributed gradient
descent algorithm [49], cannot be applied to the reformulated problem (19)
as well.
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Rn×(n+mi). Let Ãi =
[
Ai Imi

]
∈ Rmi×(n+mi), and Λi :=[

(σ−1
x /

√
µiN)In On×mi

Omi×n (σ−1
ε /

√
µi)Imi

]
∈ R(n+mi)×(n+mi).

Then, (19) can be reformulated as follows:

min
ξ1,...,ξN

∑
i∈V

(
HD-SORR

i (Ãiξi) + FD-SORR
i (ξi)

)
s.t. Ĩiξi = Ĩjξj , ∀i, j = 1, 2, . . . , N, (23)

where FD-SORR
i (ξi) can be rewritten as

FD-SORR
i (ξi) =

1

2
∥Λiξi∥22 −

γ∥·∥1
(
Ãiξi−yi

)
. (24)

Since (23) shares the same form as (10), the TriPD-Dist

algorithm can be applied with Bij :=

{
Ĩi, if i < j,

−Ĩi, otherwise,
and dij := 0n. Analogously to the case of D-ORR (see
Section III-C), the dual step sizes and the link weights are
set respectively to ςi := 0.065 and κij := 1, if (i, j) ∈ E , and
κij := 0, otherwise.

A tight Lipschitz constant for the gradient of FD-SORR
i is

given below.

Lemma 2. The function FD-SORR
i has a Lipschitz continuous

gradient operator ∇FD-SORR
i with constant

βD-SORR
i := λmax(Λ

2
i −

1

2γ
Ã⊤

i Ãi) +
1

2γ
λmax(Ã

⊤
i Ãi). (25)

Proof: See Appendix D. ■

It should be mentioned that the matrix Λ2
i − 1

2γ Ã
⊤
i Ãi

in (25) is positive definite under the convexity condition
in (22). The largest eigenvalues in (25) can be found effi-
ciently by the power method. Note here that λmax(Ã

⊤
i Ãi) =

λmax(A
⊤
i Ai) + 1, and the particular structure of Λ2

i −
1
2γ Ã

⊤
i Ãi can be exploited for efficiency of the power iteration.

In analogy with D-ORR, convergence of the TriPD-Dist
algorithm for the D-SORR formulation is guaranteed under
the step size condition

τi <
1

βD-SORR
i /2 + ςi

∥∥A⊤
i Ai

∥∥+∑j∈Ni
κij

, (26)

the convexity condition (22), and the graph connectivity (see
Appendix E for details about the convergence). Note that the
problem in (2) always has a solution because the objective
function is clearly coercive here again.

C. Convexity condition for global objective of D-SORR

We analyze and discuss the condition for convexity of
the global objective of the D-SORR formulation, and then
compare it to that of the local objective.

Proposition 5 (Convexity condition of global objective
FD-SORR(x, ε1, . . . , εN ) =

∑
i∈V F

D-SORR
i (x, εi)). Let µ1 =

· · · = µN =: µ > 0. Then, the smooth part

FD-SORR(x, ε1, . . . , εN ) =
∑
i∈V

(
σ−2
x

2µN
∥x∥22 +

σ−2
ε

2µ
∥εi∥22

−γ∥·∥1 (Aix+ εi − yi)

)
(27)

of the global objective in (19) is convex in (x, ε1, . . . , εN ) ∈
Rn × Rm1 × · · · × RmN if and only if

µ(σ2
ε + σ2

xλmax(A
⊤A)) ≤ γ. (28)

Proof: See Appendix F. ■

Remark 2 (On auxiliary vectors εi of D-SORR). As every
node is corrupted by random noise statistically independent of
those of the other nodes, each node has an associated auxiliary
vector εi that is also independent of those of the other nodes.
This is a significant difference from the centralized setting,
where only one auxiliary vector is involved. It also explains
why a consensus does not need to be imposed on the εi’s,
as doing so would potentially limit the performance of the
algorithm and increase computational loads. This difference
between the distributed and centralized settings necessitates
a detailed proof of the global convexity condition of D-
SORR (Proposition 5), which is one of our original technical
contributions.

Remark 3 (Parameter design for D-SORR). The D-SORR
formulation involves two extra parameters σ2

x and σ2
ε in

addition to γ and the µi’s. Our recommended way of choosing
those parameters is similar to the one given in Remark 1 for D-
ORR. Especially, when estimates of σ2

x⋆ and σ2
ε⋆ are available,

one may exactly follow the way in Remark 1.
Suppose that such estimates are unavailable. Then, by

letting µ̄i := µiσ
2
x (µ̄ := µσ2

x) and ϱ := σ2
x/σ

2
ε , the last two

terms of (2) are reduced to 1
2µ̄iN

∥x∥22 +
ϱ

2µ̄i
∥εi∥22. Further-

more, the convexity conditions in (22) and (28) are reduced to
µ̄i(ϱ + Nλmax(A

⊤
i Ai)) ≤ γ and µ̄(ϱ + λmax(A

⊤A)) ≤ γ,
respectively. As such, only the power ratio ϱ⋆ := σ2

x⋆/σ
2
ε⋆

needs to be estimated rather than each of σ2
x⋆ and σ2

ε⋆. When
even the ratio estimate is unavailable, ϱ as well as γ can be
considered as a tuning parameter. More specifically, ϱ and γ
can be tuned by grid search with µi (or µ) set to its upper
bound based on the convexity condition for each pair of (ϱ, γ).
D-SORR is fairly insensitive to the choice of ϱ as will be shown
by simulations in Section V-B.5

Based on similar arguments to those given in Section III-D,
we obtain

(22), ∀i ∈ V ⇔ γµ−1
i ≥ σ2

ε +Nσ2
xλmax(A

⊤
i Ai), ∀i ∈ V

⇒ γ

N

∑
i∈V

µ−1
i ≥ σ2

ε + σ2
x

∑
i∈V

λmax(A
⊤
i Ai) =: α̂local, (29)

(28) ⇔ γ

N

∑
i∈V

µ−1=γµ−1

≥ σ2
ε+σ

2
xλmax(A

⊤A) =: α̂global. (30)

As in the case of D-ORR, the quantity 1
N

∑
i∈V µ

−1
i governs

the strength of 1
2 ∥x∥

2
2 in the entire optimization over the net-

work, which affects the performance of D-SORR significantly.

Proposition 6. The lower bounds of γ
N

∑
i∈V µ

−1
i given in

(29) and (30) satisfy the following inequality:

α̂local ≥ α̂global. (31)

5A similar tendency has already been witnessed in a centralized case [32].
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Proof: The claim can be verified in an analogous way to the
proof of Proposition 3. ■

Hereafter, we let m1 = m2 = · · · = mN =: m.

Remark 4 (On the behaviour of the lower bounds αlocal,
αglobal, α̂local, and α̂global for different network sizes N ). Let us
consider the situation where the total amount of measurements
over the network is fixed to some constant, say mN = 100.
For instance, the network size N = 100 gives m = 1
(meaning that each node is given one equation), while N = 2
gives m = 50 so that the system is closer to the centralized
case. We assume that the components of the matrix A are
generated from an i.i.d. zero-mean Gaussian distribution. A
simple inspection of (17) and (30) suggests that, given a set
of measurements, αglobal and α̂global are independent of N ,
because A⊤A can be expressed as a sum of mN = 100 rank-
one matrices. In contrast, αlocal and α̂local does depend on N ,
as seen from (16) and (29). In particular, in the regime of large
network sizes N (implying small m) αlocal and α̂local grow
almost linearly in N (for mN constant), as each summand
λmax(A

⊤
i Ai) is nearly constant in m in this regime. This is

because, due to the statistical assumption on A, the m rows of
each Ai tend to be nearly orthogonal to each other, implying
that λmax(A

⊤
i Ai) is roughly given by the largest norm of

the row vectors, which is nearly constant on average. Those
arguments will be justified by simulations in Section V-B.

How does the lower bounds αlocal and α̂local affect the per-
formance of D-ORR and D-SORR? As mentioned above, αlocal
and α̂local tend to increase in N , which makes γ

N

∑
i∈V µ

−1
i be

larger. The saturation factor γ needs to be reasonably small
for outlier robustness, implying that the global regularization
parameter 1

N

∑
i∈V µ

−1
i needs to be large. This causes larger

estimation biases as will be shown in Section V-B.

Remark 5 (On the consistency of the D-SORR estimator). As
we are interested in the finite-sample regime, we leave the issue
of statistical consistency of the D-SORR estimator as a future
work (i.e., we do not touch the issue whether the estimator
converges to x⋆ in probability as the sample size mN tends to
infinity). We mention that the performance of ridge regression
(which is well known to be a consistent estimator) is highly
sensitive to outliers [3]. In stark contrast, D-SORR exhibits
remarkably robust performance against huge and relatively-
dense outliers, as shown by simulations later on (see Section
VI).

In the large sample-size regime, there are two options for
preserving convexity according to (22): (i) increase the satura-
tion factor γ in proportion to the increase of Nλmax(A

⊤
i Ai)

with the regularization parameter µi fixed, or (ii) increase
µ−1
i in proportion to the increase of Nλmax(A

⊤
i Ai) with γ

fixed. Note here that Nλmax(A
⊤
i Ai) is roughly proportional

to the sample size mN (for large enough m). To see how each
option works in the asymptotic regime, we divide the objective
function in (2) by mN . Then, in option (i), the effect of
1/(mN)

∑
i∈V σ

−2
x ∥x∥22 /(µiN) = (σ−2

x /µi) ∥x∥22 /(mN)
diminishes as mN → ∞, while 1/(mN)

∑
i∈V ΦMC

γ (Aix+
εi − yi) approximates E(∥Aix+εi−yi∥1) by the law of
large numbers under proper assumptions. We mention that the

noise term does not vanish because the number of summands
increases in mN . The MC function tends to the ℓ1 norm as
γ → +∞ so that the overall objective is convex without the
strongly convex term (σ−2

x /µi) ∥x∥22 in the limit. In option (ii),
in contrast, the increase of µ−1

i (e.g., set µi := c/(mN) for
some constant c > 0) preserves the effect of (σ−2

x /µi) ∥x∥22
even in the asymptotic regime. In addition, the MC function
remains its shape in the limit, as opposed to the case of option
(i). It is nontrivial to say which option works better, and further
investigations will be required for that issue.

V. SIMULATION STUDIES I — BASIC PERFORMANCE

Each local matrix Ai ∈ Rm×n and the unknown vector
x⋆ ∈ Rn follow the i.i.d. standard Gaussian distribution. The
noise vectors εi⋆ are generated by scaling those temporary vec-
tors according to SNR :=

∑
i∈V ∥Aix⋆∥22 /(

∑
i∈V ∥εi⋆∥22),

where the temporary vectors are generated from the i.i.d.
standard Gaussian distribution. The positions of the nonzero
elements of oi⋄ are chosen randomly, and the nonzero values
follow an i.i.d. scaled and shifted uniform distribution. Here,
for all simulations, given the specified value Mo⋄ > 0, the
interval of the uniform distribution is set to duniform := 2Mo⋄/9
with its center Mo⋄ chosen randomly again from another
uniform distribution with center and interval given by Mo⋄ and
duniform, respectively. In most simulations, we set Mo⋄ := 90,
meaning that the outliers come from the interval of width
duniform = 20 with its center chosen randomly between 80
and 100 at each independent run.

We use the system mismatch 1
N

∑
i∈V ∥xi − x⋆∥22 / ∥x⋆∥22

as our primary performance measure. Unless stated explicitly,
all plots in the figures presented in this section show the
averages over 250 independent runs. For D-SORR, we set
σ2
x := σ2

x⋆ := 1 and σ2
ε := σ2

ε⋆ := 1
mN

∑
i∈V ∥εi⋆∥22. For

the design of the saturation factor γ and the regularization
parameters µi for D-ORR and D-SORR, see Remarks 1 and
3.

A. Impacts of connectivity per node

What is the impact of the network connectivity per node
on the performance of the distributed optimization algorithm?
This is the question addressed in this part. We let n := 30,
N := 100, m := 1, SNR := 10 dB, Mo⋄ := 90, and the
outlier density is 0.3. We test D-SORR with τi set to the
upper bound given in (26); see Section IV-B for the design of
the other parameters.

Fig. 1 shows the learning curves for different degrees of
connectivity for (a) system mismatch and (b) disagreement
1
N

∑
i∈V ∥xi − x̄∥2, where x̄ is the arithmetic mean of the

xi’s over all nodes. The degree of connectivity is measured
by the average number of connections per node κ̄ in the
network. The errors are averaged over all nodes at each time
instance. It can be seen that an increase in the connectivity
enhances the convergence speed in terms of disagreement,
as expected, while it slightly slows the convergence speed in
system mismatch. We mention that it would be possible to tune
the link weights κij so that the convergence speeds become
the same among different degrees of connectivity.
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κ̄ = 19.1 κ̄ = 8.64 κ̄ = 2.94

0 500 1,000 1,500 2,000 2,500

−7

−6

−5

−4

−3

−2

−1

0

Iterations

Sy
st

em
m

is
m

at
ch

[d
B
]

(a) System mismatch averaged over all nodes
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Fig. 1: Convergence speed of the TriPD-Dist algorithm in
terms of (a) system mismatch and (b) consensus disagreement
among nodes.
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Fig. 2: The lower bounds αlocal, αglobal, α̂local, and α̂global across
the network size N with m = 100/N .

B. Comparisons between convexity conditions for local and
global objectives

We justify the arguments in Remark 4 by simulations. We
let n := 30 and SNR := 5 dB with the total number of
equations fixed to mN = 100 over the entire network, where
N changes from 2 to 100. We first examine how the lower
bounds αlocal, αglobal, α̂local, and α̂global behave as the network
size N increases (or, equivalently, the number m of equations
per node decreases).

Fig. 2 depicts the results, where each plot is computed
by averaging the results over 1000 independent runs. As
argued in Remark 4, αlocal increases almost linearly in the
network size N , while αglobal remains constant. Focusing on
the extreme case of N = 100, in particular, one can see
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Fig. 3: System mismatch across the network size N with m =
100/N . SNR = 5 dB, Mo⋄ = 90, outlier density 0.3, and
n = 30.
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Fig. 4: Performance of D-SORR for different ϱ in comparison
with D-ORR for N = 10, m = 10, SNR = 5 dB, Mo⋄ = 90,
outlier density 0.3, and n = 30.

the notable difference between αlocal and αglobal. Recall that
the bounds αlocal, αglobal, α̂local, and α̂global of the quantity
γ
N

(∑
i∈V µ

−1
i

)
are desired to be small for reduced bias

and/or for outlier robustness. In the above extreme case, there
would be a considerable difference between the performances
corresponding to the local and global convexity conditions.

To verify this, we study the performance of D-ORR and
D-SORR under the two different convexity conditions, re-
spectively. Fig. 3 shows that the system mismatch increases
monotonically in the network size N for D-ORR and D-SORR
with the local convexity condition. The system mismatch is
low when N is small (i.e., the algorithm is more centralized)
because µ−1

i is allowed to be small (see Fig. 2), while it
becomes higher when N becomes larger because µ−1

i needs to
be larger. We clarify here that the strength of the regularization
changes in N when the local convexity condition is used to
compute the regularization parameters µi, although the global
loss is independent of N given the fixed total number mN of
equations over the entire network. Viewing the performance
corresponding to the global convexity condition (labeled as
“D-ORR global” and “D-SORR global”) in Fig. 3, one can see
that the system mismatch stays constant, because the strength
of the regularization remains the same owing to the constancy
of αglobal and α̂global.

Despite the nice property of the global convexity condition
shown above, at least one node (a central node) needs access to
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all data in the network to use it for designing the parameters,
which is prohibited in some applications for privacy reasons.
(One may encode and send such information, but this would
require extra computational/communication costs.) Since, in
addition, convergence to a solution is not guaranteed under
global convexity, the local convexity condition will be used in
the following simulations.

Fig. 4 shows the system mismatch of D-SORR for different
values of the tuning parameter ϱ. The dashed black line
indicates the value ϱ⋆(:= σ2

x⋆/σ
2
ε⋆), which is used in all

other simulations. For comparison, the system mismatch of D-
ORR is shown, which is independent of ϱ. The other tuning
parameter γ is optimized by grid search for both D-ORR and
D-SORR. It is observed that D-SORR is rather robust to the
choice of ϱ in the direction of ϱ > ϱ⋆, as the performance
of D-SORR is always equal or better compared to D-ORR.
However, for values of ϱ < ϱ⋆, the performance of D-SORR
quickly becomes worse than the performance of D-ORR.

VI. SIMULATION STUDIES II — COMPARISONS TO
EXISTING METHODS

We show the advantages of the proposed methods over the
existing methods in terms of outlier robustness. After showing
the simulation results using toy data under various scenarios,
we present the results for real and synthetic data to show that
the proposed method will be useful potentially in real-world
applications.

A. Toy data

The signals are generated in the same way as described
in Section V. The proposed D-ORR and D-SORR meth-
ods are compared to the following robust loss functions
for positive constants δL, δSx , δSεδH, δT, δP > 0: LAD-ridge∑

i∈V ∥Aix− yi∥1 + δL ∥x∥22, stable LAD-ridge (SLAD-
ridge)

∑
i∈V ∥Aix+ εi − yi∥1 + δSx ∥x∥

2
2 + δSε ∥εi∥

2
2 in the

same philosophy of employing εi as D-SORR, Huber’s loss∑
i∈V

δH∥·∥1 (Aix− yi), Tukey’s biweight loss [2], [54]∑
i∈V

∑m
ι=1 ϕ

TK
δT

([Aix− yi]ι), where

ϕTK
δT

: R ∋ a 7→


[
1−

(
1− (a/δT)

2
)3]

δ2T/6, if |a| < δT,

δ2T/6, otherwise,

and the fair potential function [6], [55]∑
i∈V

∑m
ι=1 ϕ

FP
δP

([Aix − yi]ι), where ϕFPδP
: R ∋ a 7→

δP |a| − log10 (1 + δP |a|). Here, [·]ι denotes the ιth
component of a vector. For reference, the ridge regression∑

i∈V ∥Aix− yi∥22 + δR ∥x∥22, δR > 0, is also tested.
Comparing SLAD-ridge and D-SORR, both involve the
auxiliary vectors εi. The difference is, however, that SLAD-
ridge utilizes the ℓ1 norm, whereas D-SORR employs the
MC loss function. This implies that SLAD-ridge can be
considered as an extreme case of D-SORR as γ → ∞. This
comparison is explicitly conducted in the experiments to
assess the impact of the MC loss and that of the auxiliary
vector formulation separately.
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(b) SNR = 5 dB, outlier density 0.1

Fig. 5: System mismatch across Mo⋄ .

For each method, the delta parameters are tuned by grid
search to minimize the system mismatch. Unless stated other-
wise, in the following simulations, we consider the “middle”
case when the network has N := 10 nodes, each of which is
given m := 10 measurement vectors of dimension n := 30.

Fig. 5 shows the performance across Mo⋄ for (a) SNR
0 dB with outlier density 0.3 and (b) SNR 5 dB with outlier
density 0.1, where larger Mo⋄ means larger outlier power.
There is remarkably different tendency between the convex
and nonconvex approaches. Specifically, in contrast to the
monotone behaviors of the convex methods, the nonconvex
methods (D-ORR, D-SORR, and distributed Tukey’s loss)
show “non-monotonic” behaviors — the system mismatch
increases up to some point, and it then decreases as the outlier
power increases. See Section VI-C for more discussions about
this phenomenon.

Fig. 6 shows the system mismatch across different outlier
densities from 0 to 0.5 under different SNRs, different mag-
nitudes of outliers Mo⋄ , and different numbers of variables n.
It can be seen that D-SORR outperforms the other methods.
To distinguish the impacts of the auxiliary vectors (aiming at
robustness against Gaussian noise) and the MC loss (aiming
at outlier robustness) employed in D-SORR, let us compare
LAD-ridge with SLAD-ridge (employing the auxiliary vectors)
and with D-ORR (employing the MC function). The SLAD-
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(a) SNR = 0 dB, Mo⋄ = 90, and n = 30
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(b) SNR = 5 dB, Mo⋄ = 90, and n = 30
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(c) SNR = 3 dB, Mo⋄ = 15, and n = 10

Fig. 6: System mismatch across the outlier density.

ridge formulation achieves a lower system mismatch compared
to LAD-ridge when there are no or few outliers (outlier density
of 0 to 0.1), indicating its effectiveness when Gaussian noise
is dominant. On the other hand, D-ORR achieves a lower
system mismatch compared to LAD-ridge when there is a large
number of outliers (outlier density ≥ 0.2). By combining those
advantages of explicit Gaussian noise modeling and robustness
to outliers with the MC loss function, D-SORR outperforms
the other methods across all outlier densities.

Fig. 7a shows the performance under different levels of
Gaussian noise, and Figs. 7b and 7c show the performance
with different amounts of measurements available at each
node given the fixed network size N = 10. (For instance, 20

equations per node means in total 200 equations distributed
over ten nodes.) Overall, the proposed method outperforms
the other methods significantly. The only exception is the
particular case of SNR = 10 dB in Fig. 7a and m = 50
in Fig. 7b for which “Distributed Turkey’s loss” gives slightly
better performance than the proposed method. In this case,
however, each node has a reasonable amount of information
to find a good estimate because the number m = 50 of
measurements per node is larger than the number n = 30 of
variables to optimize. For distributed optimization, the case of
smaller m (e.g., the case of m < n specifically) is of particular
interest, because information exchange among nodes is crucial
in such a case to obtain better estimates than using only the
local information.

B. Real and synthetic data

We consider the source estimation task in an atmospheric
inverse problem [56], which is a real-world example of a
regression problem in which those data measured by a network
of sensors are contaminated by outliers. For the European
Tracer Experiment (ETEX), a tracer gas was released in
Monterfil, France, and the gas concentration was measured
every three hours for three days by 168 measurement stations
across Europe [57]. The task is to predict the release time of
the gas by using a linear particle dispersion model, which uses
meteorological data of the whole duration of the experiment.
The atmospheric inverse problem at each node i can then
be written in the form of yi = Aixi, where Ai is the
linear particle dispersion model, yi is the gas concentration
measurement, and xi is the predicted time of the gas release.
The gas concentration dataset and the linear particle dispersion
model used in the present study were made available in the
supplemental material of [58]. In the present study, the dataset
of the first experiment (ETEX-1) is used, as well as three
synthetic datasets made available in [58]. These synthetic
datasets are qualitatively similar to the real world dataset, but
with a smaller number of parameters and a normalized particle
dispersion matrix.

For the simulation, each measurement station from the
real world dataset is modeled as one node in the distributed
network. All such data points are removed that have all entries
of the particle dispersion model and the gas measurement be
zero. The total number of data points is 1810 with a varying
number of data points per node, and x ∈ R112. Furthermore,
the particle dispersion matrix Ai at each node is normalized
by a global scaling factor, which is the largest absolute value
entry of all Ai’s. When evaluating the system mismatch of the
different methods, the result is scaled to the best fit of the true
amount of released gas, meaning that only the relative amount
of released gas at each time instance is estimated. For the
synthetic dataset, no additional normalization and no scaling
of the solution is performed, and the shown result is averaged
over the three synthetic datasets. For the synthetic dataset,
there are five nodes, each of which has four data points, and
x ∈ R10. For both the synthetic datasets and the real-world
dataset, the parameters of all methods are optimized by grid
search.
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Fig. 7: System mismatch across (a) SNR for outlier density
0.1, m = 10, Mo⋄ = 90, and n = 50, (b) the number m
of equations per node for outlier density 0.3, SNR = 0 dB,
N = 10, Mo⋄ = 90, and n = 50, and (c) the number m
of equations per node for outlier density 0.3, SNR = 3 dB,
N = 10, Mo⋄ = 35, and n = 30.

Fig. 8a shows the system mismatch of the the real-world
dataset, and Fig. 8b shows the result of the synthetic datasets.
It can be seen that D-SORR outperforms all other methods in
both cases.

C. Discussion

The remarkable phenomenon of “non-monotonic” behaviors
mentioned in Section VI-A leads us to the hypothesis that the
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Fig. 8: System mismatch for a simulation (a) with a real world
dataset from the European tracer experiment, and (b) with
three synthetic datasets.

nonconvex methods implicitly carry out outlier detection. The
MC function ϕMC

γ (x) is constant above/below the saturation
points which are determined by the parameter γ. (The same
applies to Tukey’s biweight loss.) Hence, when the residual
error is sufficiently large for an outlier measurement, the
gradient of the loss function vanishes, and the outlier is
rejected accordingly. This would explain why the performance
does not degrade for an increase in outlier power, but it does
not explain the improvements of the performance.

Intuitively, the detection task is rather difficult when the
outlier power is not significantly larger than that of the normal
data, while outliers can be identified easily when the outlier
power is extremely large. More specifically, larger outliers
increase the probability that the magnitude of the error for
each outlier measurement lies near or exceeds a fixed threshold
γ, meaning that the subgradient of the MC penalty is small
for each outlier measurement, and thus has a small impact on
the solution. Additionally, in our preliminary experiments it is
observed that the optimal threshold γ increases when larger
outliers occur, which allows the use of larger regularization
parameters µi to reduce the bias, and thus decrease the system
mismatch further for larger outliers. One may think that γ
could be reduced to increase the opportunity of outlier rejec-
tion. This, however, makes the regularization parameters µi be
smaller to satisfy the convexity condition, thereby strengthen-
ing the regularization effects undesirably to cause performance
degradation. The remarkable robustness of D-SORR discussed
above is quite advantageous, because accurate estimates can
be obtained in the presence of devastating outliers.
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VII. CONCLUSION

This paper presented the D-ORR and D-SORR formulations
for distributed robust signal recovery. Thanks to the weak
convexity of the MC loss, the proposed formulations enjoy the
two desirable properties simultaneously: (i) significantly high
robustness against outliers, and (ii) guarantee of convergence
to a solution under convexity of the local objectives. The
D-SORR formulation involved an auxiliary vector to model
the Gaussianity of noise as well as outliers. We showed the
conditions to guarantee convexity of the local and global
objectives, respectively, for each formulation. We also showed
that the TriPD-Dist algorithm applied to the reformulated
versions of the D-ORR and D-SORR problems enjoys linear
convergence to a minimizer of each objective under the local
convexity condition. The numerical examples showed that our
proposed formulations exhibited remarkable robustness under
huge outliers as well as outperforming the existing methods.
The global convexity condition gave better performance than
the local one, but it has the drawback that all data need to
be collected at a central node to compute the regularization
parameter based on the global convexity condition. It remains
an open issue whether the global convexity condition is
sufficient to guarantee convergence to a solution.
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APPENDIX A
PROOF OF PROPOSITION 1

The proof of Proposition 1 is given based on the following
theorem.

Theorem A.1 (The Euclidean case of Corollary 1 in [33]). Let
Ψ be a norm defined on Rm. Let L ∈ Rm×m, D ∈ Rm×m

be diagonal positive definite matrices, and A1 : Rn → Rm :
x 7→ M1x + c1 and A2 : Rn → Rm : x 7→ M2x + c2
be affine operators with M1,M2 ∈ Rm×n and c1, c2 ∈ Rm.
Assume that M2 has full column rank or that A2x = 0m for
some x ∈ Rn. Then, for µ > 0, the function

F =
1

2
∥·∥22 ◦ A1 −

µ

2
∥·∥22 ◦DLA2 + µ 1(Ψ∗ ◦D) ◦DLA2

(A.1)
is convex if and only if

M⊤
1 M1 − µM⊤

2 L⊤D2LM2 ⪰ On. (A.2)

Proof of Proposition 1: (a) The classical Moreau decomposi-
tion [50] allows to rewrite the MC penalty as [33], [59]

ΦMC
γ (x) = ∥x∥1 +

γ−1(
∥·∥∗1

)
(γ−1x)− 1

2γ
∥x∥22 . (A.3)

Note here that γ−1

(∥·∥∗1) is the Moreau envelope of ∥·∥∗1 which
is the conjugate function of the ℓ1 norm ∥·∥1. See Section
II-B for the definition of the conjugate function. From (A.3),
it follows that

FD-ORR
i (x) =

1

2µiN
∥x∥22 −

1

2γ
∥Aix− yi∥22

+ γ−1(
∥·∥∗1

) (
γ−1(Aix− yi)

)
, (A.4)

where the last term is a convex function. Hence, FD-ORR
i is

convex if 1
2µiN

∥x∥22−
1
2γ ∥Aix− yi∥22 is so, which gives the

condition in (9).
(b) Let Ψ = ∥·∥1, M1 = In, c1 = 0m, M2 = Ai,
c2 = yi, D = γ−1/2Im, L = Im, and µ = µiN in (A.1).
Then, because it can be verified with [60, Lemma 1] that
γ−1

(∥·∥∗1)(γ−1x) = 1(∥·∥∗1 ◦ γ− 1
2 In)(γ

− 1
2x), the right side

of (A.1) reduces to µiNF
D-ORR
i , which (and thus FD-ORR

i ) is
thus convex by Theorem A.1 if and only if

1

µiN
In − 1

γ
A⊤

i Ai ⪰ On, (A.5)

which is equivalent to the condition in (9). ■

APPENDIX B
PROOF OF LEMMA 1

We first give some preliminary information to derive the
Lipschitz constant βD-ORR

i . A mapping T : Rn → Rn is called
nonexpansive if

∥T (x)− T (z)∥22 ≤ ∥x− z∥22 , ∀x ∈ Rn, ∀z ∈ Rn. (B.1)

In particular, it is called firmly nonexpansive if

∥T (x)− T (z)∥22 + ∥(I − T )(x)− (I − T )(z)∥22 ≤ ∥x− z∥22 ,
∀x ∈ Rn, ∀z ∈ Rn. (B.2)

Given a mapping T : Rn → Rn, the following statements are
equivalent [50], [51]:

1) T is firmly nonexpansive;
2) I − T is firmly nonexpansive;
3) T = 1

2I +
1
2N for some nonexpansive mapping N .

The equivalence immediately implies that I − T = 1
2I +

1
2Ň ,

where Ň := I − 2T (= −N ) is a nonexpansive mapping.
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Derivation of βD-ORR
i : The gradient ∇FD-ORR

i (x) at a point
x ∈ Rn is given by

∇FD-ORR
i (x) =

1

µiN
x−A⊤

i

I − proxγ∥·∥1

γ
(Aix−yi). (B.3)

Since the proximity operator proxγ∥·∥1
is firmly nonexpansive

[50], we have

I − proxγ∥·∥1
=

1

2
I +

1

2
N , (B.4)

where the mapping N := I − 2proxγ∥·∥1
is nonexpansive.

Hence, it follows that

∇FD-ORR
i (x) =

1

µiN
x− 1

2γ
A⊤

i (I +N )(Aix− yi)

=
1

µiN
x− 1

2γ
A⊤

i (Aix− yi)−
1

2γ
A⊤

i N (Aix− yi).

(B.5)

By the triangle inequality, we have∥∥∇FD-ORR
i (x)−∇FD-ORR

i (z)
∥∥
2

≤
∥∥∥∥( 1

µiN
Imi

− 1

2γ
A⊤

i Ai

)
(x− z)

∥∥∥∥
2

+
1

2γ

∥∥A⊤
i (N (Aix− yi)−N (Aiz − yi))

∥∥
2

≤
(

1

µiN
− λmin(A

⊤
i Ai)

2γ

)
∥x−z∥2 +

λmax(A
⊤
i Ai)

2γ
∥x−z∥2

≤ βD-ORR
i ∥x− z∥2 ,

where the last inequality is due to the nonexpansivity of N .
We remark that 1

µiN
− λmin(A

⊤
i Ai)

2γ ≥ 1
µiN

− λmax(A
⊤
i Ai)

2γ ≥
1

µiN
− λmax(A

⊤
i Ai)

γ ≥ 0 from the convexity condition in (9).

APPENDIX C
CONVERGENCE ANALYSIS FOR D-ORR

Theorem C.1. Assume that (a) the graph is connected, (b)
the problem in (5) has a solution, and (c) every node satisfies
the convexity condition (9) and the step size condition

τi <
1

βD-ORR
i /2 + ςi

∥∥A⊤
i Ai

∥∥+∑j∈Ni
κij

. (C.1)

Let (xi(k))k∈N be the sequence generated by applying the
TriPD-Dist algorithm to (10). Then, for every node i ∈ V ,
(xi(k))k∈N converges6 to a common solution x̂⋆ ∈ Rn of
(5) R-linearly; i.e., ∥xi(k)− x̂⋆∥ ≤ vk for some vanishing
sequence (vk)k∈N ⊂ [0,+∞) such that |vk+1| ≤ ϵ |vk| for all
k ≥ k̂ for some ϵ ∈ (0, 1) and some k̂ ∈ N.

Proof: We first show that Assumptions 5(i)–(v) and 6(i)–(iii)
of [21] are satisfied. Assumptions 5(i)–(ii) and 6(i)–(ii) of
[21] are clear from the problem settings of the present study.
Assumption 5(iii) is justified by the convexity of FD-ORR

i en-
sured by Proposition 1 under Assumption (c) and the Lipschitz
continuity of ∇FD-ORR

i shown in Lemma 1 of the manuscript.

6In fact, the triplet (xi(k),yi(k),wi(k)) of the primal and dual vari-
ables converges R-linearly to a primal-dual solution. See [21] for details.
Convergence to “a common solution” means that the nodes reach consensus
asymptotically.

Assumption 5(iv) of [21] corresponds to Assumption (a). Since
dom Gi = Rn and dom HD-ORR

i = Rmi , it holds that
xi ∈ ri dom Gi(= Rn) and Aixi ∈ ri dom HD-ORR

i (= Rmi)
for any xi such that xi = xj for (i, j) ∈ E , where ri(·)
stands for the relative interior of a set [61]. This together
with Assumption (b) justifies Assumption 5(v) of [21]. As-
sumption 6(iii) can be verified with (C.1) by noting that∥∥∥ςiA⊤

i Ai +
∑

j∈Ni
κijIn

∥∥∥ = ςi
∥∥A⊤

i Ai

∥∥+∑j∈Ni
κij .

Now, it suffices to show that the functions FD-ORR
i and

HD-ORR
i are piecewise linear quadratic (PLQ) functions, where

a function f : Rn → R̄ := R ∪ {±∞} is said to be PLQ if
dom f is a union of finitely many polyhedral sets7, in each
of which f(x) = x⊤Qx + a⊤x + c for some symmetric
matrix Q ∈ Rn×n, a ∈ Rn, and c ∈ R [61]. The function
HD-ORR

i = ∥· − yi∥1 is a translation of a polyhedral norm
∥·∥1, and hence it is clearly PLQ (piecewise linear specifically
with Q := O) [21]. To verify that FD-ORR

i is PLQ, we use the
following lemmas.

Lemma C.1 (10.22 in [61]). The following calculus rules of
PLQ hold.

1) Let fi : Rn → R̄ for i = 1, 2 be PLQ. Then, f1 + f2 is
also PLQ.

2) Let f : Rn → R̄ be PLQ. Then, f(Ax+ b) is also PLQ
for any A ∈ Rm×n and b ∈ Rm.

Lemma C.2 (11.14 and 12.30 in [61]). Let f : Rn → R̄
be a proper lower-semicontinuous convex function. Then, the
following statements hold.

1) f is PLQ if and only if the conjugate f∗ is PLQ.
2) Let γ > 0. Then, f is PLQ if and only if the Moreau

envelope γf is PLQ.

Since ∥·∥1 is PLQ, it can readily be verified that the last term
γ−1(∥·∥∗1) (γ−1(Aix− yi)

)
of (A.4) is PLQ by combining

Lemmas C.1.2 and C.2. In addition, the first two terms of
(A.4) are quadratic functions, which are PLQ by definition.
Hence, Lemma C.1.1 verifies that FD-ORR

i is PLQ.
The above arguments justify all assumptions required in [21,

Theorem V.1], and thus the assertion is verified. ■

APPENDIX D
PROOF OF LEMMA 2

The derivation is basically the same as in Appendix B. Let
ξ, ζ ∈ Rn+mi be arbitrary vectors. Then, it holds that

∇FD-SORR
i (ξ) =

Λ2
i ξ − 1

2γ
Ã⊤

i (Ãiξ − yi)−
1

2γ
Ã⊤

i N (Ãiξ − yi), (D.1)

7A set C ⊂ Rn is said to be a polyhedral set if it can be expressed as
the intersection of finitely many closed halfspaces or hyperplanes. Polyhedral
sets are closed convex, and the empty set and the whole space are polyhedral
sets [61].
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where N = I − 2proxγ∥·∥1
is nonexpansive. By the triangle

inequality, we have∥∥∇FD-SORR
i (ξ)−∇FD-SORR

i (ζ)
∥∥
2

≤
∥∥∥∥(Λ2

i −
1

2γ
Ã⊤

i Ãi

)
(ξ − ζ)

∥∥∥∥
2

+
1

2γ

∥∥∥Ã⊤
i

(
N (Ãiξ − yi)−N (Ãiζ − yi)

)∥∥∥
2

≤ λmax

(
Λ2

i −
Ã⊤

i Ãi

2γ

)
∥ξ − ζ∥2 +

λmax(Ã
⊤
i Ãi)

2γ
∥ξ − ζ∥2

≤ βD-SORR
i ∥ξ − ζ∥2 ,

where the last inequality is due to the nonexpansivity of N . We
remark that Λ2

i−
Ã⊤

i Ãi

2γ is positive definite because Λ2
i−

Ã⊤
i Ãi

γ
is positive semidefinite if and only if the convexity condition
in (9) is satisfied (see the proof of Proposition 3 in [33]).

APPENDIX E
CONVERGENCE ANALYSIS FOR D-SORR

Theorem E.1. Assume that (a) the graph is connected, (b) the
problem in (2) has a solution, and (c) every node satisfies the
convexity condition (22) and the step size condition

τi <
1

βD-SORR
i /2 + ςi

∥∥A⊤
i Ai

∥∥+∑j∈Ni
κij

. (E.1)

Let (ξi(k))k∈N ⊂ Rn+mi be the sequence generated by
applying the TriPD-Dist algorithm to (23). Then, for each
node i ∈ V , (ξi(k))k∈N converges to a solution [x̂⊤

⋆ , ε̂
⊤
i,⋆]

⊤ ∈
Rn+mi of (2) R-linearly, where x̂⋆ is common to all nodes.

Proof: The proof is omitted because the assertion can be
verified in the same way as the proof of Theorem C.1 in light
of Proposition 4. ■

APPENDIX F
PROOF OF PROPOSITION 5

The sum of the terms of the Moreau envelope of the ℓ1
norm of (27) can be rewritten as∑

i∈V

γ∥·∥1 (Aix+ εi − yi)

=
∑
i∈V

min
wi∈Rmi

(
∥wi∥1 +

1

2γ
∥wi − (Aix+ εi − yi)∥22

)
= min

wi∈Rmi

∑
i∈V

(
∥wi∥1 +

1

2γ
∥wi − (Aix+ εi − yi)∥22

)
.

(F.1)

Let M :=
∑

i∈V mi and

w :=
[
w⊤

1 . . . w⊤
N

]⊤ ∈ RM ,

ξ :=
[
x⊤ ε⊤1 . . . ε⊤N

]⊤ ∈ Rn+M ,

c2 := −
[
y⊤
1 . . . y⊤

N

]⊤ ∈ RM ,

M2 :=

A1 Im1 . . . Om1×mN

...
...

. . .
...

AN OmN×m1
. . . ImN

 ∈ RM×(n+M).

Then, (F.1) reduces to

min
w∈RM

(
∥w∥1 +

1

2γ
∥w − (M2ξ + c2)∥22

)
= γ∥·∥1 (M2ξ + c2)

= − γ−1(
∥·∥∗1

) (
γ−1(M2ξ + c2)

)
+

1

2γ
∥M2ξ + c2∥22 .

(F.2)

On the other hand, the regularization terms of (27) can be
rewritten as∑

i∈V

(
σ−2
x

2µN
∥x∥22 +

σ−2
ε

2µ
∥εi∥22

)
=

1

2µ
∥M1ξ∥22 , (F.3)

where

M1 :=


σ−1
x In On×m1

. . . On×mN

Om1×n σ−1
ε Im1 . . . Om1×mN

...
...

. . .
...

OmN×n OmN×m1
. . . σ−1

ε ImN


with size (n+M)× (n+M). Combining (F.1)–(F.3) reduces
(27) to the following form:

FD-SORR(ξ) =
1

2µ
∥M1ξ∥22 −

1

2γ
∥M2ξ + c2∥22

+ γ−1(
∥·∥∗1

) (
γ−1(M2ξ + c2)

)
. (F.4)

Let Ψ := ∥·∥1 : Rn+M → [0,+∞), A1 : Rn+M → Rn+M :
x 7→ M1x + c1, A2 : Rn+M → RM : x 7→ M2x + c2,
c1 := 0n+M , D := γ−1/2IM , and L := IM . Then, since
γ−1

(∥·∥∗1)(γ−1ξ) = 1(∥·∥∗1 ◦ γ− 1
2 In)(γ

− 1
2 ξ) for every ξ ∈

Rn+M (see [60, Lemma 1] to verify), we have

FD-SORR =
1

2µ
∥·∥22◦A1−

1

2
∥·∥22◦DLA2+

1(Ψ∗ ◦D)◦DLA2.

(F.5)
To apply Theorem A.1 to µFD-SORR, we observe that

M2ξ + c2 = 0M for ξ = [0⊤
n ,−c⊤2 ]

⊤, which means that the
assumption of the theorem is satisfied in this case. Hence, the
theorem verifies that µFD-SORR, and thus FD-SORR, is convex
if and only if

M⊤
1 M1 − µγ−1M⊤

2 M2 =[
σ−2
x In − µγ−1A⊤A −µγ−1A⊤

−µγ−1A
(
σ−2
ε − µγ−1

)
IM

]
⪰ On+M

⇔
[
µ−1γσ−2

x In −A⊤A −A⊤

−A
(
µ−1γσ−2

ε − 1
)
IM

]
⪰ On+M ,

(F.6)

which is identical to [33, Eq. (B.1)]. The positive semi-
definiteness condition in (F.6) is equivalent to the following
inequality (see [33, Proposition 3]):

µγ−1 ≤ 1

σ2
ε + σ2

xλmax(A⊤A)
, (F.7)

which coincides with (28). ■
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