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Abstract—Federated learning (FL) in satellite constellations,
where the satellites collaboratively train a machine learning
(ML) model, is a promising technology towards enabling globally
connected intelligence and the integration of space networks
into terrestrial mobile networks. The energy required for this
computationally intensive task is provided either by solar panels
or by an internal battery if the satellite is in Earth’s shadow.
Careful management of this battery and system’s available
energy resources is not only necessary for reliable satellite
operation, but also to avoid premature battery aging. We propose
a novel energy-aware computation time scheduler for satellite
FL, which aims to minimize battery usage without any impact
on the convergence speed. Numerical results indicate an increase
of more than 3× in battery lifetime can be achieved over energy-
agnostic task scheduling.

Index Terms—Federated learning, satellite constellation, bat-
tery lifetime, energy-aware, scheduling, orbital edge computing.

I. INTRODUCTION

Driven by the desire for ubiquitous global connectivity,
satellite communications and the space industry are under-
going a major transformation [1]. Especially the paradigm
shift towards mega-constellations of interconnected small
satellites in low Earth orbits led towards space networks
nowadays being regarded as a major component of 6G (and
beyond) networks [2], [3]. An integral component, both
in managing [4] and utilizing [5] these constellations, is
distributed machine learning (ML). Among the architectural
approaches towards integrating ML into space networks [6],
satellite federated learning (SFL) [7], where the ML training
is performed directly on each satellite, appears to be most
promising strategy in the long run. A closely related use case
is orbital edge computing [8], where terrestrial devices offload
computing tasks, including ML training [9], to satellites.

A considerable challenge in implementing computation-
ally intensive processes in satellite systems is their energy
consumption. While, theoretically, solar energy is available
in abundance in near-Earth space, the amount of energy a
satellite can harvest is practically limited by the size of its
solar panels. Moreover, the nature of orbital mechanics places
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satellites regularly in Earth’s shadow, necessitating the usage
of batteries to bridge these outages in solar energy. These
aspects lead to a limited availability of energy within the
satellite. Since this energy is not only used for (secondary)
computational tasks but also to supply critical satellite
subsystems, careful energy management and scheduling of
computing time is strictly necessary to ensure reliable satellite
operations [10]. Furthermore, the lifetime of batteries is
limited by the number of charge/discharge cycles they can
withstand. Since replacing a failing battery in a deployed
satellite is infeasible, inadequate battery management can
have detrimental effect on the lifetime of a satellite system
[11], [12]. This is not only undesirable from an economical
perspective, but also environmentally unsustainable.

To this end, we consider energy-aware task scheduling for
SFL with the goal of maximizing the battery lifetime. SFL
is the application of the federated learning (FL) paradigm
[13] in satellite constellations. It was first studied in [14] for
ground-assisted FL, where the limited connectivity between
satellites and ground station (GS) was identified as the
main impairment towards reasonable training performance.
Subsequent works focus primarily on improving the algorithm
in [14], e.g., [15]–[19], and enhancing connectivity [20]–[23].
While energy aspects of SFL are considered in [24]–[26],
none of these works considers long-term effects of SFL on
the battery lifetime. Our proposed algorithm leverages the
predictability of sunlight periods and satellite operations to
schedule computation time for SFL with respect to the energy
demands of more critical satellite subsystems, while using
any remaining degrees of freedom to minimize strain on the
battery to extend its lifetime. While we focus primarily on
SFL, the proposed algorithm should also be applicable to a
wide range of related orbital edge computing scenarios.

II. SYSTEM MODEL

A. Constellation Configuration

We consider a constellation with Q orbital planes, where
each orbit q ∈ {1, · · · , Q} contains Kq satellites. The set
of all satellites in the Q orbital planes is denoted with
K, with a total number of satellites K =

∑Q
q=1 Kq. Any

satellite k completes an orbit around Earth within a period



Algorithm 1 Satellite Learning Procedure
1: procedure SATLEARNPROC(wn)
2: initialize wn,0

k = wn, m = 0, learning rate η
3: for M epochs do ▷ M epochs of mini-batch SGD
4: D̃k ← Randomly shuffle Dk

5: B ← Partition D̃k into mini-batches of size B
6: for each batch B ∈ B do
7: wn,m

k ← wn,m
k − η

|B|∇w
(∑

z∈B g(z,w)
)

8: end for
9: m← m+ 1

10: end for
11: return Dkw

n,M
k

12: end procedure

of ιk = 2π
√

o3k
µ , where ok is the semi-major axis and

µ = 3.98×1014 m3/s2 is the geocentric gravitational constant.
For circular orbital planes, semi-major axis is ok = rE + νk,
where rE = 6371 km and νk are the Earth radius and
satellite’s altitude above the Earth’s surface, respectively.

B. Computation Model

Each satellite k gathers dataset Dk using its on-board
instruments and trains an ML model. The overall goal of
satellites is to collaboratively solve an optimization problem

min
w∈Rd

1

D

∑
z∈D

g(z;w) = min
w∈Rd

∑
k∈K

Dk

D

∑
z∈Dk

1

Dk
g(z;w)

(1)
and learn the global model parameters w. In (1), D =⋃

k∈K Dk is the set of data samples of all satellites with
the size of D =

∑
k∈K Dk, where Dk = |Dk| is the size

of dataset of satellite k. Moreover, g(z;w) is defined as
the loss for a data sample z ∈ D and model parameters w.
The problem (1) is orchestrated by one or several parameter
servers (PSs) and is solved in overall N iterations without
sharing datasets between satellites.

In iteration n, the satellite k performs M local epochs of
mini-batch stochastic gradient descent (SGD) as Algorithm 1
to minimize the local loss function 1

Dk

∑
z∈Dk

h(z,w) [20].
It finally derives the local model parameters wn,M

k and
transmits it to the PS.

C. Satellite Energy Management

1) Sunlight and eclipse pattern: Satellites are equipped
with solar panels to harvest the Sun’s radiant energy for power
generation in sunlight periods. After each sunlight period,
the satellite experiences periods of eclipse, as denoted in
Fig. 1. In an eclipse period, the satellite relies on the energy
stored in its battery, usually a Lithium-ion battery, which is
charged during sunlight periods. For any designated duration
from t0 to t1, we denote the start of each sunlight period and
its subsequent eclipse as ts,j and te,j , respectively, where
j ∈ J = {1, · · · , J} represents the indices of these periods
as depicted in Fig. 1.

2) Energy Consumption: Satellites utilize the harvested or
battery energy to perform various tasks. We categorize the
tasks into two groups: non-training, which include all tasks
except ML training, and training which refers only to the ML

t0 t1

ts,1 te,1 ts,2 te,2 ts,3 te,3

Sunlight Eclipse

Fig. 1: Satellite’s sunlight and eclipse pattern

training task. The energy demand of the non-training tasks is
determined a priori by a different subsystem and provided as
parameters Ed

s,j and Ed
e,j to the SFL task scheduler, where

Ed
s,j and Ed

e,j are the energy demands of non-training tasks
during the intervals [ts,j , te,j ] and [te,j , ts,j+1], i.e., the jth
sunlight and eclipse periods, respectively. For the training
task, the satellites need to train an ML model for a duration
of Tc, which results in consuming PcTc amount of energy,
where Pc is the required power for training. We assume that
the required training time Tc is smaller than the available time
t1 − t0. Then, the total energy consumption of the satellite is
Ed

s,j+τs,jPc during sunlight periods, and Ed
e,j+τe,jPc during

eclipse periods, where τs,j and τe,j are the computation times
scheduled for ML training during these intervals. Clearly,
0 ≤ τs,j ≤ te,j − ts,j and 0 ≤ τe,j ≤ ts,j+1 − te,j . Further,
to be able to complete ML training, we require

J∑
j=1

τe,j + τs,j = Tc. (2)

3) Satellite battery: Let b(t) ∈ [0, Bmax] be the battery’s
charge level at time instant t, where Bmax is the battery’s
capacity. During eclipse periods, the satellite’s energy demand
is met solely from the battery. Thus, the remaining charge
bs,j+1 = b(ts,j+1) at the end of eclipse period j is

bs,j+1 = be,j − Ed
e,j − Pcτe,j , (3)

where be,j = b(te,j) is the battery level at the beginning
of eclipse period j. During sunlight periods, the battery is
recharged from the solar panels. Provided the harvested energy
during sunlight period j, i.e., in the time interval [ts,j , te,j ] is
Eh

s,j , the energy available for charging the battery is Eh
s,j −

Ed
s,j − Pcτs,j . Thus, the battery level at the begin of the

following eclipse period is

be,j = min{bs,j + Eh
s,j − Ed

s,j − Pcτs,j , Bmax}. (4)

This implies that excess energy goes to waste once the battery
is fully charged. Since the battery should not be discharged
further during sunlight periods, we require

Eh
s,j − Ed

s,j − Pcτs,j ≥ 0, (5)

which implies Eh
s,j ≥ Ed

s,j + Pcτs,j .
4) Battery aging: To extend the operational life of the

satellites, it is crucial to prolong the lifetime of the batteries.
An effective parameter to evaluate the battery’s lifetime is cy-
cle life, defined as the number of charge and discharge cycles
a battery can complete before its performance degradation



[27]. With each charge/discharge cycle, the battery degrades.
The battery will last longer with a smaller discharge level
[28].

The proportion of energy extracted from the battery within
an eclipse duration relative to its full capacity is defined as
depth of discharge (DoD), expressed as d(t) = Bmax−b(t)

Bmax
at

any given time t. In this paper, we focus on the effect of DoD
on cycle life [29]. A higher DoD results in a shorter battery
lifetime, meaning a higher consumption of cycle life. The
cycle life consumption for Lithium-ion batteries is defined as

l(t1,t2) =

∫ d(t2)

d(t1)

10a(d−1) (1 + a ln 10 · d) dd (6)

=10a(d(t2)−1)d(t2)− 10a(d(t1)−1)d(t1),

if d(t2) > d(t1); otherwise, it is 0, and a is a positive constant
which is determined by the battery specifications [29].

III. CYCLE LIFE MINIMIZATION

We aim to schedule the computation time for ML training
such that all non-training energy demands are met and the
cost on the batteries life is minimized. Since the battery is
never discharged during sunlight periods, the total cost on
the battery lifetime during [t0, t1] is, following Section II-C4,

J∑
j=1

10a(d̂e,j−1)d̂e,j − 10a(de,j−1)de,j , (7)

where de,j = d(te,j) and d̂e,j = d(ts,j+1) are the DoD at
the beginning and end of the jth eclipse period [te,j , ts,j+1],
respectively. Thus, the optimal ML training schedule with
respect to the battery lifetime is the solution to

min
∀j:τs,j ,τe,j ,be,j ,
bs,j+1,de,j ,d̂e,j

J∑
j=1

10a(d̂e,j−1)d̂e,j − 10a(de,j−1)de,j (8a)

s.t. bs,j+1 = be,j − Ed
e,j − Pcτe,j ,∀ ∈ J (8b)

be,j = min{bs,j + Eh
s,j−

Ed
s,j − Pcτs,j , Bmax}, ∀j ∈ J , (8c)

Eh
s,j − Ed

s,j − Pcτs,j ≥ 0, ∀j ∈ J , (8d)

de,j =
Bmax − be,j

Bmax
, ∀j ∈ J , (8e)

d̂e,j =
Bmax − bs,j+1

Bmax
, ∀j ∈ J , (8f)

J∑
j=1

τs,j + τe,j = Tc, (8g)

0 ≤ τs,j ≤ te,j − ts,j , ∀j ∈ J , (8h)
0 ≤ τe,j ≤ ts,j+1 − te,j , ∀j ∈ J , (8i)
0 ≤ bs,j+1 ≤ Bmax, ∀j ∈ J , (8j)
0 ≤ be,j ≤ Bmax, ∀j ∈ J , (8k)

with bs,1 = B0, where B0 is the initial battery charge at
t0. Conditions (8b) and (8c) signify the battery level at the
beginning of the sunlight and eclipse periods, respectively.

Additionally, (8d) implies that the battery should not be
discharged during sunlight periods. DoD at the beginning and
end of the eclipse periods are defined in (8e) and (8f). The
training periods in the sunlight and eclipse periods should
meet (8g), with constraints defined as (8h) and (8i) for these
periods, respectively. Moreover, (8j) and (8k) indicate that
the battery level must remain above 0 and below the battery’s
capacity.

A. Equivalent Problem

Problem (8) is nonconvex due to (8a) and (8c). However,
we can relax (8c) to obtain

min
∀j:τs,j ,τe,j ,be,j ,
bs,j+1,de,j ,d̂e,j

J∑
j=1

10a(d̂e,j−1)d̂e,j − 10a(de,j−1)de,j (9a)

s.t. be,j ≤ min{bs,j + Eh
s,j−

Ed
s,j − Pcτs,j , Bmax}, ∀j ∈ J , (9b)

(8b), (8d)–(8k), (9c)

which has a convex feasible set and is equivalent to (8).
Lemma 1: Any optimal solution to (9) is an optimal solution

to (8) (and vice versa).
Proof: Consider problem (8). For an arbitrary n ∈ J ,

replace (8c) by (9b) and let τ⋆s,1, . . . , d̂
⋆
e,j be an optimal

solution to this new problem. Assume this solution satisfies

b⋆e,n < min{b⋆s,n + Eh
s,n − Ed

s,n − Pcτ
⋆
s,n, Bmax}. (10)

Then, we can find a b̃e,n = b⋆e,n + ε with ε > 0 that satisfies
(9b) and (8k). From (8b), we obtain b̃s,n+1 = bs,n+1 + ε.
Further, d̃e,n = d⋆e,n − δ and ˜̂

de,n = d̂⋆e,n − δ with δ =
ε

Bmax
> 0. The cycle life consumption for these DoDs is

10a(d̂
⋆
e,n−δ−1)(d̂⋆e,n − δ)− 10a(d

⋆
e,n−δ−1)(d⋆e,n − δ)

(11)

= 10−aδ
(
10a(d̂

⋆
e,n−1)d̂⋆e,n − 10a(d

⋆
e,n−1)d⋆e,n

)
− δ

(
10a(d̂

⋆
e,n−δ−1) − 10a(d

⋆
e,n−δ−1)

)
(12)

≤ 10−aδ
(
10a(d̂

⋆
e,n−1)d̂⋆e,n − 10a(d

⋆
e,n−1)d⋆e,n

)
(13)

≤ 10a(d̂
⋆
e,n−1)d̂⋆e,n − 10a(d

⋆
e,n−1)d⋆e,n (14)

where (13) follows from d̂e,n ≥ de,n and (14) is due to
a, δ > 0. Finally, for all j > n, we also obtain new feasible
b̃e,j ≥ b⋆e,j and b̃s,j+1 ≥ b⋆s,j+1 that further decrease the
objective value (by the same argument as before). This implies
that τ⋆s,1, . . . , d̂

⋆
e,j cannot be an optimal solution to (9) and,

further, that any optimal solution satisfies (9b) with equality.

Due to this equivalence, we can obtain a solution to (8) by
solving (9). However, (9) is still a nonconvex optimization
problem due to the objective being a difference of convex
functions (DC). Thus, we cannot solve it directly with
conventional convex optimization methods. Instead, we design



an iterative algorithm based on the majorization-minimization
principle [30] to find stationary points of (9).

IV. FIRST-ORDER OPTIMAL SOLUTION ALGORITHM

Problem (9) falls in the class of DC programming problems
with convex feasible set, i.e., a continuous optimization
problem

min
x

f(x) = u(x)− v(x) s.t. x ∈ X , (15)

where X is a closed convex subset of Rn and u, v are
continuously differentiable convex functions on X . The
concave-convex procedure [31], [32] obtains stationary points
of (15) by solving a sequence of convex programs

x(l+1) ∈ argmin
x∈X

u(x)− xT∇v(x(l)). (16)

This is an instance of the more general majorization-
minimization framework where the nonconvex part of the
objective is linearized. Within this context, the objective of
(16) is known as the surrogate function of f(x).

A. Concave-convex procedure for (9)

For ease of notation, define the vectors d =
(de,1, . . . , de,J), d̂ = (d̂e,1, . . . , d̂e,J), and x to hold all
optimization variables in (9). We identify X as {x |
(8b), (9b), (8d)–(8k)}, u(x) =

∑J
j=1 10

a(d̂e,j−1)d̂e,j , and,
with a minor abuse of notation, v(x) = v(d) =∑J

j=1 10
a(de,j−1)de,j in (16). First, observe that this is indeed

a DC program since X is a convex set (trivial) and u, v are
convex functions, as established next.

Lemma 2: For a > 0, the function
∑J

j=1 yj10
a(yj−1) is

strictly convex on RJ
+ with respect to y1, . . . , yJ , i.e., for all

yj ≥ 0, 1 ≤ j ≤ J .
Proof: The Hessian of h =

∑J
j=1 yj10

a(yj−1) is a
diagonal matrix with the partial derivatives ∂2h/∂y2j on the
diagonal. Thus, it is strictly positive definite if and only if
∂2h/∂y2j > 0 for all j. From ∂2h/∂y2j = a ln 10(ayj ln 10+

2)10a(yj−1), we see that this is the case if and only if
ay ln 10 + 2 > 0 for a > 0. Thus, yj ≥ 0 is sufficient
for strong convexity.

Corollary 1: The functions u and v are convex on X .
Proof: From (8e), (8f), (8j), (8k), we have d̂e,j ≥ 0 and

de,j ≥ 0 for all j. Since a > 0 by definition, Lemma 2 is
applicable.

Observe that the nonconvexity in (9) stems solely from
v(d). Thus, we linearize the objective only in d to obtain
the following surrogate problem

x(l+1) ∈ argmin
x∈X

u(x)− dT∇v(d(l)), (17)

where

dT∇v(d(l)) =

J∑
j=1

de,j10
a(d̃e,j−1)(1 + ad̃e,j ln 10).

This results in the concave-convex procedure stated in
Algorithm 2. After initialization, it solves the convex program

Algorithm 2 Concave-convex procedure for (9)

1: Initialize l = 0, λ > 0, ε > 0, and x(0) to some feasible point of (9).
2: repeat
3: Set x(l+1) to an optimal point of (17)
4: Update l← l + 1
5: until ∥d(l) − d(l−1)∥ ≤ ε

in line 3 for x(l) and sets the next approximation point x(l+1)

to an optimal solution of this problem. Note that d(l+1) is
implicitly defined as it is part of x(l+1). This is repeated
until convergence in d(l) is observed. Upon termination, the
final d(l) will be within an ε-region of the point d⋆, where
d⋆ is such that the corresponding x⋆ is a stationary point of
(9). The initial x(0) is set to a feasible point (9), which is
easily obtained due to the feasible set X being convex.

Convergence of Algorithm 2 is established formally below.
Suitable convergence results for (16) are derived in Theo-
rems 4 and 8 of [32]. There, Theorem 8 provides much
stronger convergence guarantees than Theorem 4 but requires
strong convexity of u and v in x. This is not the case here, as
established in Corollary 1. However, the proof of [32, Thm.
8] can be modified to cover (17) as follows.

Theorem 1: For all ε ≥ 0, the sequence {x(l)}l generated
by Algorithm 2 converges towards a point x̄. For ε = 0, this
is a stationary point of (9). Otherwise, Algorithm 2 terminates
after a finite number of iterations and x̄ is within an δ-region
of some stationary point of (9) for some small 0 < ε < δ,
i.e., ∥x⋆ − x̄∥ ≤ δ for some stationary point x⋆.

Proof: Observe that the feasible set X is a finite
intersection of affine constraints. By Slater’s condition, these
constraints are qualified if some feasible point exists [33,
Sec. 5.2.3]. Further, define the point-to-set map A (cf. [32,
Sec. 3]) as the projection of (17) onto d. Let d⋆ be a
generalized fixed point of A and x⋆ the corresponding
solution of (17). Then, by the same argument as in [32,
Lemma 5], x⋆ is a stationary point of (9). Moreover, note
that the right-hand side of (17) is equivalent to

argmin
x∈X

u(x)− v(d(l))− (d− d(l))T∇v(d(l)) (18)

Thus, for any d(l) ̸= d(l+1),

f(x(l+1)) = u(x(l+1))− v(d(l+1))

< u(x(l+1))− v(d(l))− (d(l+1) − d(l))T∇v(d(l))

= g(x(l+1),x(l)) ≤ g(x(l),x(l)) = f(x(l))

due to v being strongly convex in d. This establishes that
the map A is strictly monotonic with respect to f . Since
the feasible set X is closed and bounded, i.e., compact, its
projection onto d is as well and, with [32, Remark 7], A
is uniformly compact and closed. Hence, by virtue of [32,
Thm. 3], all limit points of {d(l)}l are fixed points of A and
∥d(l) − d(l−1)∥ → 0. Further, since v is a strictly increasing
function in d, the set of fixed points of A is finite and
{d(l)}l converges to a single limit point d⋆. The associated
point x⋆ is a stationary point of (9) (see argument above).



Finally, since the sequence {f(d(l))}l is strictly decreasing
and ∥d(l) −d(l−1)∥ converges continuously to 0, there exists
some L < ∞ such that ∥d(l) − d(l−1)∥ < ε for all l > L if
ε > 0. It is trivial to show that ∥d(l) − d(l−1)∥ < ε implies
∥x(l) − x(l−1)∥ < δ for some δ > ε.

Algorithm 2 does not guarantee that the stationary point is
a local minimum of (9). However, unless x(0) is stationary,
which would result in Algorithm 2 terminating after the first
iteration, the obtained point cannot be a local maximum due
to {u(x(l))− v(d(l))}l being strictly decreasing.

Convergence of Algorithm 2 can be strengthened to x̄ being
within an ε-region of a stationary point of (9) by replacing the
termination criterion with ∥x(l)−x(l−1)∥ ≤ ε. This, however,
requires regularization in (17) with λ∥x− x(l)∥2 for some
small λ > 0 to ensure convergence of {x(l)}l to a single
limit point.

V. PERFORMANCE EVALUATION

We evaluate the performance of the proposed energy-aware
FL approach by considering 20 satellites from the Starlink
constellation [34]. Supported by two GSs, one located in
Germany and the other in Japan, these satellites participate
in a synchronous FL process for 96 hours [14]. We partition
this period into N equal time-slots, each equivalent to an
iteration of FL.

At the end of the nth time-slot, one of the GSs, which
is chosen as the PS, updates the global model parameters
as wn+1 =

∑K
k=1 α

n
k
Dk

D wn,M
k , where the local model

parameters of the kth satellite, wn,M
k , is received either

directly or through the other GS, and αn
k = 1 if the satellite

k participates in the nth iteration, otherwise αn
k = 0. During

each time-slot, only those satellites can participate in FL
which are capable of receiving the global model parameters,
training the ML model for a period of Tc, and returning
their updated local model parameters to the PS. Note that to
communicate the model parameters, the satellite should be
visible to one of the GSs. Afterwards, the PS sends back the
updated global model parameter wn+1 to the satellites for
the next iteration. Upon receiving the updated parameters,
each participating satellite schedules its training, taking into
account the predictability of both visibility to GSs and
sunlight/eclipse periods.

We compare DoD and consumed cycle life for the battery
of the satellites using our proposed approach, which we call
energy-aware, with those of the state-of-the-art one [14],
which we call energy-agnostic. In the energy-aware approach,
in each time-slot, the participating satellites solve (9) to
decide how much time they should assign in each sunlight or
eclipse for training the ML model. However, in the energy-
agnostic one, the participants start the training after receiving
the model parameters without considering being in sunlight
or eclipse.

With N = 50 time-slots and two training duration of
Tc = 20min and Tc = 80min, Fig. 2 shows DoD for the
satellite k = 2 during the time-slots in which it can participate
in FL. The power consumption for training the ML model
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Fig. 2: Depth of discharge (DoD) for the battery of satellite k = 2 with
respect to indexes of time-slot. E-Agn. and E-Awa. stand respectively for
energy-agnostic and energy-aware FL algorithms and Tc denotes required
time for training the ML model.

is set to 50W, the battery capacity to 2000Wmin, and the
battery specification parameter a to 0.8 as [29]. We assume
the satellites consume energy solely for training the ML
model. Additionally, the harvested energy during sunlight
suffices to charge fully the battery. As we see in Fig. 2, the
satellite k = 2 participates in FL process only in the time-
slots {8, 9, 21, 22, 23, 33, 41, 46} when Tc = 20min, and
the same time-slots except 21 when Tc = 80min due to its
visibility pattern. During time-slot 21, there is not sufficient
time, from the instant that the satellite receives the global
model parameters to the latest possible time it can return the
updated local model to the PS, to accommodate the required
training duration of Tc = 80min.

As we see in Fig. 2, the energy-aware approach leads to a
notably lower DoD compared to the energy-agnostic approach.
Specifically, except for time-slot 21, the DoD remains at 0
for all other time-slots in the energy-aware approach. This is
because the satellite prioritizes utilizing sunlight periods for
training without drawing energy from its battery. Only when
sunlight periods are insufficient, the satellite starts to use
a portion of the eclipse duration for the remaining training
which draws energy from its battery, as observed in the time-
slot 21. Moreover, the algorithm strives to evenly distribute the
remaining training time across all eclipse periods to minimize
the impact on cycle life. However, with the energy-agnostic
approach, DoD is significantly higher since the satellite trains
the model regardless of the current energy source.

Fig. 3 shows the consumed cycle life of the battery of
satellites on average over the total 96 hours with respect
to the battery capacity while Tc = 80min. As we see, the
energy-aware approach makes satellites consume lower cycle
life of their battery. Specifically, if we consider a battery with
capacity of 2000Wmin for satellites, by energy-agnostic
algorithm, 2.88 cycles are consumed, whereas by the energy-
aware algorithm, only 0.76 cycles are used, meaning over
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Fig. 3: Consumed cycle life with respect to battery capacity during 96 hours,
considering required time for training of Tc = 80min. E-Agn. and E-Awa.
stand respectively for energy-agnostic and energy-aware FL algorithms.

three-fold more cycle life consumption with energy-agnostic.
Considering a battery with a total cycle life of 800 [28], if
the satellite employs the energy-agnostic approach, it can
operate only for approximately 3 years. However, by the
energy-aware approach, the satellite’s operational lifetime
extends to over 11 years.

VI. CONCLUSIONS

Satellites use solar energy during sunlight periods but
depend on their batteries during eclipses. However, frequent
use of batteries decreases their lifetime. To enhance the
lifetime of satellite batteries, in this paper, we formulated an
optimization problem. The aim is to schedule on-board FL
training tasks such that the use of the satellite’s batteries is
reduced. We solved the optimization problem with successive
convex approximation. Our numerical results show that
the introduced approach increases the lifetime of batteries
significantly.
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