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Abstract—In wireless communication systems, accurate Chan-
nel State Information (CSI) is essential for base stations to per-
form downlink precoding. While much of the existing research
primarily focus on compressing the CSI matrix, they often ne-
glect the impact of subsequent pre-transmission processes such as
quantization, channel coding, and modulation. This paper inves-
tigates two distinct approaches for CSI dimensionality reduction:
TransNet, a transformer-based neural network, and Dynamic
Mode Decomposition (DMD), a mathematical decomposition
technique for dynamical systems. We analyze how quantization,
channel coding, and modulation affect CSI feedback for both
methods. Unlike TransNet, DMD can decompose the channel
matrix into components (called modes) with varying significance.
This decomposition allows for an effective application of Unequal
Error Protection (UEP) techniques to DMD modes, which is not
feasible with TransNet-based CSI. Simulation results reveal that
while the compression performance of TransNet and DMD varies
based on factors like target CSI size and channel estimation error,
integrating UEP techniques for DMD-based CSI yields superior
CSI transmission performance compared to TransNet-based CSI.

Index Terms—CSI feedback, Quantization, Polar codes, Mod-
ulation, NOMA, Dynamic mode decomposition, Transformers.

I. INTRODUCTION

Accurate downlink Channel State Information (CSI) is
crucial in wireless communication systems for enabling pre-
coding at the Base Station (BS). Typically, the channel matrix
is estimated by the User Equipment (UE) and then transmitted
back to the BS. Due to the large size of the channel matrix,
efficient compression is necessary before transmission. To
address this challenge, various compression techniques have
been developed to reduce the dimensionality of CSI feedback.
These techniques include Compressive Sensing (CS), matrix
decomposition, and Deep Learning (DL) methods. Traditional
CS methods exploit the assumed sparsity of the Channel
Impulse Response (CIR) in the time domain, utilizing sparse
recovery techniques such as Orthogonal Matching Pursuit
(OMP) [1]. Matrix decomposition techniques, like Dynamic
Mode Decomposition (DMD) [2], leverage temporal correla-
tions in the channel, providing robust dimensionality reduction
and predicting future channel states to reduce the frequency
of CSI updates [3]. DL-based frameworks, such as TransNet
[4], use the most recent neural network designs, namely
transformers, to compress the channel matrix.
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Despite the extensive research on CSI compression, there is
often insufficient consideration of the subsequent processes re-
quired before transmission. After compression, CSI feedback
undergoes quantization, channel coding, and modulation, each
of which affects CSI quality. Quantization converts continuous
CSI values into discrete levels, where more quantization levels
can improve accuracy but increase the data size. Channel
coding adds redundancy to protect against transmission errors,
though this raises overhead. Modulation maps the quantized
and coded CSI data to complex symbols for transmission over
the wireless channel, where higher modulation orders can
improve the transmission bit rate but may also increase the
bit error rate. Therefore, optimizing each process is critical
to balancing the trade-off between maintaining high CSI
accuracy and managing overhead and transmission bit rate.

This paper provides an extensive evaluation of CSI com-
pression methods that accounts for the entire feedback proce-
dure, including quantization, channel coding, modulation, and
transmission. We namely focus on analyzing the transmission
of CSI feedback generated by two different methods: DMD
and TransNet. Both methods can compress the CSI matrix.
However, the DMD output is divided into components (called
modes) with varying importance, whereas the TransNet treats
its output as equally important. Our comparative analysis
involves utilizing Unequal Error Protection (UEP) [5] tech-
niques in quantization, channel coding, and modulation to
allocate different levels of error protection to the CSI feedback
parts based on their significance. The primary objectives are:

• To assess the impact of TransNet and DMD compression
on the CSI quality.

• To analyze how quantization, channel coding, and mod-
ulation affect CSI feedback.

• To investigate the benefits of using UEP with CSI com-
pression methods.

By providing a comparative analysis of TransNet and DMD,
this paper highlights which method may be more effective
under various conditions, potentially improving CSI feedback
accuracy and overall network performance.

Notations: Throughout this paper, we represent matrices by
uppercase boldface letters, column vectors by bold lowercase
letters, scalars by italic lowercase letters and numbering by
italic uppercase letters. E{.} denotes the mean.



II. SYSTEM AND CHANNEL MODELS

A. System Model

We consider an Orthogonal Frequency Division Multiplex-
ing (OFDM) system with K subcarriers. Channel estimation
at the UE is performed over a time segment of duration T ,
resulting in the estimated channel matrix H ∈ CK×T , with T
is the number of OFDM symbols. Though we assume a single-
antenna setup, this can be extended to a multi-antenna system.
For such, the channel matrix is H̄ ∈ CK×Nt×Nr×T , where
Nt and Nr are the numbers of transmit and receive antennas,
respectively. This 4D channel matrix can then be reshaped into
a 2D matrix H ∈ CKNtNr×T for processing. For simplicity,
we consider Nt = 1 and Nr = 1, resulting in H ∈ CK×T .
Moreover, H is assumed to be noisy due to channel estimation
errors, characterized by the Est-SNR (Signal-to-Noise Ratio).
The corresponding CSI feedback is obtained by compressing
H, followed by quantization, coding, and modulation before
transmission to the BS. The received CSI at the BS undergoes
the reverse process (demodulation, decoding, dequantization
and decompression), to reconstruct the channel matrix Ĥ.
Fig. 1 illustrates the CSI feedback transmission procedure. The
bubbles labeled 1 , 2 , and 3 divide the chain into parts
that will be analyzed in the simulations.
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Fig. 1. System model for CSI feedback transmission.

Furthermore, due to the compression and quantization er-
rors along with wireless channel noise, Ĥ can deviate from the
estimated H, leading to a channel reporting error. To evaluate
performance, we employ the Normalized Mean Square Error
(NMSE), defined as: NMSE =

E{∥H−Ĥ∥2
2}

E{∥H∥2
2}

. Through this
work, we use the ratio of energy per bit to noise power spectral
density (Eb/N0) to represent the effects of the AWGN channel.

B. Time-Varying Channel Model

In wireless mobile networks, the movement of the UE
causes in time-varying changes to the channel in the time
domain [6]. One parameter used to characterize this dynamic
behaviour is the coherence time τ , that represents the duration
over which the channel remains temporally correlated and can
be defined as:

τ =
c

2vfc
. (1)

Where v, fc and c denote the UE velocity, the signal carrier
frequency and the speed of light, respectively. For the purposes
of this paper, we assume that channel estimation occurs within
this coherence time τ .

C. Channel Sparsity Model

The matrix H represents the channel coefficients in fre-
quency domain. Due to the radio propagation environment,
it is accepted that the channel exhibits sparsity in the time
domain, consistent with the 3GPP channel model [7]. We
define:

H = DFT(G), (2)

where DFT(.) represents the Discrete Fourier Transformation.
Here, G ∈ CK×T denotes the channel impulse response in
the time domain, which is sparse along the K dimension,
indicating that only a few taps are significant. According to
the 3GPP model, the level of sparsity S, which represents the
number of non-zero taps and their positions, remains constant
during the coherence time τ . The non-zero taps of the CIR
can be arranged into a matrix as follows:

S = G[G ̸= 0], (3)

where S ∈ CS×T . To reconstruct H from S, we first zero-pad
S to form G = [S 0]. Then, we apply the Inverse Discrete
Fourier Transform (IDFT) to obtain: H = IDFT(G).

III. CSI FEEDBACK COMPRESSION

In this section, we introduce the key concepts behind two
different methods for compressing CSI feedback. While both
methods focus on reducing the size of the channel matrix,
they employ distinct approaches and result in different forms
of compressed CSI feedback.

A. DMD-based CSI Compression

Dynamic Mode Decomposition [2] is a data-driven tech-
nique used to decompose dynamical systems into spatiotempo-
ral coherent structures that oscillate at fixed frequencies which
either grow or decay at fixed rates. This method involves
collecting snapshots from a dynamical system. In the context
of wireless channels, the matrix H comprises T channel
snapshots. Specifically, H = [h1 h2 ... hT ], with each
ht ∈ CK×1 representing the channel vector at all subcarriers
over the OFDM symbol t, where t ∈ [1, . . . , T ]. To use DMD,
the channel vectors must be organized into two data matrices:

H′ = [h1 h2 ... hT−1] ∈ CK×T−1,

H′′ = [h2 h3 ... hT ] ∈ CK×T−1.
(4)

DMD defines a linear approximation to express how H′′

evolves from H′ as:

H′′ ≈ AH′, (5)

where A ∈ CK×K is an approximating linear operator, deter-
mined as: A = H′′H′†. This solution minimizes the Frobenius
norm ∥H′′ − AH′∥F functioning as a linear regression of
data onto the dynamics represented by A. In practice, direct
analysis of the matrix A may be intractable, especially when
the number of subcarriers is extensive. However, the rank of A
is at most T−1, since it is constructed as a linear combination
of the T − 1 columns of H. Thus, instead of solving for A,
DMD projects the data onto a low-rank subspace defined by at



most T − 1 Proper Orthogonal Decomposition (POD) modes.
It then solves for a low-dimensional solution evolving on
these POD modes. The DMD then uses this low-dimensional
solution to find the leading M eigenvectors Φ ∈ CK×M and
eigenvalues Λ ∈ CM×1, which are called DMD modes and
dynamics, respectively. It has been demonstrated in [2] that
the snapshots are recomposed as:

ht ≈ ΦΛt. (6)

Here M denotes the DMD rank truncation, indicating the
number of eigendecompositions used. Eq. (6) implies that
a higher M can generally improve the resolution of the
recomposed ht. However, it is important to note that the eigen-
decompositions are sorted by significance. Thus, using few
modes and dynamics may be sufficient to ensure an adequate
resolution of the recomposed ht. Moreover, truncation can
also contribute to noise reduction. Since DMD decomposes the
channel matrix into modes that capture dominant frequencies
and their growth or decay rates, and given that the channel
matrix exhibits sparsity in the time domain, the resulting DMD
modes will also be sparse in the time domain, reflecting these
dominant frequencies. This sparse representation, denoted as
Φsp ∈ CK×M , is obtained by applying an IDFT as follows:
Φsp = IDFT(Φ). The non-zero taps in Φsp are then arranged
in a matrix Ψ ∈ CS×M , such that: Ψ = Φsp[Φsp ̸= 0].
Consequently, the CSI feedback generated by DMD comprises
Ψ and Λ, resulting in a total size of (S ×M +M). Thereby
the CSI feedback size can be adjusted by varying the rank M .

B. TransNet-based CSI Compression

TransNet [8] is an advanced neural network model orig-
inally designed to enhance the efficiency of CSI feedback
compression in massive Multi-Input Multi-Output (MIMO)
systems. It employs a full attention network based on the
Transformer [9] architecture, known for its ability to learn
long-range dependencies in data. This allows the model to
focus on relevant parts of the input sequence when generating
outputs, enhancing contextual understanding. As shown in
Fig. 2, TransNet employs a sophisticated Encoder-Decoder
architecture designed to compress and reconstruct the channel
matrix. the network input consists of the non-zero taps of the
channel matrix representation in time domain, denoted as S.
The TransNet encoder consists of two encoding layers, each
incorporating multihead attention, normalization, and feed
forward networks. This structure is followed by a Fully
Connected (FC) layer that generates a compressed CSI feed-
back. The TransNet decoder mirrors the TransNet encoder’s
architecture to reconstruct the original S matrix from the
compressed data. It begins with an FC layer and proceeds
with two decoder layers, each including multihead attention,
normalization, and feed forward processes. The output of the
TransNet decoder is the matrix Ŝ. This is padded with zeros
to obtain Ĝ. Fourier transformation is then applied to obtain
Ĥ as can be seen in the Fig. 2. It is worth noting that the
CSI feedback size can be set by tuning the compressing scale
using the FC layers.

The authors in [8] consider the channel matrix Ha ∈ CK×Nt ,
which includes the subcarriers for the Nt transmitter antennas.
In this case, TransNet leverages the spatial correlation between
the MIMO channels. However, since we address time-varying
channels, we consider the channel subcarriers over time, as
discussed in Section II, exploiting the temporal correlation.
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E
nc

od
er

D
ec

od
er

Fig. 2. TransNet network architecture for CSI compression.

IV. PRE-TRANSMISSION PROCESS

This section outlines all the essential steps required to
prepare the CSI feedback for the wireless transmission.

A. Quantization

Quantization is the process of converting a continuous sig-
nal into discrete levels for a digital representation. In wireless
communication, this often involves representing the signal
with binary values. Considering the number of bits used to
represent each level is B, then the number of the quantization
levels can be determined as: Q = 2B . We use uniform
quantization, with the amplitude quantized in a differential
manner: the maximum value is set to 1 as a reference,
and the remaining values are quantized to B bits. Although
quantization reduces data size, it introduces quantization noise
caused by the difference between the original analog signal
and the quantized digital signal. While this error can degrade
signal quality, careful design typically mitigates its effect,
balancing data size and quantization quality.

B. Channel Coding

Channel coding adds redundant bits to data to enhance
reliability by error detection and correction. However, this
introduces data overhead, which reduces throughput. Code rate
indicates the efficiency of the channel coding. It is defined as



the ratio of information length in bits to the total number of
transmitted bits. A lower code rate means more redundancy,
which is beneficial for noisy channels but reduces bandwidth
efficiency, balancing error correction and throughput.
According to 3GPP standardization [10], polar codes [11]
were adopted for channel coding in the CSI feedback trans-
mission. Therefore, our discussion and simulations will focus
specifically on polar codes. Polar codes operate by transform-
ing a set of physical communication channels into a set of
virtual channels with varying levels of reliability. This process,
known as channel polarization, arranges the channels from the
most reliable to the least reliable. This feature allows applying
UEP technique in polar codes such that very important data
can be coded with the high reliable polarized channels. Fig. 3
shows a simple example of mapping the data to the polarized
channels according to their importance, with darker blue
indicating higher data importance and darker green denoting
more reliable channels.

Data with importance

Polarized channels

Fig. 3. An example of assigning data to polarized channels based on their
importance.

C. Modulation
Modulation involves varying carrier signal characteristics,

such as amplitude, frequency or phase, to represent the data
bits for transmission [6]. For example, Binary Phase Shift
Keying (BPSK) shifts the phase of the carrier signal between
two states, offering simplicity and noise resistance but lower
data rates. On the other hand, n-QAM (Quadrature Amplitude
Modulation) varies both amplitude and phase, with higher n
values increasing data rates by transmitting more bits per sym-
bol but making the signal more sensitive to noise. Choosing
n-QAM balances data rate and transmission reliability.

Additionally, Non-Orthogonal Multiple Access (NOMA)
[12] is a technique that allows multiple users to share the
same frequency band or time slot by assigning different power
levels to their signals. When applied to a single user with
multiple streams of varying importance, as in [13], NOMA
serves as a multiplexing technique that modulates data streams
to prioritize them by significance. For instance, NOMA can
use QAM to manage these data streams. Such that, in a
scenario with two data streams of equal length and different
levels of importance, each can be modulated using 4-QAM
but assigned distinct power levels. This setup allows for the
simultaneous transmission of two 4-QAM symbols. From a
data rate perspective, this is akin to using 16-QAM, but with
the added benefit that one stream is more robust to bit errors.

V. SIMULATION SETUP AND RESULTS

In this section, we conduct numerical simulations to eval-
uate the effectiveness of the two CSI compression methods,
DMD and TransNet, and compare their performance when
preparing for transmission.

A. Simulation Setup

We employ Heterogenous Radio Mobile Simulator (Her-
mesPy) [14] to generate the channel coefficients. The system
parameters used are listed in Table I.

TABLE I
SIMULATION PARAMETERS

System Parameters Value
Channel model COST 259 [15]

Carrier frequency fc 2 GHz
UE velocity v 130 Km/h

Subcarrier spacing 15 KHz
Number of subcarriers K 72

Sparsity S 8

Using (1), the coherence time is approximately τ ≈ 2.1ms.
With a subcarrier spacing of 15 KHz, the duration of one
OFDM symbol is 66.7µs. The number of OFDM symbols T is
calculated as T = ⌈ 2.1·10−3

66.7·10−6 ⌉ = 32. Thus, channel estimation
is performed over 32 OFDM symbol, resulting in an estimated
channel H of size (72×32) complex coefficients. The matrix
S, representing the CIR non-zero taps, has a size of (8× 32)
complex coefficients, given the sparsity S = 8.
We trained the TransNet network using a dataset of 3000
realizations, each of the same size as S. The training dataset
is subjected to noise with Est-SNR values ranging between 10
and 30 dB. The training process spanned 500 epochs with a
batch size of 10. All other parameters are the same as in [4].

To effectively demonstrate the simulation results, we split
up the system model chain in Fig. 1 and calculate the NMSE
for each process. We start by evaluating compression effect
for the two mentioned methods on H, as depicted in Fig. 1
part 1 . We denote the reconstructed channel matrix as
Ĥ1, and the performance measurement as NMSE 1. Then,
we incorporate the quantization process into the compression
framework, as in Fig. 1 part 2 . This results in Ĥ2 and
NMSE 2. Since the data to be quantized is complex, we
quantize the real and imaginary parts separately, each with
B bits. In the following step, we integrate channel coding
using polar codes into the previously introduced processes, as
in Fig. 1 part 3 , resulting in Ĥ3 and NMSE 3. To evaluate
channel coding performance, introducing some bit errors to
the coded data is necessary. Thus , we use BPSK modulation,
which allows transmitting data through a noisy channel. Using
the simple BPSK scheme enables focusing on assessing the
channel coding performance. Finally, we assess the modula-
tion process by executing the full procedure shown in Fig. 1.
This results in Ĥ and NMSE. For transmitting the coded
CSI feedback, we use 16-QAM modulation. Additionally, we
incorporate the NOMA technique to apply UEP to the DMD-
based CSI, evaluating its performance by considering two
data streams of different importance. Streams are formed by
concatenating DMD modes as detailed in the results. NOMA
is implemented with power ratios of 1 : 2, 1 : 3, and 1 : 4, with
higher power allocated to more important stream. All used
modulation schemes have their transmission power normalized
to one.



B. Simulation Results

Fig. 4 compares the performance of DMD and the TransNet
with varying CSI sizes, where each method is denoted in the
legend along with its corresponding output size, measured in
complex coefficients. In this analysis, a size of 9 coefficients
corresponds to a DMD rank of M = 1, while a size of 27
coefficients corresponds to M = 3. The TransNet-based CSI
size can be adjusted to be equal to the DMD output size
by tuning the FC layer parameters. The x-axis represent the
channel estimation error as an Est-SNR value in dB.
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Fig. 4. Comparison of CSI compression performance for TransNet and DMD,
in terms of channel estimation Est-SNR and for two output sizes.

For a CSI size of 9 coefficients, TransNet consistently out-
performs DMD by approximately 5 dB, regardless of the Est-
SNR value. However, when the CSI feedback size is increased
to 27 coefficients, DMD initially performs about 9 dB worse
than TransNet but improves rapidly with increasing Est-SNR,
nearly matching TransNet’s NMSE 1 at an Est-SNR of 15 dB.
At a high Est-SNR of 30 dB, DMD surpasses TransNet
by approximately 13 dB. These results suggest that under
specific conditions, such as high channel estimation perfor-
mance and ample system resources for overhead, DMD can
achieve highly accurate channel compression, while TransNet
shows better performance in other scenarios. While DMD
reduces noise through rank truncation, see III-A, TransNet
performs better in high-noise scenarios due to its self-attention
mechanism, which focuses on relevant data and ignores noise.

Fig. 5, illustrates the quantization performance NMSE 2 for
various number of bits B. We consider the CSI feedback size
at 27 coefficients, where both DMD and TransNet perform
reasonably well, see Fig. 4. Simulation results in subfigure (a),
show that increasing B from 4 to 6 significantly improves the
NMSE 2 for both DMD and TransNet. However, further in-
creasing B from 6 to 8 bits yields no substantial enhancement.
Furthermore, we leverage the unique characteristic of DMD
outputs, which consist of three distinct modes of different
importance. Different quantization levels are applied to these
modes to optimize performance. Subfigure (b) provides in-
sights, where the legend indicates the number of bits allocated
to each mode in order of importance. It is evident that the

configuration B = (8, 6, 4) achieves superior performance by
allowing the first mode to be constructed with high accuracy.
Conversely, the B = (2, 8, 8) configuration results in poor
NMSE 2 due to inadequate reconstruction of the dominant
mode. These findings underscore the potential of using UEP
techniques to safeguard the critical data within DMD outputs,
thereby enhancing reconstruction accuracy. It is important to
note that despite varying quantization levels, the overall output
size remains constant at (27×2×6 = 324) bits in all scenarios.
For the next simulations we take always B = (8, 6, 4) for
DMD, which results in 144 bits for the first mode, 108 bits
for the second mode and 72 bits for the third mode.
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Fig. 5. CSI quantization performance with different values B in terms of
Est-SNR. (a) compares TransNet and DMD. (b) compares applying different
values of B on the DMD modes.

Fig. 6 illustrates the performance of the polar coding applied
to TransNet and DMD utilizing the UEP technique. To ensure
a fair comparison, we set the channel estimation Est-SNR
to be 15 dB, as both methods performs comparably under
this condition, see Fig. 4. Further, we use the quantization
configuration B = (8, 6, 4) for DMD and B = 6 for
TransNet, resulting in the same size of CSI. Simulation results
show comparable performance for DMD and TransNet, and
both methods converge to the optimal (error-free) decoding
when Eb/N0 = 4 dB. However, by utilizing UEP techniques
with polar codes, DMD data can be optimized by assigning
bits from dominant modes to the most reliable polar code
channels. This configuration is labeled as ”DMD optimized”
in the legend of the figure, and demonstrates improved per-
formance within the Eb/N0 range of 0 to 4 dB compared
to merely transmitting DMD data through the polar code
channels without considering data significance and channel
reliability. Additionally, we apply the polar codes for each
mode independently, employing different code rates based on
the importance of each DMD mode: ( 144250 ) for the first mode,
( 108150 ) for the second mode, and ( 72

100 ) for the third mode.
The codeword lengths are also selected to accommodate the
next step, involving NOMA, as discussed later. As depicted in
Fig. 6, applying polar codes to the DMD modes separately, de-
noted as ”DMD separated,” enhances NMSE 3 and achieves
convergence to optimal decoding at Eb/N0 = 2 dB.
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Fig. 6. CSI coding performance using polar codes in terms of Est-SNR,
with a focus on examining the application of UEP techniques in both
DMD optimized and DMD separated.

Finally, we evaluate the performance of modulation with
and without UEP on the DMD modes, as depicted in Fig. 7.
For NOMA, the first stream consists of the first mode with
highest protection priority (250 bits). The second stream is
created by concatenating the second and third modes, also
totaling 250 bits. This concatenation provides both second and
third modes an equal protection, even though their importance
differs, as the lengths of the two NOMA input streams must
match. Notably, a power ratio of 1 : 2 in NOMA shows better
performance, achieving convergence to optimal transmission
at Eb/N0 = 11 dB, compared to 13 dB for QAM. This
improvement is attributed to the enhanced protection of the
first vector, which contains the most critical mode.
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Fig. 7. CSI modulation performance using QAM in terms of Est-SNR, with
a focus on examining the application of NOMA UEP technique.

Conversely, adjusting the power ratio to 1 : 3 or 1 : 4 results
in worse performance than QAM, due to the severe reduced
protection afforded to the second vector, which includes the
second DMD mode. This shows that excessive error protection
for the first mode, at the expense of the second and third
modes, can degrade overall system performance. Therefore, it
is crucial to balance data protection across modes. it is worth
noting that the transmission power for all discussed cases is
normalized. Additionally, the figure illustrates that within the
Eb/N0 range of 3 to 9 dB, all NOMA-based transmissions, ir-
respective of power ratio, outperform QAM by approximately

3 dB. This can be attributed to the substantial protection given
to the first mode, even under poor channel conditions.

VI. CONCLUSION

This study evaluates two CSI compression methods,
TransNet and DMD, and how pre-transmission processes
affect CSI quality. Compressed CSI must undergo three main
processes before wireless transmission: quantization, channel
coding, and modulation. These processes can impact CSI
quality and introduce unwanted overhead. While TransNet
compresses CSI by treating all data uniformly, DMD decom-
poses the channel matrix into modes with varying importance,
allowing for the application of UEP techniques to provide
greater protection to the most critical modes of the CSI
feedback. Our results indicate that, under conditions where
DMD and TransNet compression perform similarly, DMD-
based CSI transmission with UEP techniques outperforms
TransNet-based CSI transmission. The ability to prioritize
modes in DMD enables more effective use of UEP tech-
niques, particularly when paired with polar codes’ robust error
correction and NOMA’s stream-prioritized enhancements. In
conclusion, although both methods compress CSI effectively,
DMD-based CSI supports UEP integration and delivers supe-
rior performance, boosting the reliability of CSI feedback.

REFERENCES

[1] R. Ahmed, E. Visotsky, and T. Wild, “Explicit csi feedback design for
5g new radio phase ii,” in WSA 2018; 22nd International ITG Workshop
on Smart Antennas, pp. 1–5, VDE, 2018.

[2] J. N. Kutz, S. L. Brunton, B. W. Brunton, and J. L. Proctor, Dynamic
mode decomposition: data-driven modeling of complex systems. SIAM,
2016.

[3] F. Haddad, C. Bockelmann, and A. Dekorsy, “A dynamical model for
csi feedback in mobile mimo systems using dynamic mode decomposi-
tion,” in ICC 2023-IEEE International Conference on Communications,
pp. 5265–5271, IEEE, 2023.

[4] Y. Cui, A. Guo, and C. Song, “Transnet: Full attention network for csi
feedback in fdd massive mimo system,” IEEE Wireless Communications
Letters, vol. 11, no. 5, pp. 903–907, 2022.

[5] S. Borade, B. Nakiboğlu, and L. Zheng, “Unequal error protection: An
information-theoretic perspective,” IEEE Transactions on Information
Theory, vol. 55, no. 12, pp. 5511–5539, 2009.

[6] T. S. Rappaport, Wireless communications: principles and practice.
Cambridge University Press, 2024.

[7] “ETSI TR 138 901..” https://www.etsi.org/deliver/etsi tr/138900
138999/138901/16.01.00 60/tr 138901v160100p.pdf.

[8] W. Han, X. Ma, D. Tang, and N. Zhao, “Study of ser and ber in noma
systems,” IEEE Transactions on Vehicular Technology, vol. 70, no. 4,
pp. 3325–3340, 2021.

[9] T. Lin, Y. Wang, X. Liu, and X. Qiu, “A survey of transformers,” AI
open, vol. 3, pp. 111–132, 2022.

[10] “ETSI TS 138 212..” https://www.etsi.org/deliver/etsi ts/138200
138299/138212/18.02.00 60/ts 138212v180200p.pdf.

[11] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,”
IEEE Transactions on information Theory, vol. 55, pp. 3051–3073,
2009.

[12] H. Yahya, A. Ahmed, E. Alsusa, A. Al-Dweik, and Z. Ding, “Error rate
analysis of noma: Principles, survey and future directions,” IEEE Open
Journal of the Communications Society, 2023.

[13] N. Bulk, C. Bockelmann, and A. Dekorsy, “Enhancing multi-service
transmission efficiency in high-density scenarios with service-based
noma and unequal error protection,” 28. VDE-ITG-Fachtagung Mo-
bilkommunikation (MKT’24), May 2024.

[14] “HermesPy.” https://www.barkhauseninstitut.org/en/results/hermespy.
[15] “ETSI TR 125 943..” https://www.etsi.org/deliver/etsitr/125900125999/

125943/06.00.0060/tr125943v060000p.pdf.


