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Abstract—This paper introduces a pilot pattern design opti-
mized to minimize overhead while ensuring effective channel
estimation, suitable for future communication systems demanding
higher data rates and enhanced spectral efficiency. Focusing on
Orthogonal Frequency Division Multiplexing (OFDM) system, a
key technology for 5G and a candidate for 6G, we address the
challenge of reducing the pilot overhead. While sparse channel
estimation is well-studied for its reduced pilot requirements com-
pared to traditional methods, there has been limited research on
optimizing pilot patterns to further cut the number of pilots. This
study employs data-driven feature selection techniques, tailored
for sparse channel estimation, to identify optimal pilot positions.
We propose matrix decomposition methods and compare their
efficacy against the deep learning-based concrete autoencoder.
Our findings show that matrix decomposition offers comparable
performance to the autoencoder with reduced complexity and
enhanced system flexibility.

Index Terms—Channel estimation, compressed sensing, pilot
allocation, concrete autoencoder, matrix decomposition.

I. INTRODUCTION

In Orthogonal Frequency Division Multiplexing (OFDM)
systems, channel estimation traditionally relies on embedding
reference signals, known as pilots, within the transmitted
signal to enable the channel estimation at the receiver. Pilots
are allocated to specific resource elements (REs) within the
OFDM resource grid, ensuring efficient channel estimation
while maintaining pilots orthogonality across frequency, time,
and spatial domains. However, in the massive Multiple Input
Multiple Output (MIMO) systems boasting numerous anten-
nas, the pilot overhead can become burdensome. This overhead
poses a challenge for future networks using the massive
MIMO by consuming valuable resources and complicating
the maintenance of pilot orthogonality. Therefore, minimizing
pilot overhead while maintaining channel estimation accuracy
is crucial for meeting system requirements.
To address this challenge, strategic placement of pilots on the
OFDM grid can reduce the necessary number of pilots without
sacrificing channel estimation accuracy. Traditionally, pilots’
positions were determined to adhere to the Nyquist sampling
theorem, resulting in significant overhead. Compressed Sens-
ing (CS) techniques have emerged as a promising alternative
leveraging the sparsity characteristics of the Channel Impulse
Response (CIR) in the time domain. Compared to satisfying
the Nyquist condition, applying CS requires fewer pilots.
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However, to leverage CS effectively for channel estimation,
it is essential to carefully select pilot locations that ensure
the incoherence of the measurement matrix (pilot position
selection matrix) with the sparsifying basis (Fourier basis) [1].
While designing the measurement matrix randomly may offer
satisfactory probability of meeting this condition, thoughtful
and structural design remains crucial for its fulfillment and to
enhance the incoherence. The design process can incorporate
data-driven feature selection methods to identify the most
informative pilot positions tailored for CS techniques.
Recent advancements in deep learning, notably with the advent
of the Concrete AutoEncoder (CAE) [2], have introduced
an approach for feature selection of a given data. CAE is
exploited in [3] to select the most informative pilot positions
for channel estimation. Alongside this, the utilization of linear
algebra techniques, particularly Matrix Decomposition (MD),
can offer another pathway for feature selection. Pivoted QR
decomposition has been employed to extract features from
training data, thereby optimizing sensor placement for image
compression and reconstruction [4]. It is worth noting that
both CAE and MD techniques are data-driven methods.
Additional feature selection techniques are explored in several
studies such as in [5] and [6]. The approach in this context
involves training a neural network to jointly design a pilot
pattern alongside a channel estimator. By employing this
approach, the extracted features are optimized specifically for
the designed estimator, limiting their effectiveness for other
estimators, including those based on CS techniques.
This paper introduces the utilization of matrix decomposition
techniques for channel feature selection and their applica-
tion in designing pilot patterns tailored for CS applications.
Namely, we explore the use of both QR and LU [7] decom-
position methods for this purpose. To our knowledge, this
study marks the first utilization of QR and LU decomposition
for pilot pattern design in wireless communication. The work
aims also to compare the proposed technique with applying
deep learning concrete autoencoder. Comparing the efficiency
of applying the MD and the CAE, our findings indicate
comparable performance, with MD demonstrating reduced
complexity and enhanced flexibility.

Notations: Throughout this paper, we represent matrices by
uppercase boldface letters, column vectors by bold lowercase
letters, scalars by italic lowercase letters and numbering by
italic uppercase letters. Hadamard product is denoted with ⊙.
(.)T denotes the matrix transpose. E{.} represent the mean.



II. SYSTEM AND CHANNEL MODELS

We consider an OFDM transmission with K subcarriers.
The OFDM resource grid is divided into Resource Blocks
(RB),where each block encompasses all the subcarriers and
spans across M OFDM symbols. Channel estimation is per-
formed for each RB separately. Within the RB, a certain
number of REs are designated as pilots. Let K ′ < K denote
the number of pilots within each subcarrier. Since we focus in
this work on designing the pilots positions over the frequency,
i.e. the subcarriers, we consider the designed positions to be
repeated over time for all OFDM symbols within the RB.
The transmitted pilot symbols can be organized in a matrix
X ∈ CK′×M . Accounting for the channel effect, received
pilots can be expressed as:

Y = W ⊙X+ Z, (1)

where W and Z ∈ CK′×M are the channel coefficients at
pilots positions, and the additive noise with zero mean and
variance σ2

z per element, respectively.

A. Channel Model

In wireless communication, due to the radio propagation
environment, the transmitted signal reaches the receiver via
multiple paths with different time delays and with different
attenuation levels. For the kth subcarrier, the complex time-
varying channel gain is given by:

hk(m) =

L∑
l=1

βk,l · ej2πfk,l(τl−m), (2)

where L represents the number of propagation paths between
the transmit and the receive antennas. For the lth path the
parameters τl, βl and fl represent the path delay, the path gain
and Doppler frequency, respectively. Accordingly, the Channel
Frequency Response (CFR) of the OFDM system can be
represented as H ∈ CK×M , with H = [h(1),h(2), ...,h(M)]
and h(m) = [h1(m), h2(m), ..., hK(m)]T . It is worth noting
that the corresponding CIR is sparse since only few paths
S ≪ L contribute to the wireless channel. The relationship
between the CFR and the CIR can be defined as applying the
Fourier transformation on time domain channel resulting in
the corresponding channel in frequency domain:

H = FG, (3)

here, G ∈ CL×M contains the CIR coefficients and it is sparse
over the first dimension L. F ∈ CK×L corresponds to the
Discrete Fourier Transform (DFT) matrix if K = L. In cases
where K < L, F is a submatrix of the DFT matrix.
It’s important to highlight that according to (2), entries of the
channel matrix H are correlated for nearby subcarriers due
to similar propagation paths. Also the time-varying channels
exhibit correlation within the coherence time, as discussed
in [8]. These correlation aspects are exploited in our chosen
estimator as will be addressed later.

III. CHANNEL ESTIMATION AND PILOT DESIGN

In this work we adopt CS techniques to perform channel
estimation. Starting with (1) where Y and X are available,
while W and Z are unknown, the calculated channel coeffi-
cients at the pilot positions can be noisy, denoted as Ŵ. To
account for the noisy estimation, we introduce the signal-to-
noise ratio (SNR), defined as E{∥X∥2

2}
σ2
z

.
The matrix Ŵ can be thought as projection of Ĥ through a
pilot selection matrix C. By considering (3) we define:

Ŵ = CĤ = CFĜ, (4)

here, C ∈ BK′×K comprises elements from Boolean domain
B = {0, 1}. Each row of C contains only one 1, indexing the
selected subcarrier of the resource grid to carry the pilots. With
available Ŵ, C and F, solving (4) results in the estimated
channel response Ĝ. But it is an underdetermined equation.
However, since Ĝ is sparse, a sparse recovery algorithm can
be applied to detect the sparse solution. Once Ĝ is obtained,
it can be substituted into (3) to find the estimated channel Ĥ.
The matrix C must be designed carefully to be incoherent with
respect to F, as mentioned earlier. High incoherence plays a
crucial role in ensuring the success of sparse recovery based
on CS.
According to [4], the number of required pilots K ′ must be
sufficiently large, on the order of:

K ′ ≈ c · S · log
(
K

S

)
, (5)

the constant multiplier c depends on the coherence between C
and F. Thus, fewer pilots are required if they are less coherent.
It can be also observed that K ′ depends also on the channel
sparsity S and the number of subcarriers K.

A. Channel estimation approach

Since this work focuses on pilot pattern design, we evaluate
it against a single channel estimation method. Channel estima-
tion starts from (1), by calculating Ŵ. To estimate the channel
coefficients between the pilots positions, we adopt using the
approach Compressed Sensing Dynamic Mode Decomposition
(CS-DMD) as discussed in [9]. CS-DMD leverages both the
inherent sparsity and temporal correlation features of wireless
time-varying channels, showing robust channel estimation per-
formance. Within the CS component of CS-DMD, Orthogonal
Matching Pursuit (OMP) [10] serves as the sparse recovery
method. OMP performs an iterative greedy search to identify
the most significant nonzero elements and their corresponding
locations. Thus, CS-DMD is denoted here as OMP-DMD.

IV. FEATURE SELECTION FOR COMPRESSED SENSING

In compressed sensing, a careful and structural selection of
a subset of relevant features can enhance the efficiency and
accuracy of CS algorithms. This process involves identifying
the most informative features while discarding irrelevant or
redundant. In the following we discuss two different feature
selection methods.



A. Feature selection with matrix decomposition
Leveraging compressed sensing with randomly selected

samples demonstrates efficient reconstruction for data exhibit-
ing sparsity in a specific basis. However, prior knowledge of
the data characteristics can significantly reduce the required
measurements by constructing a feature library tailored to
the data. Then an appropriate matrix decomposition can be
applied to the constructed feature library to extract the re-
quired features [4]. To build such a feature library, Proper
Orthogonal Decomposition (POD) [11] can be employed. POD
is a dimensionality reduction technique capable of capturing
the dominant modes of variation within a dataset. Given a
dataset of N channels arranged in a matrix H′ ∈ CK×N ,
POD decomposes it into r modes Φ ∈ CK×r and their
corresponding projection coefficients Λ ∈ Cr×N . Here r
denotes the POD truncation level. The coefficients represent
the projection of the data onto subspace spanned by the POD
modes. For re-composition, we use Ĥ′ = ΦΛ. Accordingly
from (4), we define:

Ŵ′ = CĤ′ = CΦΛ. (6)

In both cases of (4) and (6), the objective is to optimize C.
The modes Φ encapsulate the dominant patterns or structures
within the channels, with each mode consisting of K features.
With r dominant modes available, it becomes feasible to
identify the most significant common features present in
the data. One approach to achieving this is by applying a
pivoting-based matrix decomposition, pivoting the rows of Φ
to arrange the features by importance for the re-composition.
We introduce two pivoted matrix decomposition methods in
the following:

1) QR decomposition is a matrix decomposition technique
in linear algebra. It decomposes a given matrix A ∈ CN1×N2

into the product of an orthogonal matrix Q ∈ CN1×N1 and an
upper triangular matrix R ∈ CN1×N2 , such that:

A = QR. (7)

The diagonal elements of R represent the magnitudes of
the correlations between the features in the data. Larger
diagonal elements indicate stronger correlations. So, features
corresponding to larger diagonal elements are considered more
important. When features are highly correlated, the matrix
used in the QR decomposition can become ill-conditioned,
meaning it’s sensitive to numerical inaccuracies. Pivoted QR
decomposition helps to mitigate this problem by reordering the
columns of the matrix to reduce numerical errors and improve
the stability of the decomposition process. Mathematically, it
can be described as, AP = QR where P ∈ CN2×N2 is
the permutation matrix that is initialized as identity matrix
and then updated iteratively to arrange the columns of A
according the their 2-norms. At each iteration, QR column
pivoting selects a pivot column with maximal 2-norm, then
subtracts from every other column its orthogonal projection
onto the pivot column. So at the end, the updated matrix P
will indicates the positions of the most significant columns.

2) LU decomposition is another matrix decomposition tech-
nique that decomposes a given matrix A ∈ CN1×N1 into the
product of a lower triangular matrix L ∈ CN1×N1 and an
upper triangular matrix U ∈ CN1×N1 , such that:

A = LU. (8)

Although LU decomposition is typically applied to square ma-
trices, extensions exist to accommodate rectangular matrices.
Namely, the LU decomposition with partial pivoting [7], which
decomposes the matrix A ∈ CN1×N2 into lower triangular
L ∈ CN1×N2 , upper triangular U ∈ CN2×N2 , and permutation
P ∈ CN1×N1 matrices, such that PA = LU. This technique
ensures numerical stability for rectangular matrices, and can
be used in the same way to extract the features from P.

Using the pivoted QR decomposition as an example, we can
apply it to order the features in the rows of Φ, as they contain
the common features of the modes. This can be expressed:

ΦTP = QR. (9)

Here, the features are sorted within P ∈ CK×K . By selecting
the first K ′ columns to indicate the position of the pilots, we
obtain P′ ∈ CK×K′

, and thus C = P′T . The same process
can also be performed using pivoted LU decomposition.

B. Feature selection with concrete autoencoder

The concrete autoencoder [2] is a deep learning-based
method for feature selection, which efficiently identifies a
subset of the most informative features. It consists of a single
concrete selector layer (encoding layer), and interpolation
MultiLayer Perceptron (MLP) (decoding layers).

The Concrete Selector Layer is based on concrete random
variables that can be sampled to produce a continuous relax-
ation [12]. The selector layer has K ′ output neurons each of
them is connected to all of the input features of size K. The in-
put nodes are sampled with weights parameters α ∈ RK

>0, with
α = [α1, α2, ..., αK ], that initially specified randomly. This
weights are controlled by a temperature parameter T ∈ (0,∞).
Then, each jth sampled element from the concrete distribution
is defined as:

mj =
exp((logαj + gj)/T )∑K

k=1 exp((logαk + gk)/T )
, (10)

where g is randomly sampled from a Gumbel distribution.
The extent to which the vector is relaxed, is controlled by
T . At the beginning of the training, and to encourage the
selector layer to explore different linear combinations of
input features, α parameters are initialized to small positive
values and the temperature parameter T is set to a large
number. However, as the network is trained, the vector of
the parameter weights become sparser and T tends towards
zero. Because the concrete selector layer samples the input
features stochastically based on α, any of the features with
the large values in the vector α may be selected. Therefore,
the K ′ largest values in α will indicate to the selected features
locations, i.e. the positions of the pilots.



C. Applying to MIMO systems

To maintain pilot spatial orthogonality in MIMO systems,
the pilot pattern design must be performed individually for
each MIMO channel. This underscores the need to minimize
design complexity and the size of training datasets, particularly
in massive MIMO systems.

V. COMPLEXITY COMPARISON

In this section, we outline the computational complexities
associated with the methods employed throughout this paper.
We consider the training dataset for the utilized methods as
H′ ∈ CK×N and the number of selected pilots is K ′. Design-
ing the pilot pattern using MD involves two steps. Initially,
applying POD entails a complexity of O(NKmin(N,K)),
followed by either pivoted QR decomposition or pivoted LU
decomposition, each with a complexity of O(Kr2). Typically
r ≪ N , thus the total complexity remains as for POD.
it is worth noting that the memory usage for pivoted QR
and LU decompositions is roughly estimated as O(Kr) and
O(K2+Kr), respectively, suggesting that pivoted QR decom-
position may be more feasible as it requires less memory.
For training the CAE network for pilot design, the complexity
is estimated as O(EN(KK ′+Q)), with E denotes the training
epochs and Q is the number of parameters in the MLP decoder.
Regarding the proposed channel estimator OMP-DMD, the
complexity is given as O(MK ′min(M,K ′)).

VI. SIMULATION SETUP RESULTS

We perform numerical simulations to evaluate pilot pattern
design for sparse channel estimation in an OFDM system.

A. Simulation Setup

The number of pilots per single RB is given by P = K ′M .
We employ feature selection for pilot pattern design, utilizing
methods based on either the concrete autoencoder or matrix
decomposition. MD involves designing a feature library using
POD with r = K ′, followed by matrix decomposition using
pivoted QR. To perform sparse channel estimation we leverage
OMP-DMD, with the DMD rank rdmd = 3.
The training datasets used for MD and CAE contain 100
and 12000 channel realization, respectively, unless otherwise
stated. Additive White Gaussian Noise (AWGN) is added to
the training datasets with SNR= 30 dB, unless otherwise
stated. For the decoder of the CAE, three layers MLP is
used, where each is followed by a LeakyRelu(0.2) and a
Dropout(0.1). The CAE is trained for 100 epochs.
To assess the performance, we utilize the normalized mean
square error (NMSE), defined as:

NMSE =
E{∥H− Ĥ∥22}

E{∥H∥22}
. (11)

To generate different realizations of channel coefficients, we
employ Heterogenous Radio Mobile Simulator (HermesPy)
[13]. System parameters are listed in Table I.

TABLE I
SIMULATION PARAMETERS

System Parameters Value
Channel model COST 259 [14]

Carrier frequency 2 GHz
Receiver velocity 50 Km/h
RB size K, M 1024, 14

CIR taps in time domain L 1024
Subcarrier spacing 15 kHz

B. Simulation Results

The first simulations observation is that using different
training datasets results in different pilot patterns, even with
the same number of pilots. All resulting patterns achieve the
same channel estimation quality, indicating that there is no
single optimal pattern for pilot positions.
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Fig. 1. Channel NMSE in terms of SNR, P = 112, S = 8.

The results in Fig. 1 highlight the impact of designing the pi-
lot position on enhancing channel estimation. It’s evident that
the NMSE associated with randomly selected pilot positions is
higher compared to that achieved with pilot pattern design with
MD or CAE. The NMSE performed by applying CAE and MD
is comparable. However, MD’s training dataset is 120 times
smaller than CAE’s, indicating its efficiency in requiring fewer
channel realizations. When comparing the NMSE depicted in
Fig. 1 to the NMSE in Fig. 3 from [9], it is observable that our
obtained NMSE is significantly higher, despite utilizing the
same estimator, OMP-DMD. This difference can be attributed
to our choice of K ′ = 8, whereas [9] used K ′ = 102.

The bar graph presented in Fig. 2 illustrates the performance
of NMSE across various number of pilots P . With a low
number of pilots (P = 84), designing the pilots positions
yields only small enhancements compared to random selection.
This can be attributed to the limited number of pilots, which
may inadequately capture channel features. Also, with a high
number of pilots (P = 224), the benefits of pilot pattern design
are marginal, as random selection is more likely to encapsu-
late channel information. Hence, we refrain from choosing
K ′ = 102, as in [9], since random selection can perform
comparably at this high value. For a moderate number of pilots
(112 and 140 pilots), the utilization of feature selection yields
significant improvements for the sparse channel estimation.
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Fig. 2. Channel NMSE in terms of number of pilots, SNR= 30 dB, S = 8.

Fig. 3 provides a comparative analysis of the performance
of two pilot pattern design methods, MD and CAE, across
varying training SNRs and dataset size N . Each method is
denoted in the legend along with its corresponding N . In
Fig. 3(a), with a training SNR of 30 dB, increasing the dataset
size for both MD and CAE does not significantly enhance
the NMSE. However, in Fig. 3(b), with a training SNR of
10 dB, expanding the dataset size for the MD method shows
potential for performance improvement, leading to reduced
NMSE. This is because the POD is able to capture more
dominant modes and the truncation of the modes can reduce
the noise. Conversely, enlarging the dataset size for CAE
in the same scenario leads to degraded performance and
increased NMSE. This decline stems from high noise within
the training data, which introduces irrelevant patterns that the
model may erroneously learn, resulting in overfitting. Hence,
careful consideration must be given to the training dataset size
for the CAE approach.
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Fig. 3. Channel NMSE in terms of two distinct training SNR values and two
varying training dataset sizes. P = 112, S = 8.

In Table II, we illustrate the relationship between sparsity S
and the number of pilots P needed to achieve NMSE≤ 10−3.
It shows that as sparsity increases, more pilot symbols are
required, aligning with the expectations set by equation (5).
Notably, when designing the pilot position using feature se-
lection, the resulting NMSE matches that of random selection
but with a reduced number of required pilots.

TABLE II
REQUIRED PILOTS TO PERFORM NMSE ≤ 10−3

Pilot Design Method
Feature Selection Random

Sparsity
S

3 70 98
5 98 126
8 140 168

VII. CONCLUSION

In conclusion, our study delves into the optimization of
pilot patterns in OFDM systems, crucial for efficient channel
estimation with minimized overhead. We explored feature
selection techniques, particularly tailored for CS applications,
in identifying informative pilot positions, leveraging linear
algebra and deep learning methods. Our research compared the
performances of MD and CAE. Comparative analysis revealed
comparable performance levels. However, MD exhibited ad-
vantages in terms of data efficiency, requiring fewer channel
realizations, and boasted reduced computational complexity.
Additionally, the utilization of POD to construct the feature
library demonstrated better performance in scenarios involving
noisy data. This underscores the potential of the used MD
method in enhancing the efficacy of pilot pattern design for
sparse channel estimation in OFDM systems.
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