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Abstract—This paper proposes an adaptive framework for
channel estimation that minimizes overhead by optimizing pilot
design for dynamic wireless environments. Unlike traditional
methods that often assume a static environment, this approach
adapt to real-world systems where channel conditions vary
significantly, leading to changes in the transmission channel
model. As these fluctuations can significantly affect the perfor-
mance of channel estimators, which are typically trained on a
single, static channel model. The proposed framework offers a
dynamic solution as it operates in two steps: first, it uses a
reduced set of strategically placed pilots to identify the actual
channel model, and then it applies a specialized, pre-trained
network tailored for that specific model to perform channel
estimation with fewer pilots. For reliable model identification,
a pilot placement strategy using Concrete AutoEncoder (CAE) is
employed. Once the channel model is identified, a Transformer-
based network, fine-tuned to the detected model, performs the
channel estimation by focusing on relevant model features, thus
reducing pilot requirements. Simulation results show that this
adaptive framework outperforms conventional methods that train
a single estimator across various models, achieving more accurate
channel estimation with lower pilot overhead.

Index Terms—Channel estimation, dynamic wireless channels,
MIMO systems, concrete autoencoder, transformer.

I. INTRODUCTION

In wireless communication systems, the dynamic nature of
the practical environment poses significant challenges. User
mobility, moving obstacles, and varying scatterers lead to con-
siderable changes in channel conditions, resulting in changes
to the transmission channel model. This necessitates robust
channel estimation systems that can adapt to diverse channel
conditions. Traditional estimation methods, designed for static
or slowly varying environments, often experience performance
degradation when channel characteristics change significantly.
Although improving channel estimation performance under
variable conditions is possible, it typically requires an in-
creased number of pilots, which can reduce spectral efficiency
and ultimately lower data rates [1]. To address this challenge
in highly dynamic environments, it is essential to develop
strategies that effectively manage channel estimation amidst
the variability of real-world conditions without imposing ex-
cessive pilot overhead.

Several schemes for channel estimation and reducing pilot
overhead have been thoroughly explored. In [2], the authors
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leverage two intrinsic features of wireless channels, temporal
correlation and time domain sparsity, to develop a channel
estimator that combines Compressed Sensing (CS) with Dy-
namic Mode Decomposition (DMD). Since this method relies
on temporal correlation, it cannot directly adapt to changes in
the channel model. Additionally, it employs a random pilot
placement due to its use of CS. Recently, Machine Learning
(ML) has gained considerable attention for its effectiveness
across various applications, including channel estimation [3].
Deep Learning (DL) networks show improved performance
in challenging scenarios such as fading, signal distortion, and
interference [1]. In [4], the authors propose a hybrid encoder-
decoder architecture known as HA02, which incorporates a
self-attention mechanism. The encoder is built on a state-of-
the-art Transformer network that utilizes multi-head attention.
This architecture integrates a Transformer encoder block with
a residual neural network for the decoder.

However, even well-trained DL-based channel estimation
networks may struggle with significant shifts in channel char-
acteristics, as substantial environmental changes can modify
the channel model [5], [6]. Consequently, the DL network
must be trained on multiple channel models simultaneously,
which can lead to reduced performance due to the decreased
relevance of the training data to one another. Additionally,
more pilots may be required to capture the increased number
of features from the various channel models, needed to enable
better differentiation between them.

In this paper, we present a novel adaptive framework for
channel estimation that dynamically selects the most suitable
channel model based on prevailing channel conditions. A key
innovation is the design of a pilot pattern using a Concrete
Autoencoder (CAE), which minimizes pilot overhead while
effectively distinguishing between channel models. Based on
the identified model, the framework selects a pre-trained
channel estimation network optimized for that model, ensuring
efficient and accurate estimation. By minimizing pilot usage
and selecting a channel estimation network tailored to actual
conditions, our framework can greatly enhance efficiency in
dynamic wireless communication environments.

Notations: In this paper, matrices are denoted by uppercase
boldface letters, column vectors by bold lowercase letters,
scalars by italic lowercase letters, and numbering by italic
uppercase letters. Hadamard product and division are indicated
with ⊙ and ⊘, respectively. E{.} denotes the mean.



II. SYSTEM AND CHANNEL MODELS

A. System Model

We consider a MIMO-Orthogonal Frequency Division Mul-
tiplexing (MIMO-OFDM) system with K subcarriers, Nt

transmit antennas, and Nr receive antennas. The channel
matrix H ∈ CK×N , where N = NtNr, represents the
total MIMO channels. The transmitted signal X ∈ CK×N

includes pilot symbols and user data. The received signal Y
is expressed accounting for the channel effect as:

Y = H⊙X+ Z, (1)

where Z ∈ CK×N represents the additive noise with zero
mean and variance σ2

z per element, respectively. To account
for the channel noise, we introduce the signal-to-noise ratio
(SNR), defined as E{∥X∥2

2}
σ2
z

, assuming pilots and data signals
have equal power. The objective is to find the estimated
channel Ĥ using the pilots in X. Due to the channel esti-
mation error, Ĥ can deviate from the actual H. To evaluate
performance, we employ the Normalized Mean Square Error
(NMSE), defined as NMSE =

E{∥H−Ĥ∥2
2}

E{∥H∥2
2}

.

B. Channel Model

In wireless communication, due to the radio propagation
environment, the transmitted signal reaches the receiver via
multiple paths with different time delays and with different
attenuation levels. For each antenna pair nt ∈ [1, 2, . . . , Nt]
and nr ∈ [1, 2, . . . , Nr], the channel coefficient is defined
according to Jake’s model [7] as:

gnt,nr (t) =

L∑
l=1

βl
(
ζLOSψLOS

l (t) + ζNLOSψNLOS
l (t)

)
, (2)

where ζLOS and ζNLOS are the gains for the Line-Of-Sight
(LOS) and Non-Line-Of-Sight (NLOS) components, respec-
tively. For the lth path, the parameters of the power delay
profile, (βl, τl), represent the path gain and the time delay,
respectively. ψLOS

l and ψNLOS
l , describe the fading effects for

LOS and NLOS components and are expressed as:

ψLOS
l = ej(2πfD cos(θLOS

l )t+ϕLOS),

ψNLOS
l =

1√
Nsine

Nsine∑
s=1

ej(2πfD cos(θNLOS
l,s )(t−τl)+ϕNLOS

s ),
(3)

where fD is the Doppler frequency, θ represents the angle of
arrival, ϕ is the phase shift, and Nsine denotes the number
of sine waves modeling the NLOS component. The term

1√
Nsine

maintains the average power of the NLOS component
across the summed signals. Using (2), the stochastic channel
coefficients form the matrix G(t) ∈ CNt×Nr can be written
as:

G(t) =

 g1,1(t) · · · g1,Nr
(t)

...
. . .

...
gNt,1(t) · · · gNt,Nr

(t)

 . (4)

To model the spatial correlation between antennas, the
Kronecker model [8] is applied, as follows:

G̃(t) = R
1
2
t G(t)R

1
2
r , (5)

where Rt ∈ CNt×Nt and Rr ∈ CNr×Nr are the spatial cor-
relation matrices for the transmitter and receiver, respectively.
To obtain the channel impulse response, we sample the MIMO
channels G̃(t), resulting in G̃ ∈ CNsamples×Nt×Nr , as:

G̃ =

 g̃1,1 · · · g̃1,Nr

...
. . .

...
g̃Nt,1 · · · g̃Nt,Nr

 . (6)

Next, we apply zero-padding to the first dimension to achieve
a size of K, then reshape the result into a 2D matrix to obtain
G̃′ ∈ CK×N . Finally, we apply the Discrete Fourier Transform
(DFT) to obtain H ∈ CK×N as H = DFT(G̃′).

The power delay profile can be adjusted to reflect different
environmental and mobility conditions [1]. 3GPP has stan-
dardized channel models, covering various environments and
mobility scenarios [9]. In the following we provide a brief
overview of the 3GPP-adopted channel models for 5G.

• Cost EPA: Urban pedestrian model
• Cost ETU: Urban model with high obstacles.
• Cost hilly: Hilly terrain model with obstructed LOS

Component.
• Cost rural: Rural model with fewer obstacles and more

open space.
• Cost urban: Urban model with dense environment.
• Cost VehA: Vehicular model with rapid environmental

changes.
To visualize the distribution of coefficients from various

channel models, we use t-SNE [10], a dimensionality reduction
technique for revealing structure in complex datasets, such as
identifying clusters. Fig. 1(a) shows distinct clusters formed
for the EPA, Hilly, and ETU models in a noise-free scenario,
clearly separating the models. However, as demonstrated in
Fig. 1(b), introducing noise at an SNR of 3 dB causes the
clusters to overlap, making the distribution indistinguishable.
This highlights the challenges noise introduces in effectively
classifying channel models.

Fig. 1. t-SNE visualizations of different channel models. (a) Distribution
without noise, showing distinct clustering. (b) Distribution with noise at SNR
of value 3 dB, where clusters overlap.

(a) (b)



III. CHANNEL ESTIMATION AND PILOT DESIGN

In this section, we present the proposed technique for pilot
design and channel estimation. Additionally, we discuss the
conventional channel estimation techniques standardized by
3GPP for comparison purposes, namely Least Squares (LS)
and Minimum Mean square Error (MMSE). Since the method
is based using the CAE for pilot design and the HA02 network
for channel estimation, we first introduce an overview of these
neural networks then discuss the proposed method.

A. Pilot placement with concrete autoencoder
The concrete autoencoder [11] is a deep learning-based

method for feature selection, which efficiently identifies a
subset of the most informative features. It consists of a single
concrete selector layer (encoding layer), and interpolation
MultiLayer Perceptron (MLP) (decoding layers).
The Concrete Selector Layer is based on concrete random
variables for continuous relaxation sampling [12]. The selector
layer has P output neurons each of them is connected to
all of the K input features. For each output node p, with
p ∈ {1, . . . , P}, the input nodes are sampled based the
parameters vector αp ∈ RK

>0, with αp = [α1,p, α2,p, ..., αK,p],
that initially specified randomly. The sampling weights are
controlled by a temperature parameter T ∈ (0,∞) and based
on the parameters α as:

ck,p =
exp((logαk,p + uk,p)/T )∑K
j=1 exp((logαj,p + uj,p)/T )

, (7)

with u is randomly sampled from a Gumbel distribution. Each
elements ck,p refers to the kth weight in the sample vector
p, with k ∈ {1, . . . ,K}. Consider the input of the selector
layer is din ∈ RK and the output is dout ∈ RP then it can
be define dout = C · din, where C ∈ RP×K contains all
elements ck,p. This represents a weighted linear combination
of the input features. At the start of training, the parameters
in α are initialized to small positive values to encourage the
selector layer to explore different linear combinations of input
features, while the temperature parameter T is set to a high
value. As training progresses, T decreases towards zero and
the weights become more sparse. Consequently, the concrete
selector layer outputs exactly one input feature for each output
node by the end of the training process. In our context, the
positions of these selected input features are mapped to the
pilot positions.
In [13], authors used the CAE to determine pilot positions
for channel estimation through unsupervised learning. In our
work, given a dynamic environment, we use the CAE to select
pilot positions for channel classification. This enables the CAE
to identify the most distinguishable features across channel
models. A key difference is the use of supervised learning,
with an adjusted decoder design. We also changed the loss
function L to be sparse categorical cross-entropy, defined as:
L = − 1

B

∑B
i=1 log(qi), where qi is the predicted probability

of the true class and B is the Batch size. The decoder’s output
size corresponds to the number of channel models, with the
highest index indicating the channel model label.

B. Transformer-Based HA02 Channel Estimator

The HA02 architecture, proposed in [4], features a hybrid
structure that combines a transformer-based encoder with
a residual convolutional-based decoder, as demonstrated in
Fig, 2. To evaluate the network, we first extract pilot symbols
from the true channel matrix H, apply noise to them, and
then resize to match H dimensions using linear interpolation,
as in [14]. The real and imaginary parts are also separated and
concatenated to form the encoder input.
HA02 Encoder: The transformer-based encoder utilizes a self-
attention mechanism that allows the model to focus on the
most relevant input features, improving channel estimation
accuracy. Inputs to the multihead attention layer are generated
from a linear transformation via a Fully Connected (FC)
layer. This layer enables simultaneous attention to different
parts of the input sequence, capturing various relationships.
The Add & Norm step incorporates a residual connection to
maintain input information and reduce internal covariate shift.
The feed-forward network introduces non-linearity, refining
the representation further.
HA02 Decoder The residual convolutional decoder architec-
ture addresses the degradation problem by incorporating skip
connections. It starts with a convolutional layer, followed by
a residual convolutional block that includes two convolutional
layers. An Add & Norm step follows, which features the
skip connection from the output of the first convolutional
layer, ensuring that crucial input information is retained. The
decoder concludes with an upsampling section, comprising an
FC layer and a final convolutional layer, which facilitates one-
dimensional upsampling and enhances generalization across
different SNR values.
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Fig. 2. Transformer-based HA02 architecture for channel estimation.
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Fig. 3. The proposed framework, cluster-HA02. (a) illustrates the CAE-based classifier used to obtain the pilot positions tailored for channel model defining.
(b) illustrates the selection of the DL-based Interpolation (DLI) and HA02 networks used for channel estimation based on the CAE-based pilots pattern.

C. Cluster-Based Channel Estimation

This section presents the integration of the CAE-based
classifier with the HA02 channel estimation network, forming
the cluster-HA02 method, as illustrated in Fig. 3.
The two-step strategy includes training the concrete selector
layer with M predefined channel models (classes), where each
model is associated with a unique class label, as illustrated
in Fig. 3(a). Since the concrete selector processes input real
values, we first take the absolute values from our training
set before passing them through the concrete selector, which
functions as the encoder for the CAE. For the decoder, we
construct an MLP classifier, consisting of three FC layers, each
followed by a ReLU activation function, and a final output FC
layer is followed with a softmax activation. The output size of
this classifier corresponds to M , with the maximum value’s
position indicating the class label.
The testing procedure of the proposed channel estimation tech-
nique is illustrated in Fig. 3(b), where all components of the
framework are assumed to be pre-trained. Each transformer-
based HA02 network is paired with a DL-based Interpolation
(DLI) network. The DLI is an MLP-based network consists of
a single FC layer with ReLU activation followed by another
FC output layer. Among the M pairs of DLI-HA02 networks,
each pair is pre-trained independently using a unique channel
model, with the CAE-based pilot pattern taken into account.
This pre-training follows the methodology outlined in [4].
During the testing phase, pilot symbols are selected from
the channel matrix H based on the output of the concrete
selector. These pilots are then corrupted by Additive White
Gaussian Noise (AWGN), as described in Section II. The noisy
pilots are then fed into the trained classifier to identify the
corresponding channel model of the original channel H. The
resulting class information is used to select the appropriate
pre-trained DLI-HA02 pair. The noisy pilots are also used as
input into the selected DLI-HA02 network. This dual-purpose
use of the pilots ensures efficient channel estimation with less
pilot overhead.

D. Conventional Method for Channel Estimation

Conventional OFDM channel estimation methods are the
Least Squares (LS) and Minimum Mean Square Error
(MMSE), as introduced in [15]. The benchmarks implemen-
tation of LS and the MMSE are used for performance com-
parison with the proposed method.

Least Squares: The LS method aims to minimize the error
between the transmitted and received signals over the known
pilot symbols. Referring back to Section II, if we arrange
the pilot symbols from the transmitted signal X and the
received signal Y into matrices Xp and Yp, respectively, with
dimensions CP×N , then the LS approach is applied to estimate
the channel coefficients specifically at the pilot positions by:

ĤLS
p = argmin

Hp

∥Yp −Hp ⊙Xp∥22 = Yp ⊘Xp, (8)

with ĤLS
p and Hp ∈ CP×N represent the estimated and actual

channel coefficients at the pilot positions, respectively. LS
is considered a straightforward low complexity method. To
find the estimated channel matrix ĤLS , we resize ĤLS

p by
performing linear interpolation as ĤLS = ALI · ĤLS

p , with
ALI ∈ CK×P the linear interpolation matrix [14].

Minimum Mean Square Error: MMSE method can be uti-
lized generally to estimate the channel matrix by minimizing
the mean square error between the actual channel and the
estimated channel Ĥ:

ĤMMSE = argmin
Ĥ

E
{
∥H− Ĥ∥22

}
. (9)

Here we use linear estimator to estimate channel matrix
according to LS-based estimation obtained in (8), defined as:

ĤMMSE = AMMSE · ĤLS
p . (10)

With linear estimator, the MMSE problem can be converted
to a Linear-MMSE problem (LMMSE), described as:

AMMSE = argmin
ALI

E
{
∥H−ALI · ĤLS

p ∥2
}
,

= Rhp

(
Rpp + σ2

zI
)−1

,

(11)



where Rhp ∈ CK×P is the cross correlation matrix between
actual channel matrix to be estimated and pilot matrix Hp.
Rpp ∈ CP×P is the autocorrelation matrix of Hp. According
to (11), the MMSE estimation can be calculated as:

ĤMMSE = Rhp

(
Rpp + σ2

wI
)−1 · ĤLS

p . (12)

The LS and MMSE methods are widely recognized in
wireless communication systems, including those standardized
by 3GPP, and serve as benchmarks for performance compar-
ison. Their effectiveness in channel estimation within OFDM
systems makes them ideal for evaluating the improvements of
the proposed method.

IV. SIMULATION SETUP AND RESULTS

In this section, we perform numerical simulations to eval-
uate the performance of the proposed channel estimation
method, cluster-HA02, and compare the performance for dif-
ferent scenarios.

A. Simulations Setup

We employ Heterogenous Radio Mobile Simulator (Herme-
sPy) [16] to generate the channel coefficients of the mentioned
channel models in Section II. The system parameters used are
listed in Table I.

TABLE I
SIMULATION PARAMETERS

System Parameters Value
Carrier frequency fc 2.5 GHz

No. of BS antenna Nt 4

No. of MS antenna Nr 4

Subcarrier spacing 15 KHz

No. of subcarriers K 256

Channel estimating error AWGN

To train the proposed framework, we utilize training sets
specific to each channel model, with each set containing 10000
realizations. The training process utilizes the Adam optimizer
across all discussed networks. Further training parameters are
depicted in Table II

TABLE II
TRAINING PARAMETERS

CAE DLI HA02
Batch size 40 100 50

No. of Epochs 100 100 100

Learning rate 0.001 0.001 0.002

B. Simulation Results

First, we assess the performance of the CAE-based classifier
across different numbers of channel models (classes) M ,
starting with M = 3 and simulating up to M = 6. The selected
channel models follow the arrangement as in Section II.
In Fig. 4(a), we present the classification accuracy for varying
M as a function of the number of pilots P , assuming perfect

channel estimation on the pilots positions. The results indi-
cate that classification accuracy improves with an increased
number of pilots, though this improvement is nonlinear and
tends to plateau at higher P . This behavior is expected, as
more pilots capture additional information about the classes,
facilitating better differentiation. Additionally, reducing M
generally enhances accuracy since the classifier faces fewer
categories to distinguish, thereby decreasing the likelihood
of misclassification. With fewer classes, there is typically
less inter-class similarity, which further aids the classifier
in effectively distinguishing the classes and boosting overall
accuracy.
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Fig. 4. Comparison of classifier accuracy for different number of channel
models M (classes). (a) in terms of number of pilots P with perfect channel
estimation. (b) in terms of channel estimation SNR with P = 12.

Fig. 4(b) illustrates the classifier’s accuracy performance
in relation to channel estimation error presented as SNR,
using P = 12. The simulation results reveal that higher
SNR values result in improved accuracy. Noise negatively
impacts classifier performance by distorting pilot signals and
obscuring essential features required for identification, leading
to increased misclassification. This result aligns with Fig. 1,
where it is evident that the added noise can render the channel
models indistinguishable.

Now, we evaluate the performance of the proposed cluster-
HA02 method compared to the standard HA02 without clus-
tering across two different scenarios, where the number of
channel models is set to M = 3 and M = 6. The performance
of each method is evaluated against traditional benchmarks
LS and MMSE channel estimators, with their results averaged
over samples from all six available channel models. In all
cases, the number of pilots remains fixed at P = 12, ensuring
a fair comparison. For HA02, LS, and MMSE, the pilot
positions are evenly spaced, adhering to their design in the
original algorithms. In contrast, cluster-HA02 leverages a
CAE-based classifier to determine the optimal pilot positions,
tailored specifically to improve the model’s clustering. It is
worth mentioning that the original HA02 work employed
bilinear interpolation. However, we utilize the simpler linear
interpolation, as discussed in Section III-B.
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Simulation results in Fig. 5 reveal that incorporating clas-
sification improves system performance under certain condi-
tions, as indicated by a reduction in NMSE relative to the
conventional HA02 approach. For the case of M = 3, cluster-
HA02 outperforms HA02 when the SNR exceeds 8.5 dB,
demonstrating that higher SNR values correspond to enhanced
performance for cluster-HA02. Conversely, for SNR values
below 8.5 dB, HA02 exhibits superior performance compared
to cluster-HA02. Similar trends are observed for M = 6,
although the overall performance is somewhat diminished due
to the decreased classification accuracy associated with the
increased number of classes, as detailed in Fig. 4. Notably,
increasing M leads to a more pronounced performance drop
for HA02, particularly at moderate SNR values. This suggests
that training HA02 across multiple channel models simultane-
ously introduces higher confusion to the network compared to
training the CAE-based classifier on the same dataset within
the cluster-HA02 framework.
Generally, the slope of the cluster-HA02 curve is steeper
than that of HA02 alone, highlighting the impact of channel
estimation noise on the classification accuracy, as shown in
Figure 4(b). At low SNR levels, the classifier is more likely
to misidentify the channel model, resulting in a significant
drop in performance. In contrast, at higher SNR levels, the
classifier’s accuracy improves substantially, facilitating better
channel estimation as the selected channel estimator aligns
closely with the corresponding channel model.

V. CONCLUSION

This paper introduces a novel adaptive framework for
channel estimation, designed to address the challenge of
pilot overhead in dynamic wireless environments. The method
employs optimized pilot patterns tailored for effective channel
model identification. The proposed two-step strategy, combin-
ing targeted pilot placement with model-specific estimation,
demonstrates improved channel estimation performance com-

pared to approaches that assume a static channel model for the
same number of pilots. This approach can reduce the number
of pilots required to achieve a desired estimation accuracy.
By leveraging a Concrete AutoEncoder for pilot design, the
framework enables efficient channel model identification in fa-
vorable SNR conditions, allowing the subsequent Transformer-
based HA02 network to focus on model-specific features. This
makes the approach particularly suitable for moderate SNR
levels and manageable numbers of channel models. However,
in scenarios with a high number of potential channel models
that a user may encounter, the performance of HA02-based
estimation may be limited, as shown by our findings.
Overall, this tailored approach not only enhances channel
estimation efficiency in dynamic environments, but also con-
sistently outperforms traditional methods relying on static pilot
design. Simulation results validate the framework’s potential
for optimizing channel estimation in dynamic, real-world en-
vironments, requiring less pilots to achieve a target estimation
performance.
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