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Abstract—In wireless communication, base stations rely on
downlink Channel State Information (CSI) to perform precoding.
Without channel reciprocity, the mobile station must trans-
mit the estimated CSI back to the base station. Due to the
time-varying nature of the environment, channel characteristics
change constantly, requiring regular CSI feedback updates at
intervals that depend on the rate of change. Thus, increasing
the interval between the CSI updates, can reduce the average
CSI feedback overhead. Additionally, In Multiple-Input Multiple-
Output (MIMO) systems, the CSI feedback overhead grows with
the number of antennas and bandwidth, leading to a potential
performance bottleneck. To reduce the CSI feedback overhead
and increase the intervals between CSI updates, we propose
a novel method that integrates Dynamic Mode Decomposition
(DMD) and Convolutional Autoencoders (CAE) to model and
compress channel dynamics. DMD decomposes the channel
matrix into modes that can predict the future state of the
channel, thereby extending CSI feedback intervals, while CAE
captures the most relevant features of these modes for further
compression. Simulation results demonstrate that this method
effectively reduces feedback overhead and prolongs the intervals
between CSI updates.

Index Terms—Time-varying channels, MIMO systems, CSI
feedback, Channel estimation, Dynamic Mode Decomposition,
Convolutional Autoencoder.

I. INTRODUCTION

Multiple-Input Multiple-Output (MIMO) systems are funda-
mental in modern wireless communication networks. A critical
aspect of MIMO transmission is obtaining accurate downlink
Channel State Information (CSI) at the Base Station (BS),
which is crucial for effective precoding.
In Frequency Division Duplex (FDD), the use of different
frequencies for downlink and uplink prevents channel reci-
procity [1], while time division duplex (TDD) theoretically
allows for reciprocal channels, practical issues such as non-
identical RF chains at the transmitter and receiver often negate
this advantage [2]. Consequently, in both FDD and TDD,
the BS cannot rely on uplink reference signals, aka pilots,
to obtain downlink CSI. Instead, the Mobile Station (MS)
estimates the channel based on the downlink pilots, and then
reports the CSI back to the BS. However, transmitting the full
channel matrix incurs significant uplink overhead. To address
this, the MS compresses the estimated channel matrix to
produce a low-dimensional representation that retains the key
characteristics of the channel, reducing the feedback overhead
while maintaining performance at a required quality level.
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Several techniques for compressing CSI have been pro-
posed. Traditionally, methods such as Singular Value De-
composition (SVD), which compresses the channel matrix in
the frequency domain, and Compressed Sensing (CS), which
assumes that wireless channels are sparse in the time domain,
have been utilized. The authors in [3] compare these two
methods and demonstrate that CS can outperform SVD.
Recently, machine learning (ML) techniques have emerged as
promising options for channel matrix compression. The first
deep learning (DL) network introduced for this purpose was
presented in [4]. This architecture, known as CsiNet, exhibits
significant advantages over traditional CS methods. However,
CsiNet is a point estimation model that learns a single value
per codeword dimension, making the reconstruction quality at
the BS vulnerable to noise. Other ML models, such as Autoen-
coders, have also been widely used for CSI compression. The
authors in [5] propose the Convolutional AutoEncoder (CAE),
which estimates distribution parameters, namely the mean and
variance for a Gaussian distribution, for each compressed CSI
dimension. They show that CAE demonstrates noteworthy
robustness against noise compared to CsiNet.
In mobile communication, the movement of terminals causes
continuous changes in channel characteristics, with higher
velocities result in more rapid changes [6]. This leads to a
phenomenon known as channel aging. CSI updates are sent
to the BS at intervals influenced by the channel aging effect.
However, as user velocity changes, the rate of channel aging
can also vary. Thus CSI updates can be fed back aperiodically.
A study that addresses this matter through channel prediction
is presented in [7], where the authors use Dynamic Mode
Decomposition (DMD) [8] to compress the channel matrix
and predict its future state, thereby mitigating channel aging
and extending the CSI update intervals.
In this paper, we propose a method that combines DMD
with CAE. DMD generates a dynamic model, that the CAE
can compress to extract key features. This choice ensures a
straightforward and efficient structure. Simulation results show
that the proposed approach effectively reduces CSI feedback
dimensionality and extends update intervals, leading to lower
average CSI overhead.

Notations: Throughout this paper, we represent matrices by
uppercase boldface letters, column vectors by bold lowercase
letters, scalars by italic lowercase letters and numbering by
italic uppercase letters. (·)† represents the Moore–Penrose
pseudoinverse.



II. SYSTEM AND CHANNEL MODELS

A. System Model

We consider a MIMO-Orthogonal Frequency Division Mul-
tiplexing (MIMO-OFDM) system with K subcarriers, Nt

transmit antennas at the MS, and Nr receive antennas at
the BS. Channel estimation is conducted over one Resource
Block (RB) spanning duration T in time, resulting in an 4D
estimated channel matrix denoted as H̄ ∈ CK×T×Nt×Nr . To
find the corresponding CSI to be fed back, we reshape H̄
to 2D matrix H ∈ CL×T , where L = KNtNr. The CSI is
then compressed before reporting to the BS. Upon receipt,
the CSI at the BS undergoes decompression to reconstruct
the channel matrix Ĥ essential for appropriate precoding of
downlink user data. However, due to the compression error,
Ĥ can deviate from the estimated H, leading to a channel
reporting error that dependent on the compression accuracy.
In practice, factors like quantization and transmission can
introduce additional errors to the received H, but these are
beyond the scope of this paper. To evaluate performance, we
employ the Normalized Mean Square Error (NMSE), defined
as NMSE =

E{∥H−Ĥ∥2
2}

E{∥H∥2
2}

.

B. Time-Varying Channel Model

In wireless mobile networks, the motion of the MS induces
Doppler frequency shifts in the transmitted waves, resulting in
time-varying changes to the channel characteristics in the time
domain [9]. A key parameter used to characterize these time-
varying channels is the coherence time τ , which indicates the
duration over which the channel can be regarded as temporally
correlated. This parameter can be expressed as:

τ =
c

2vfc
, (1)

where v, fc, and c represent the MS velocity, the carrier
frequency of the signal, and the speed of light, respectively.
The Doppler shift is directly proportional to the MS velocity,
leading to an inverse relationship between coherence time and
Doppler shift. The phenomenon of channel aging can be quan-
tified using the channel autocorrelation function RH(∆t) [10,
Chapter 3], as depicted in Fig. 1. As the time difference ∆t
increases, the temporal correlation of the channel diminishes
steadily until ∆t = τ . Beyond this threshold, the correlation
becomes negligible.
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Fig. 1. Channel correlation vs. Time difference

C. Channel Sparsity

The matrix H represents the frequency domain channel
coefficients. Due to the radio propagation environment, it is
accepted that the channel in the time domain exhibits sparsity,
which aligns with the 3GPP channel model [11]. We define:

G = IDFT(H), (2)

where, IDFT(·) represents the Inverse Discrete Fourier Trans-
formation. Here G ∈ CL×T denotes the Channel Impulse
Response (CIR) in the time domain, which is sparse along the
first dimension, indicating that only few taps are significant.
According to the 3GPP model, the level of sparsity S̄, that
represents the number of non-zero taps of CIR, remains
constant during the coherence time τ . Additionally, in MIMO
systems, it is assumed that the channel support (positions of
non-zero elements) is common across all MIMO channels.
Consequently, the non-zero taps of the CIR can be arranged
into a matrix as follows:

S = G[G ̸= 0], (3)

where S ∈ CS×T and the entire sparsity S = S̄NtNr. To
reconstruct H from S, we first zero-pad S to form G = [S 0].
Then, we apply the Discrete Fourier Transform (DFT) to
obtain: H = DFT(G).

D. Aperiodic Feedback

The CSI feedback update interval should be determined by
evaluating the NMSE between the received CSI channel matrix
Ĥ and the actual channel matrix H. As channel aging occurs,
the NMSE increases over time. The feedback interval d can
be extended until the NMSE reaches a predefined threshold
γ, based on system requirements. If the MS is capable of
measuring the NMSE and comparing it to the threshold γ,
a simple feedback mechanism can be implemented: when
NMSE ≥ γ, the MS sends updated CSI to the BS [7].
The selection of the threshold γ balances system performance,
measured by NMSE, and the frequency of CSI feedback,
which influences the average overhead.

III. CSI FEEDBACK COMPRESSION

This section explores two distinct methods for compressing
CSI feedback. The first is a mathematical data-driven approach
based on DMD, which not only compresses the channel but
also predicts its future state. The second is a deep learning-
based method using a CAE to extract the key features of the
channel matrix to reduce its dimentionality.

A. Dynamic Mode Decomposition

DMD [8] is a data-driven method for decomposing dy-
namical systems into spatiotemporal coherent structures that
exhibit oscillations at fixed frequencies which either grow or
decay at fixed rates. The method relies on collecting snapshots
from a dynamical system. In the context of wireless channels,
the matrix H comprises T channel snapshots. Specifically,
H = [h1 h2 ... hT ], with each ht ∈ CL×1 representing the
concatenated subcarriers of all MIMO channels in one vector



and over one OFDM symbol t, ∀ t ∈ [1, ..., T ]. To use DMD,
the channel vectors need to be arranged into two data matrices:

H′ = [h1 h2 ... hT−1] ∈ CL×T−1,

H′′ = [h2 h3 ... hT ] ∈ CL×T−1.
(4)

DMD defines a linear approximation, expressing how H′′

evolves from H′ as:

H′′ ≈ AH′, (5)

where A ∈ CL×L is an approximating linear operator,
determined as: A = H′′H′†. This solution minimizes the
Frobenius norm ∥H′′ − AH′∥F functioning as a linear re-
gression of data onto the dynamics represented by A. In
practice, direct analysis of the matrix A may be intractable,
especially when the number of subcarriers or/and antennas
is extensive. However, the rank of A is at most T − 1,
since it is constructed as a linear combination of the T − 1
columns of H. Therefore, instead of solving for A, DMD
projects the data onto a low-rank subspace defined by at most
T−1 Proper Orthogonal Decomposition (POD) modes. It then
solves for a low-dimensional solution evolving on these POD
mode coefficients. The DMD then uses this low-dimensional
solution to find the leading M eigenvectors Φ ∈ CL×M and
eigenvalues Λ ∈ CM×1, which are called DMD modes and
dynamics, respectively. It has been demonstrated in [8] that
the snapshots (channels) are recomposed as:

ht ≈ ΦΛt. (6)

Here M denotes the DMD rank truncation. It indicates the
number of used eigendecompositions. Equation (6) implies
that the higher the M , the better the resolution of recomposed
ht. However, it is important to mention that the generated
eigendecompositions are sorted in descending order of signif-
icance. This implies that a few eigendecompositions contain
most of the channel power. Accordingly, it may be sufficient
to take just a few modes and dynamics to ensure an adequate
resolution of the recomposed ht. Moreover, truncation can also
contribute to noise reduction, since it removes the modes with
no effect on the reconstruction and may contain only noise.
One important feature of DMD is its capability for future state
prediction. This can be achieved by extending the application
of formula (6) by growing the index t beyond T , such as
t = (T + 1), (T + 2), . . ..
Since DMD decomposes the channel matrix into modes that
capture the dominant structures and their growth/decay rates,
and given that the channel matrix exhibits sparsity in the
time domain, the DMD modes will reflect these dominant
frequencies, showing sparsity as well. This sparse represen-
tation, denoted as Φsp ∈ CL×M , is obtained by applying
an IDFT as follows: Φsp = IDFT(Φ). The non-zero taps
in Φsp are then arranged in a matrix Ψ ∈ CS×M , such
that: Ψ = Φsp[Φsp ̸= 0]. Consequently, the CSI feedback
generated by DMD comprises Ψ and Λ, resulting in a total
size of (S ×M +M). Thereby the CSI feedback size can be
adjusted by varying the rank M .

B. Convolutional Autoencoder

A Convolutional Autoencoder [12] is a neural network
designed for unsupervised feature extraction, compression,
and reconstruction of high-dimensional data. It consists of
an Encoder that compresses the input into a low-dimensional
latent space, and a Decoder that reconstructs the data. For
compressing CSI feedback, the encoder maps input data S ∈
RS×T to a lower-dimensional latent representation z ∈ RP ,
where P < S × T , using convolutional operations followed
by activation functions.

dl = f(Wl ∗ dl−1 + bl), (7)

where dl is the output at layer l, f(·) is the non-linear
activation function, ∗ denotes the convolution operator, Wl

and bl are the learnable convolutional weights and biases,
respectively. The output of the encoder is a compressed latent
representation z, given by the final layer of the encoder. The
decoder reconstructs the input data from the latent space z. It
applies a series of transposed convolutional layers, upsampling
the latent representation back to the original input dimensions.
To optimize the CAE, the objective is to minimize the re-
construction error between the input S and the reconstructed
output Ŝ. This goal is quantified using the mean squared
error loss function as: L(S, Ŝ) = E{∥S − Ŝ∥22}. The CAE
is trained to minimize this loss, ensuring that the compressed
latent representation retains sufficient information for accurate
reconstruction of the original data.

CAE-based CSI Compression: To reduce the overhead of
CSI feedback, we exploit the channel’s inherent sparsity in
the time domain by transforming the channel matrix H, as
described in Section II-C. Since CAE operates on real-valued
data, the resulting complex-valued matrix, S, is split into its
real and imaginary parts, which are then concatenated to form
a real-valued input of size 2S×T , making it compatible with
the encoder.
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Fig. 2. CAE network architecture for CSI compression.



The architecture of the CAE employed in this study is illus-
trated in Fig. 2. This proposed network is designed to be basic
and straightforward, as the primary objective of this paper is
not to create a sophisticated compression mechanism but to
apply a compression technique to the DMD modes and assess
the performance variations with and without compression.
In the encoder component of the CAE, the primary building
blocks consist of two consecutive Convolutional layers (Conv),
denoted as Conv 1 and Conv 2. These layers are specifically
focused on extracting local features from the input data, cap-
turing essential spatial or temporal patterns. The convolutional
operations performed by these layers allow the network to
learn and identify relevant features effectively, which is crucial
for the subsequent steps in the compression process. Following
the convolutional layers, the output data is flattened into a one-
dimensional vector to prepare it for further processing.
To facilitate adjustments to the latent space size, we incor-
porate a Fully Connected (FC) layer, referred to as FC 1.
The addition of FC layers in a CAE is useful as they enable
effective control on the dimensionality reduction after feature
extraction, retaining only the most relevant information for
efficient feedback transmission.
Transitioning to the decoder section of the CAE, we begin
with another fully connected layer, FC 2. This layer reshapes
the data output from the encoder to make it compatible with
the subsequent Conv 3 layer. The use of convolutional layers
in the decoder, Conv 3 and Conv 4, allows the network
to reconstruct the input data from the compressed latent
representation.
Furthermore, throughout the architecture, we utilize Rectified
Linear Units (ReLU) as activation functions in the deep layers.
The ReLU activation function introduces non-linearity to the
network, enhancing the learning capacity.
Overall, the design of the CAE in this study emphasizes
simplicity and functionality, allowing for a focused analysis
of the impact of compression on DMD modes.

C. DMD-CAE-Based CSI Compression

Incorporating the DMD framework into the CAE network
introduces a novel approach to compressing CSI feedback.
The DMD technique enables extracting essential modes that
capture the underlying structures of the channel. By applying
IDFT to the DMD modes, we transform into the time domain
representation, reflecting the temporal sparsity features of
the channel, as mentioned in Section III-A. The resulting
data, denoted as Ψ, consists of complex-valued modes. This
transformation ensures that the CAE processes a compact
and relevant representation of the channel’s dominant struc-
tures. Unlike traditional CAE methods that directly utilize
the channel state information, the DMD-CAE leverages the
more informative DMD modes as input. Fig 3 details the
entire process for the proposed DMD-CAE network. This shift
results in a higher Compression Ratio (CR), as the size of Ψ is
S×M , while the original input size, without applying DMD, is
H is of size S×T , with M < T . Additionally, utilizing DMD
compression offers the advantage of enabling predictions of
the future state of the channel at the BS. Algorithm 1 shows the
process steps for the proposed approach DMD-CAE encoder
that is performed at the MS side. The opposite process is
carried out at the BS side.

Algorithm 1: Pseudocode for the DMD-CAE Encoder
1: Input: Channel matrix H, DMD rank M
2: Output: Compressed representation z
3: Step 1: Apply DMD to H
4: Compute DMD modes Φ
5: Step 2: Apply IDFT Φ
6: Compute Ψ← IDFT(Φ)[̸= 0])
7: Step 4: Concatenate real and imaginary parts

8: Reform Ψ←
[
Ψreal
Ψimag

]
9: Step 5: Compress using the CAE Encoder

10: Compute the compressed representation z← CAE(Ψ)
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Fig. 3. The proposed framework for DMD-based CSI feedback utilizing CAE.



IV. SIMULATION SETUP AND RESULTS

In this section, we perform numerical simulations to eval-
uate the performance of the dynamical model CSI feedback
scheme and compress its components with CAE and compare
the performance for different scenarios.

A. Simulations Setup

We employ Heterogenous Radio Mobile Simulator (Her-
mesPy) [13] to generate the channel coefficients. The system
parameters used are listed in Table I.

TABLE I
SIMULATION PARAMETERS

System Parameters Value
Channel model COST 259 [14]

Carrier frequency fc 2 GHz

MS velocity v 50 Km/h

No. of BS and MS antenna Nr, Nt 2, 2

Subcarrier spacing 15 KHz

RB size K × T 72× 14

CIR sparsity S̄ 8

Channel estimating error AWGN

Utilizing (1), the coherence time is approximated by τ ≈
5.4 ms. With a subcarrier spacing of 15 KHz, the duration
of one OFDM symbol is 66.7 µs. The number of OFDM
symbols within the correlation time T ′ is calculated as
T ′ = ⌈ 5.4·10−3

66.7·10−6 ⌉ = 80. This value will be used later when
discussing the channel prediction. The channel matrix H is of
size (228×14), whereas the CIR matrix S is of size (32×14)
complex coefficients.
The size if DMD-based CSI with no further compression is
based on the DMD rank M , as mentioned in the Section III-A.
For M = 1 the CSI size is 32× 1 + 1 = 33. Whereas, when
M = 3 the CSI size is 32× 3 + 3 = 99 complex coefficients.
For the CAE network, the kernel size for all Conv layers is 3,
with stride equals 2. The (in channel, out channel) sizes for
Conv 1, Conv 2, Conv 3, and Conv 4 are (2, 16), (16, 32),
(32, 16) and (32, 2), respectively. We trained the CAE network
using a dataset of 5000 realizations. The training dataset is
subjected to noise with SNR values ranging between 10 and
30 dB. The training process spanned 100 epochs with a batch
size of 100.

B. Simulation Results

We begin by evaluating the performance of DMD and
CAE independently, without any combinations between them.
Fig . 4 compares the performance of DMD and CAE for
varying CSI sizes, with each method indicated in the legend
along with its corresponding output size, measured in complex
coefficients. In this analysis, an output size of 9 coefficients
corresponds to a DMD rank of M = 1, while an output size
of 27 coefficients corresponds to M = 3. The CAE-based CSI
size can be adjusted to match the DMD output size by tuning
the FC layer parameters. The x-axis represents the channel
estimation error expressed as an SNR value in dB.
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Fig. 4. Comparison of CSI compression performance for CAE and DMD, in
terms of channel SNR and for two output sizes.

By integrating DMD and CAE, we achieve further reduc-
tions in CSI feedback overhead through the compression of
DMD modes. Fig. 5 illustrates the NMSE performance of the
proposed method across three different compression ratios of
1/4, 1/8, and 1/16. The compressed modes are also subjected
to noise with varying estimation errors. At lower SNR values,
the NMSE for the different CRs is nearly identical, which
can be attributed to the high noise levels introduced by the
estimation error compared to the CAE compression error.
In contrast, at higher SNR values, the NMSE performance
diverges, with CR=1/4 demonstrating the best performance.
This can be explained by the fact that the noise introduced
from channel estimation is comparable to the noise added
during the CAE compression process.

0 15 30
SNR

10−3

10−2

10−1

NM
SE

CR=1/4
CR=1/8
CR=1/16

Fig. 5. Comparison of DMD modes compression performance for CAE with
different CR values, in terms of channel SNR.

We now leverage the prediction capabilities of DMD to
evaluate its performance after compressing the DMD modes
with the CAE. When using prediction, CSI feedback is only
required once the quality of the predicted channel matrix falls
below a predefined threshold γ, leading to an aperiodic CSI



update, as discussed in [7]. The key point is that better pre-
diction quality results in longer intervals between CSI updates
and a reduction in the average CSI feedback overhead. In this
simulation, we assume perfect channel estimation to isolate
the prediction performance. Fig. 6 presents a comparison of
NMSE performance for different channel prediction strategies
using DMD in a time-varying channel scenario. The x-axis
represents the future RB sequence. The NMSE performance
is compared between Three scenarios:

• No Prediction (Curve ‘A’): In this scenario, the estimated
channel matrix at RB#0 is simply repeated for future RBs.
The performance is poor, as expected, due to channel
aging effects and time-varying properties.

• DMD Prediction without Compression (Curve ‘B’):
Here, DMD is applied to predict the future channel
matrices without compressing the DMD modes. This
method performs the best among all curves since since
no compression error is introduced. However, prediction
error accumulates over time, leading to a gradual increase
in NMSE.

• DMD Prediction with Compression (Curves ‘C’, ‘D’
and ‘E’): These curves show the performance of DMD
prediction after compressing the DMD modes with a CAE
at different compression ratios, specifically CR=1/4, 1/8
and 1/16, respectively. This comparison highlights the
trade-off between compression efficiency and prediction
accuracy. As expected, higher CR values introduce more
error, but the prediction remains relatively robust, partic-
ularly in the short term (between RB#1 and RB#3).

1 2 3 4 5 6 7
RB sequence

10−8

10−6

10−4

10−2

100
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SE
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Fig. 6. Channel MSE evolution over time across different scenarios: ‘A’
denotes no prediction techniques used, instead repeating the estimated channel
values. ‘B’ corresponds to the application of DMD with M = 3, without any
additional compression. ‘C’, ‘D’, and ‘E’ illustrate the compression of DMD
modes using a CAE with CRs of 1/4, 1/8, and 1/16, respectively.

Consider a system where the received CSI channel matrix
Ĥ must achieve an NMSE of γ = 10−2, accounting for
Doppler effects corresponding to a given velocity. Simply
repeating the CSI (curve ’C’) meets γ for the first future
RB, while prediction without compression (curve ’B’) ensures
four future RBs meet the γ threshold without a CSI update.

Compressing DMD modes can still meet the system require-
ments at CR=1/4, predicting the channel for three future RBs.
However, higher CR values fail to meet the required accuracy
for future predictions.

V. CONCLUSION

In this work, we introduced a method that combines DMD
and CAE to reduce the CSI feedback overhead in MIMO
systems. The first step involves using DMD to decompose
the channel matrix into modes and dynamics, with only the
most dominant modes and their dynamics being utilized for
CSI feedback. In the second step, CAE is employed to further
compress the dimensionality of these modes. This technique
effectively reduces the CSI overhead while maintaining accept-
able reconstruction accuracy at the base station. Additionally,
by exploiting the predictive capabilities of DMD, the fre-
quency of CSI updates is minimized, as future channel states
can be effectively predicted. This results in longer intervals
between CSI feedback updates and a significant reduction
in average overhead. Our simulations demonstrate that the
proposed approach improves feedback efficiency, addressing
the growing challenges of CSI feedback in future systems with
increasing antenna arrays and bandwidth.
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