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Abstract—5G was developed a few years ago to support various
verticals, including connected vehicles. Now that commercial
deployments of 5G networks are available, it is crucial to
empirically evaluate their performance in real-world scenarios.
This study measures the performance of a private 5G campus
network for a connected car in terms of downlink (DL) and
uplink (UL) bit rates, as well as latency metrics including round-
trip time (RTT) and jitter. The car is driven at controlled
speeds of 10 km/h, 20 km/h, and 30 km/h on an urban
street. Subsequently, we analyze the impact of speed on the
probability distributions of these performance metrics. Notably,
our observations suggest that 5G performance slightly improves
at higher speeds. We attribute this to increased spatial diversity,
as higher speeds enhance the likelihood of experiencing stronger
received signal power levels across diverse locations.

Index Terms—Connected cars, speed of vehicle, private 5G
campus network, empirical performance evaluation, bit rate,
latency, jitter.

I. INTRODUCTION

It has been more than a few decades since humans started
wishing for fully autonomous cars—vehicles that can drive
themselves without human intervention while being safer,
more efficient, and more comfortable than human-driven cars.
Although many challenges have already been addressed, there
is still a path ahead—whether short or long—before self-
driving cars become a technological and commercial reality.

Wireless connectivity offers significant potential for cars.
Imagine how safe and efficient it would be if an intelligent
car could proactively respond to changes in its surroundings
by receiving real-time information. Connected cars can also
cooperate with other connected road users to enhance the
safety of all maneuvers and optimize the use of road capacity.
As we can see from these examples, the concepts of connected
cars and self-driving cars are deeply intertwined. As a result,
transportation has always been one of the key vertical indus-
tries that modern wireless communication technologies should
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Fig. 1: Measurement Setup Architecture

support. This was also one of the primary goals during the
design of 5th generation cellular network (5G) a few years ago.
Now, as 5G networks have become commercially available, it
is the right time to empirically evaluate their performance in
real-world scenarios to understand how different parameters
affect it. Obviously, empirical performance evaluations can
either validate the successful achievement of design goals or
provide valuable lessons for future designs.

In cellular networks, one of the key differences between
vehicular use cases and non-vehicular ones is that in vehicular
use cases, the network users—connected cars—are almost
always in motion at varying speeds in different environments,
ranging from low speeds on city streets to high speeds on
highways. Hence, investigating the effects of mobility on
network performance is of great importance.

In the existing literature, several empirical studies evaluate
the performance of 5G networks, such as those presented
in [1]–[10]. Although their measurement results provide valu-



5G Base Station

100 m

50 m
0 m

150 m

(a) 3D map view.

5G Base Station

(b) 5G Base Station

5G Base Station

5G Antennas

(c) 5G antennas and base station

Vehicle under test

(d) Vehicle under test

5G Antennas

(e) Antennas on toproof

5G Modem

Controlling Laptop

(f) Controlling laptop and modem

Fig. 2: Vehicular user equipment, environment, and street where the measurement campaign was conducted.

able insights into the capabilities of 5G networks, they do
not specifically focus on vehicular applications. Using an in-
motion vehicle as an information-gathering tool for assess-
ing network coverage is common practice among all mobile
network operators (MNOs). However, this method, which is
known as a drive test, is typically employed for non-vehicular
use cases. Only a limited number of studies have examined
5G performance in mobile scenarios [11]–[15] or vehicular
scenarios [16]–[23]. Moreover, in these studies, vehicle speed
is not reported. Due to the practical challenges of conduct-
ing performance measurements in controlled environments,
some researchers have developed platforms to gather quality
of service (QoS) data on busy and challenging roads and
streets [24]–[28]. It might be necessary to embed such test and
measurement infrastructures and mechanisms, which can sys-
tematically collect and analyze QoS data on a large scale, into
the architecture of wireless networks as integral components.
This approach could ensure well-functioning and always-
optimized networks in the future, particularly for challenging
applications like vehicular ones. Among the available studies,
only a few have reported 5G measurements in vehicular
scenarios that include vehicle speed [26], [29]–[33]. Moreover,
none of these studies specifically examine the impact of speed
on the performance metrics of 5G networks.

In this study, we aim to measure bit rate in both downlink
(DL) and uplink (UL) directions, as well as latency in terms
of round-trip time (RTT) and jitter, for a single, slow-moving
vehicle in an urban environment while connected to a single
base station (BS) of our private 5G campus network. Due to
practical constraints, we limited the scope of these measure-
ments to low speeds and urban environments, as these settings
reflect typical conditions within cities where most of our time
is spent. Additionally, we focused on a single-cell scenario due
to similar practical constraints. Multi-cell scenarios, involving
handovers between different BSs, as well as investigations
in other environments and at higher speeds, require detailed

experiments in future research. In the following sections, we
will first describe the measurement methodology, then present
the obtained results, and finally conclude with a summary.

II. MEASUREMENT METHODOLOGY

The measurement setup is shown in Fig. 1. It consists of a
private 5G campus network from a local vendor, MECSware,
including a server that runs 5G core network functions con-
necting through an Ethernet switch to an outdoor BS. The
Ethernet switch also provides power for the BS in the form of
power over Ethernet (PoE). The BS is located on the terrace
of our lab in the NEOS building, at the University of Bremen,
Germany, and faces toward Lise-Meitner-Straße Street. The
building, street, and surrounding environment are shown in
Fig. 2a. Other cars were rarely observed crossing the street
during the measurement campaign. In the street, we drove a car
equipped with four 5G antennas on its roof. The antennas are
connected via 2-meter coaxial cables to a 5G modem, Quectel
RM510Q-GL, which was connected to a laptop via a USB
port. The car, BS, vehicle, modem, and controlling laptop are
shown in Fig. 2. Please note that there were other antennas on
the roof of the car which are irrelevant to this measurement
campaign. The relatively long length of the 5G whip antenna,
attached to the car’s rooftop with its magnetic mount, is due
to its wide range of supported frequency bands. In addition to
the 3.75 GHz band used for our private campus network, the
antenna also supports several sub-GHz bands. Further details
of the measurement setup and 5G network configuration are
provided in Table I.

First, we measured the reference signal received power
(RSRP) at three fixed locations—points A, B, and C in
Fig. 2a—conducting two measurements at each location for
all four antennas, resulting in eight values. To achieve this, we
used a specific AT command on the modem (AT+QRSRP). The
statistics of the measured RSRP values, which were reasonably
consistent with each other, are reported in Table II.



Network Configuration

Number of user equipments (UEs) 1
BS transmission power 23 dBm

Carrier Frequency 3.750 GHz
Bandwidth 100 MHz
Duplexing Time-division duplexing (TDD)

DL to UL Capacity Ratio 5:5
3GPP TDD Slot Configuration FR1.30-5
3GPP Quality Class Indicator 5QI-9

RLC Mode Acknowledged Mode (AM)
DL-UL Transmission Periodicity 2 ms

Subcarrier Subspacing 30 kHz
MIMO 2-layer (2T2R)

Equipment

5G Campus Private Network MECSware campusXG®
Base Station Outdoor Small Cell SCO5164P
UE Modem Quectel RM510Q-GL

UE Laptop’s processor AMD® Ryzen 5 5500u
UE Laptop’s memory 32 GB

UE Laptop’s OS Ubuntu 22.04.4 LTS
UE Antenna CompoTEK CTA 3807/5/DT/SM/T1

UE Antenna Gain 5 dBi
Smart Phone (as a GPS Recorder) Samsung Ultra S23

TABLE I: Measurement setup parameters.

Location RSRP

Ave. [dBm] Std. [dBm]
Point A −103.50 2.29
Point B −103.00 5.05
Point C −105.12 4.88

All (A, B, and C) −103.88 4.36

TABLE II: Average and standard deviation of RSRP at various
locations.
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for all measurement trials, obtained from GPS recorder data,
demonstrating the accuracy and consistency of manually main-
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Next, we measured the RTT using the following command.

sudo ping -c 1000 -i 0.001 {destination IP address}
↪→ > outputfile_trialID.txt

It is worth mentioning that TDD influences latency as DL
and UL packets must wait for their respective time slots
before transmission. Lower RSRP, which increases the need
for retransmissions, further increases the RTT. Additionally,
large data packets that exceed the size of a single radio frame
and require fragmentation also experience longer RTTs. In our
measurements, we used the default packet size of ping, which
is 64 bytes encapsulated within an IP packet.

Next, we measured the bit rates for DL and UL using the
following two commands, respectively, in the bash terminal of
the controlling laptop running Ubuntu.

sudo iperf3 -c {Server IP address} --udp --bitrate
↪→ 600000000 --interval 0.1 -R --json --logfile
↪→ outputfile_trialID.txt

sudo iperf3 -c {Server IP address} --udp --bitrate 0
↪→ --interval 0.1 --json --logfile
↪→ outputfile_trialID.txt

For measurements at different speeds, we drive the car from
Point A to Point C while manually maintaining a constant
speed of 10 km/h, 20 km/h, and 30 km/h. These speeds
were chosen because, within cities, vehicle speeds typically
fall within this range, and speeds greater than 50 km/h are
generally prohibited on urban streets. We did not choose
speeds of 40 km/h and 50 km/h due to practical constraints,
such as the limited distance available on the selected street
with 5G coverage and the time required for each test.

Before conducting the actual measurements on the street
with the vehicle under test, we conducted some trial mea-
surements in the lab to determine the time required for each
measurement. Based on these trials, we limited the ping
packet number to 1000 packets per trial to ensure that each
measurement would be completed within approximately 10
seconds, which is the maximum time available on the chosen
street at the speed of 30 km/h. We maintained the 10-second
duration for all measurement trials to simulate consistency
across all scenarios. However, fixing the time inevitably limits
the distance we can drive at lower speeds. The trajectory for
each measurement trial is shown in Fig. 4.

For each performance metric—DL bit rate, UL bit rate, and
RTT—we conducted two measurements at each speed value,
resulting in a total of six trials per speed value. However, since
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Fig. 5: Cumulative distribution of measured performance metrics.

Measurement scenarios Speed

Ave. [km/h] Std. [km/h]
Trials aiming to 10 km/h 10.28 0.71
Trials aiming to 20 km/h 19.99 1.15
Trials aiming to 30 km/h 29.45 1.54

TABLE III: Average and standard deviation of speed across
different measurement trials, obtained from GPS recorder data.

we observed negligible differences between the two trials, we
combined their measured samples to create a larger dataset.
The exact speeds for all trials are shown in Fig. 3. As we can
see, as reported in Table III, the manually-maintained constant
speed exhibited reasonably low variation.

The inter-arrival jitter is defined as the average deviation in
the latency of packets, calculated from the difference between
the inter-arrival times of successive packets at the receiver
and their corresponding inter-transmit times at the transmitter.
Specifically, it is the mean of D(i + 1, i), as given by the
following equation:

D(i+ 1, i) = (Ri+1 −Ri)− (Si+1 − Si)

= (Ri+1 − Si+1)− (Ri − Si)
(1)

where Ri and Si are the reception time and transmission
time of the ith packet, respectively. To measure the inter-arrival
jitter, we used iperf3, which is capable of reporting inter-
arrival jitter in addition to measuring bit rate.
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Fig. 6: Performance parameters at different speeds. The x-axis ticks ’0 at A,’ ’0 at B,’ and ’0 at C’ indicate stationary
measurements, with speed of 0 km/h, taken at points A, B, and C, respectively. The data presented at x-axis tick ’0’ is a
merge of all measurements taken at these stationary points.

Performance metric Average Standard Deviation 5%tile Median 95%tile

slope (a) abscissa (b) slope (a) abscissa (b) slope (a) abscissa (b) slope (a) abscissa (b) slope (a) abscissa (b)
Round-trip time [ms] −0.0223 14.71 −0.0018 4.28 −0.0106 10.30 −0.0105 12.19 −0.0401 23.35
Jitter [µs] −1.9394 121.65 −5.1053 261.44 −0.0050 4.21 −0.1599 26.14 −11.7226 698.10
Downlink bit rate [Mbit/s] 1.7230 166.20 −1.4222 72.88 3.8667 27.45 1.5153 172.23 0.7610 263.30
Uplink bit rate [Mbit/s] 0.0950 136.00 0.0074 39.87 −0.0017 77.03 0.0463 154.41 −0.1199 195.73

TABLE IV: The least squares linear fit coefficients, slope (a) and abscissa (b). The performance metrics P can be estimated
versus speed S in km/h using P = a · S + b.



III. RESULTS AND DISCUSSION

The complementary cumulative distribution function
(CCDF) of RTT and jitter, as well as the cumulative
distribution function (CDF) of DL and UL bit rates at
different speeds of 10 km/h, 20 km/h, and 30 km/h, along
with those related to stationary measurements ,i.e., 0 km/h,
at points A, B, and C, are shown in Fig. 5.

As shown in Fig. 5a, the CCDF of RTT exhibits a step-
like behavior. Each downward step represents transmitted
data packets that required one more repetition in the hybrid
automatic repeat request (HARQ) process compared to the
packets in the previous step category. When the UE is located
in areas with good signal conditions, characterized by higher
RSRP values, most transmitted data packets require only
one transmission to successfully reach their destination. This
results in the CCDF appearing as a nearly straight line on
the left side, close to the plot’s vertical axis. Conversely,
in poor signal conditions, with lower RSRP values, more
packets require additional repetitions to successfully reach
their destination, causing the CCDF curve to exhibit smaller
steps and shift to the right, farther from the vertical axis.
However, in both cases, the starting points, indicating the
minimum required RTT, and the endpoints, corresponding to
packets with the highest number of repetitions, are identical.

Being in motion can make the UE encounter a various RSRP
levels at different locations. Therefore, the distribution of RTT
for a UE in motion can be considered a mixture of distributions
from different stationary locations. Furthermore, as shown in
Fig. 5b, jitter is lower at higher speeds, likely due to fewer
required repetitions in better signal conditions.

The same behavior is also observed in the CDF of DL and
UL bit rates. In poor signal conditions, a lower modulation
and coding scheme (MCS) order is chosen for communication,
resulting in a lower bit rate compared to better signal condi-
tions, where a higher MCS order is selected. When a UE is in
motion, the bit rate becomes a mixture of the bit rates from
the various locations along its trajectory. This mixed behavior
is evident in both Fig. 5c and Fig. 5d.

To better understand the dependence of the measured
performance metrics on speed, we depict their probability
density function (PDF) using 3D plots in Fig. 6. The figure
also illustrates their average, 5th, and 95th percentiles, along
with the linear least square (LLS) fit to these values. This
figure demonstrates how the mixture distribution for a UE
in motion changes with speed, resulting in slightly improved
performance. The numerical values corresponding to these
fitted lines are reported in Table IV.

IV. CONCLUSIONS

We assessed the impact of vehicle speed on the commu-
nication performance of a connected car, operating within a
single-cell 5G campus network, while driving at slow speeds
of 0 km/h, 10 km/h, 20 km/h, and 30 km/h on an urban
street.

Our empirical measurements of 5G performance for the
connected car at stationary locations where the RSRP was on

average −103.88 dBm with a standard deviation of 4.36 dBm,
revealed that a 5G BS with a 100 MHz bandwidth, operating
in TDD mode with equal time allocation to DL and UL, can
provide average DL bit rate, UL bit rate, RTT, and jitter of
166.20 Mbit/s, 136.00 Mbit/s, 14.71 ms, and 121.65 µs,
respectively. The standard deviations for these measurements
are 72.88 Mbit/s, 39.87 Mbit/s, 4.28 ms, and 261.44 µs,
respectively. These measurements were taken with only one
UE—the car—connected to the network.

Notably, in the specific environment where our measure-
ments were conducted, these performance metrics slightly
improved with increasing speed. Specifically, RTT and
jitter decreased at rates of −0.0223 (ms)/(km/h) and
−1.9394 (ms)/(km/h), respectively, while DL and UL bit
rates increased at rates of 1.7230 (Mbit/s)/(km/h) and
0.0950 (Mbit/s)/(km/h), respectively.

This improvement is plausibly attributed to increased spatial
diversity at higher speeds. At higher speeds, the probability
distribution of performance metrics reflects a mixture of dis-
tributions from a greater number of locations, leading to higher
overall performance due to the diversity of signal conditions
encountered.

Our findings underscore the importance of considering
speed and mobility in the design and optimization of 5G
networks for vehicular applications.
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