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Abstract—This paper studies Federated Learning (FL) in low
Earth orbit (LEO) satellite constellations, where satellites are
connected via intra-orbit inter-satellite links (ISLs) to their
neighboring satellites. During the FL training process, satellites
in each orbit forward gradients from nearby satellites, which are
eventually transferred to the parameter server (PS). To enhance
the efficiency of the FL training process, satellites apply in-network
aggregation, referred to as incremental aggregation. In this work,
the gradient sparsification methods from [1] are applied to satellite
scenarios to improve bandwidth efficiency during incremental
aggregation. The numerical results highlight an increase of over
4× in bandwidth efficiency as the number of satellites in the
orbital plane increases.

Index Terms—Satellite Constellation, Federated learning, gra-
dient sparsification, in-network computing

I. INTRODUCTION

Megaconstellations of low Earth orbit (LEO) satellites
have become an integral part to a variety of applications
including global broadband access, Earth monitoring, and space
exploration missions. The massive amount of data produced
by these satellites—particularly high-resolution hyperspectral
images—creates significant challenges in transmitting them
back to the Earth. These challenges are exacerbated by the
limitations of available bandwidth and the need to meet
stringent latency requirements [2], [3].

Satellite federated learning (SFL) has recently developed as
an promising technology to address the above challenges [4]–
[6]. Unlike traditional approaches, SFL leverages distributed
machine learning by enabling satellites to collaboratively train
machine learning (ML) models without exchanging raw data.
In this approach, each satellite trains the model locally using its
own dataset and the global model parameters received from the
central parameter server (PS), and then transmits the updated
model parameters to the PS for aggregation. However, due to
satellite orbital motion, the PS must wait a long time to receive
model updates, making conventional federated learning (FL)
impractical for satellite constellations.

To alleviate the impractical delay in the model convergence, a
practical asynchronous FL approach was presented in [7], where
each satellite functions as a separate node, communicating
with a PS located at a ground station (GS) on Earth for model
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aggregation. Another asynchronous FL is presented in [8] to
mitigate model staleness, leading to faster model convergence.
Model accuracy of [7] is further improved in [9] by leveraging
the predictability of satellite connections to the PS to schedule
the transmissions of model parameters.

Further, to improve the model accuracy of SFL and address
the long delays, [5] proposed to aggregate the updated model
parameters inside each orbital plane and then transmitting the
aggregated results to the PS. To this end, the satellites forward
the updated parameters using their intra-orbit inter-satellite
links (ISLs). This approach allows the necessary information
from all satellites within an orbit to be accessed through a single
satellite that remains visible to the GS. Moreover, inter-orbit
ISLs are utilized in [10]–[12] to accelerate convergence.

In [5], to improve the bandwidth efficiency for model aggre-
gation, each satellite applies gradient sparsification methods
[13], [14]. In the approach proposed in [5], each satellite
transmits the most effective elements of its parameters and
the corresponding indices, along with the received elements
and their indices to its neighboring satellite. For smaller
sparsification ratios, the index supports for effective elements
of the satellites are almost uncorrelated; therefore, making the
aggregation inefficient and increasing communication budget
with each hop [5]. The growing communication budget may
become a bottleneck in transmission through the bandwidth-
limited ISLs.

In this paper, building upon our prior research [5], we
apply the sparsification approaches proposed in [1] to the
satellite constellations connected with intra-orbit ISLs to
improve the bandwidth efficiency while maintaining efficient
communication. The structure of the paper is as follows:
first, we introduce the system model in Section II. Next, FL
with intra-orbit ISLs and sparsified gradient transmissions are
discussed in Section III and Section IV, respectively. Finally,
numerical results and conclusions are presented in Section V
and Section VI.

II. SYSTEM MODEL

A. Satellite Constellations

We consider a satellite constellation with a total of P orbital
planes, where each plane p contains Kp satellites. The set of
all satellites in the constellation is denoted as K =

⋃P
p=1Kp =



Algorithm 1 Satellite learning procedure
1: procedure SATLEARNPROC(wn)
2: initialize wn,0

k = wn, i = 0, learning rate η
3: for I epochs do ▷ I epochs of mini-batch stochastic gradient descent
4: D̃k ← Randomly shuffle Dk

5: B ← Partition D̃k into mini-batches of size B
6: for each batch B ∈ B do
7: wn,i

k ← wn,i
k − η

|B|∇w
(∑

x∈B f(x,w)
)

8: end for
9: i← i+ 1

10: end for
11: return wn,I

k
12: end procedure

{k1,1, . . . ,kP,KP
}, where the total number of satellites is K =∑P

p=1 Kp. Satellites in orbit p move at a speed determined

by vp =
√

µ
hp+rE

m/s, where µ = 3.98 × 1014 m3/s2 is the
geocentric gravitational constant, hp is the orbit altitude, and
rE = 6371 km is the Earth’s radius. The orbital period of the
satellites is calculated as Tp =

2π(rE+hp)
vp

.

B. Computation Model

Satellites in the constellation participate in training an FL
algorithm using the FedAvg method [15]. To this end, each
satellite k utilizes its collected data set Dk and trains a ML
model. In the training process, satellites solve the optimization
problem

F (w) = minw

K∑
k=1

Dk

D
Fk(w), (1)

where Dk = |Dk|, D =
∑K

k=1 Dk and the local loss function
Fk(w) is defined as

Fk(w) =
1

Dk

∑
x∈Dk

f(w,x), (2)

with f(w,x) as the per-sample loss function. The training
process is coordinated by the PS over N iterations to solve
(1). We consider a GS functioning as the PS.

For the nth iteration, each satellite k after receiving the
global model parameters wn, performs I local steps of mini-
batch stochastic gradient descent to obtain wn,I

k , as described
in Algorithm 1 [7]. Then, the satellite transmits the gradients
gn
k to the GS, where gn

k is defined as

gn
k = wn,I

k −wn. (3)

The GS then aggregates gn
k , and updates the global model

parameters as

wn+1 = wn +

K∑
k=1

Dk

D
gn
k , (4)

Afterwards, the GS transmits wn+1 back to the satellites for
the next iteration.

C. Communication Model

To enable gradient transmission, each satellite in the con-
stellation is equipped with three communication devices: one
for the communication with the GS and the other two for the
intra-orbit ISLs. In each plane, each satellite connects with two
of its nearest orbital neighbors, establishing a ring network.
Further, the communication with the GS is only possible when
the Earth does not obstruct the line-of-sight (LoS).

We model the channel between two satellites k and i as a
complex Gaussian channels, where the maximum achievable
data rate is r(k,i) = B log2(1 + SNR(k,i)), with B represent-
ing the allocated bandwidth, and the signal-to-noise ratio (SNR)
given as [16], [17]

SNR(k,i) =
PtGk(i)Gi(k)

N0L(k,i)
. (5)

Further, the SNR(k,i) is zero, if there is no LoS. Here,
Gk(i) denotes the average antenna gain of satellite k towards
satellite i, and N0 = kBTB is the total noise power, where
the Boltzmann constant is kB = 1.380649×10−23 J/K and
T is the receiver noise temperature. Additionally, Pt is the
transmitted power at the satellite, and the free space path loss
L(k,i) is defined as

L(k,i) =

(
4πfcd(k,i)

c

)2

, (6)

where fc is the carrier frequency, c is the speed of light, and
d(k,i) is the distance between satellite k and i. We assume
fixed-rate transmission links with the minimum rate possible
in the links.

III. FEDERATED LEARNING USING INTRA-ORBIT ISLS

For FL without the intra-orbit ISLs, each satellite must
connect two times to the GS during each iteration n: first,
to receive the global parameters wn and then, to transmit
back the updated gradient gn

k . Both of these transmissions
require LoS between GS and the satellite. However, due to
the satellite’s motion, LoS to the GS lasts for a limited time
during each orbital period Tp. Most of the time, the LoS is
obstructed by the Earth. Therefore, the GS must wait until each
satellite is visible (LoS) to transmit the global parameters wn,
and then wait again for the satellite to be visible to receive
the updated gradient gn

k . This introduces significant delays in
model training and can lead to outdated data in time-critical
applications.

Long delays can be minimized by enabling neighboring
satellites to communicate through intra-orbit ISLs and by strate-
gically scheduling transmissions to leverage the predictable
paths of satellite orbits. This approach, termed incremental
aggregation, operates as follows: in each iteration n, the satellite
with LoS to the GS receives the global model parameters
wn. These parameters are then distributed to other satellites
within the orbit via intra-orbit ISLs. Another satellite with
optimal visibility relays the updated aggregated gradients
gn
p =

∑Kp

k=1 Dkg
n
k back to the GS. Each iteration n for an
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Fig. 1. The incremental aggregation method is applied across three adjacent satellites, with Satellite 1 being the farthest from the sink.
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Fig. 2. The Sparse incremental aggregation method is applied across three adjacent satellites, with Satellite 1 being the farthest from the sink.

orbit is therefore structured into three distinct phases: parameter
distribution, computation, and aggregation.

In the parameter distribution phase, one satellite of the
orbit p which is selected for its optimal visibility to the GS,
referred to as the source, receives wn at time t. The source
satellite then identifies another satellite in the same orbit as
sink, which delivers the aggregated updates to the GS. The
source selects sink satellite based on the computation time of
each satellite, total aggregation time, and the expected visibility
of the satellites. Once the source has identified the sink, it
transmits wn, along with the sink’s ID, to its neighboring
satellites in both directions. The neighboring satellites then
relay the received wn and the ID of the sink to the next satellite
in sequence, continuing until all satellites have received the
packet.

After forwarding the received packet, each satellite k begins
its training process as in Algorithm 1. The aggregation phase
starts after training phase. In this phase, the satellites farthest
from the sink initiate the process by transmitting their updated
gradients to nearest neighboring satellite, toward the sink. This
process continues in both directions along the ring network
[5], [18].

To illustrate the incremental aggregation method with more
details, we assume satellite k − 1 is the farthest satellite from
the sink. This satellite first calculates the shortest path to the
sink based on the sink ID received during distribution phase.
Once the shortest path is determined, the satellite transmits its
gradients, scaled by its data size, as γn

k−1 ← Dk−1g
n
k−1, to a

neighboring satellite k, which is chosen based on the shortest
path to the sink. Note that the shortest path selected by the
satellite k − 1 involving satellite k, is also the shortest path
for the satellite k towards the sink. Therefore, if the satellite
k performs shortest path search, it will also come up with
the same path. The satellite k then aggregates the received
parameters with its own gradients as γn

k ← Dkg
n
k + γn

k−1,
and transmits this to the next satellite, k + 1. These steps
continue until the sink receives the aggregated gradients from
both directions.

The key advantage of incremental aggregation is that it

maintains a constant outgoing data size. Each satellite transmits
data of size ndω, where nd denotes the gradient dimension
and ω represents the storage size for a single gradient entry.
In each iteration, the total data transmitted within an orbital
plane p is Kpndω. However, when training models with large
nd in satellite mega-constellations, the data transmission size
can become a bottleneck, especially with bandwidth-limited
ISLs.

IV. SPARSE TRANSMISSION

To improve the bandwidth efficiency of incremental aggre-
gation, an effective approach is to compress gradients into a
sparser representation. Among various compression techniques,
TopQ sparsification is a popular choice due to its strong
performance. In the TopQ approach, the gradient is converted
into a sparse vector, retaining only the Q largest-magnitude
elements [14]. Thus, combining TopQ sparsification with
incremental aggregation can significantly reduce the overall
communication budget, making it particularly advantageous
for satellite constellations.

A. Sparse Incremental Aggregation

In this approach, termed sparse incremental aggregation
(SIA), the kth satellite updates its gradient gn

k by combining it
with the sparsification error from the previous iteration, en−1

k ,
as follows: g̃n

k ← Dkg
n
k + en−1

k . This step, known as error-
feedback [1], plays a crucial role in integrating the residuals
from earlier iterations, which helps accelerate convergence.
Then, the TopQ is applied to g̃n

k , resulting in ḡn
k ← TopQ(g̃

n
k ).

Further, the residual for next iteration is updated as enk ←
g̃n
k − ḡn

k .
In the aggregation phase, satellite k aggregates the incoming

gradient γt
k−1 with its sparsified gradient ḡn

k , updating it as
γt
k ← γt

k−1 + ḡn
k , before transmitting it to the next satellite

k + 1. The overall process is outlined in Algorithm 2 [1].
Further, the aggregation is performed in the common indices
and otherwise values are forwarded with indices.

To illustrate, consider Fig. 2, and the process begins with
satellite 1, which is farthest from the sink satellite. After
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Fig. 3. The constant-length sparsification method is applied across three adjacent satellites, with Satellite 1 being the farthest from the sink.

Algorithm 2 Sparse incremental aggregation at satellite k

1: Input gn
k , γn

k−1

2: Error feedback g̃n
k ← Dkg

n
k + en−1

k
3: Sparsification ḡn

k ← TopQ(g̃n
k )

4: Update error enk ← g̃n
k − ḡn

k
5: Aggregation γn

k ← γn
k−1 + ḡn

k
6: Return γn

k

applying the Top3 operation on its error-compensated gradient,
satellite 1 transmits its sparse gradient ḡn

1 to satellite 2. For
example, assume satellite 1 retains the values corresponding
to indices {4, 8, 10}, where the indices are numbered starting
from 1. Similarly, satellite 2 performs the Top3 operation on
its error-compensated gradient, resulting in values at indices
{2, 4, 12}. Satellite 2 aggregates the values of the common
indices (in this case, index 4). It then forwards this updated
value of index 4 together with received values from satellite 1
in indices {8, 10} and its own gradient values in indices {2, 12}
to the satellite 3. Satellite 3 repeats this process, combining
and forwarding sparse gradients as the aggregate moves closer
to the sink satellite.

In SIA, the outgoing data budget for each satellite depends
on the overlap between the support of the incoming sparse
aggregate and its own sparse gradient. When the supports
align, the outgoing budget remains unchanged from that of the
previous satellite, allowing for the benefits of incremental
aggregation. However, as noted in [1], [5], after applying
the TopQ operation with a low Q, the gradient supports
become nearly uncorrelated. As a result, SIA primarily involves
forwarding both the sparse gradient from the previous satellite
and the satellite’s own sparse gradient, with aggregation
occurring in only a few indices. This leads to a growing
data budget as the aggregate moves toward the sink satellite,
ultimately reducing the efficiency of incremental aggregation.
Additionally, due to the variability in transmission budget
requirements across clients, predetermining a fixed budget
becomes challenging.

B. Constant-Length Sparse Incremental Aggregation

To leverage the benefits of incremental aggregation and
stabilize the increasing budget in SIA, an intuitive approach is
to apply TopQ after combining each satellite’s gradient with
the incoming values from the previous satellite. In this setup,
the satellite aggregates only values at shared indices, while
retaining its own gradient values at other indices. This ensures

Algorithm 3 Constant-length sparse incremental aggregation
at satellite k
1: Input gn

k , γn
k−1

2: Error feedback g̃n
k ← Dkg

n
k + en−1

k
3: Aggregation γ̄n

k ← g̃n
k + γn

k
4: Sparsification γn

k ← TopQ(γ̃n
k )

5: Update error enk ← γ̃n
k − γn

k
6: Return γn

k

a fixed transmission budget of Q parameters per satellite, with
a budget of (ω + ⌈log2 nd⌉)Q. Accordingly, this approach is
termed constant-length sparse incremental aggregation (CL-
SIA).

Here, at each nth iteration, satellite k begins by updating its
gradient to account for errors from the previous iteration, re-
sulting in an error-compensated gradient: g̃n

k ← Dkg
n
k +en−1

k .
Next, satellite k aggregates this error-compensated gradient
with the sparse aggregate γn

k−1 received from the preceding
satellite k − 1, yielding γ̃n

k ← γn
k−1 + g̃n

k . The TopQ is then
applied to this aggregate, resulting in γn

k ← TopQ(γ̃
n
k ). This

sparse γn
k is then forwarded to the next satellite k + 1, along

with the associated indices. Finally, satellite k updates its
sparsification error enk ← γ̃n

k −γn
k , as outlined in Algorithm 3

[1].
To illustrate, consider the Fig. 3, which begins with satellite

1, that is farthest from the sink satellite. Satellite 1 first applies
the Top3 operation on its error-compensated gradient, retaining
only the most significant components. It then transmits this
sparse gradient to satellite 2. For instance, suppose satellite 1
retains values corresponding to the indices {4, 8, 10}. Upon
receiving this sparse gradient, satellite 2 aggregates with its
own error-compensated gradient, combining values at common
indices. It then applies the TopQ operation on this aggregate to
produce a sparse result, with selected indices, say, {2, 4, 12}.
Therefore, utilizing benefits of the incremental aggregation.
Similarly, satellite 3, upon receiving the aggregate from satellite
2 at indices {2, 4, 12}, performs the same steps to produce its
own sparse aggregate, as the aggregate moves closer to the
sink satellite.

Note that, the CL-SIA leverages incremental aggregation
by maintaining a consistent budget at each satellite. However,
as aggregate values accumulate across satellites, combining
multiple previous gradients, it’s possible that the actual TopQ
values of a satellite’s own gradient might not be retained in the
final TopQ operation after aggregation. This is more likely to
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happen as the aggregate moves toward the sink satellite. That
leads to higher individual sparsification error at the satellites,
which are closer to the sink satellite, potentially increasing the
overall error and degrading convergence.

V. NUMERICAL EVALUATION

We present the performance of the proposed sparse incre-
mental aggregation on a Walker star constellation with K = 40
satellites located in P = 5 evenly spaced orbital planes at
inclination 85◦ at an altitude hp = 2000km. Each orbital plane
consists of 8 equidistant satellites. The PS located in Bremen,
Germany.

For communication between satellites or between the GS
and the satellites, we set the transmission power on Pt =
40dBm, and both the transmitter and receiver antennas gains
on 32.13 dBi. Communication occurs over a channel with a
bandwidth of B = 500MHz. The carrier frequency is set to
fc = 20GHz, and the receiver noise temperature is T = 354K
[19].

We evaluate the ML performance using a logistic regression
model with nd = 7850 trainable parameters on the MNIST
dataset, which consists of grayscale images of handwritten
digits ranging from 0 to 9 [20]. The data samples are distributed
evenly and randomly across the satellites.

Fig. 4 shows the test accuracy over wall clock time for
incremental aggregation (IA) with and without sparsification, as
well as with and without ISLs. In the case without ISLs (no-ISL
SIA), each satellite, in every iteration, sparsifies its gradients
after training and transmits them to the GS during its visits. In
this regard, the GS must wait to receive the sparsified gradient
parameters individually from each satellite. The sparsification
ratio is set on q = 0.01. As it is seen, both SIA and CL-SIA,
when combined with the ISL algorithm, achieve higher accuracy
in a shorter time compared to the scenario without ISLs. This
improvement occurs because, in the absence of intra-orbit ISLs,
the GS must wait to receive or transmit parameters from all
satellites. Moreover, as observed, the case without sparsification
achieves higher accuracy initially for several hours. However,
after that period, the performance with (ISL SIA) and without
(ISL no-Spars) sparsification converges. A noteworthy point
is that SIA shows slightly better performance than CL-SIA,
which is attributed to the transmission of more data.

Figure 5 illustrates the total transmission data required to
collect the gradients within a single orbital plane for both the
SIA and CL-SIA algorithms. We evaluate the scenario with
varying the number of satellites from 8 to 28 in the orbit, using
sparsification ratios of q = 0.01 and q = 0.1. With the CL-SIA
algorithm, we observe a substantial reduction in data load as
the amount of transmitted data per hop remains fixed at its
minimum possible value. In contrast, with the SIA algorithm, as
the probability of having non-zero and non-overlapping entries
increases after each hop, the communication load becomes
significantly higher. Incorporating IA in each hop leads to a
notable reduction in the communication load.

VI. CONCLUSIONS

We considered satellites equipped with intra-orbit ISLs. Us-
ing these ISLs, satellites collectively forward model parameters
within each orbit, either transmitting them to or receiving them
from the GS. The relaying of model parameters to the GS
relies on in-network aggregation. The system’s performance
is further improved by implementing advanced sparsification
algorithms in aggregation step to optimize bandwidth usage. By
utilizing the algorithms proposed in [1], we could significantly
reduce the communication load for satellite constellations.

REFERENCES

[1] S. Mukherjee, N. Razmi, A. Dekorsy, P. Popovski, and B. Matthiesen,
“Sparse incremental aggregation in multi-hop federated learning,” in 2024



IEEE 25th Int. Workshop on Signal Process. Adv. in Wireless Commun.
(SPAWC), 2024, pp. 41–45.

[2] G. Giuffrida et al., “Cloudscout: a deep neural network for on-board
cloud detection on hyperspectral images,” Remote Sensing, vol. 12, no. 14,
p. 2205, 2020.

[3] I. Leyva-Mayorga et al., “LEO small-satellite constellations for 5G and
beyond-5G communications,” IEEE Access, vol. 8, pp. 184 955–184 964,
2020.

[4] B. Matthiesen, N. Razmi, I. Leyva-Mayorga, A. Dekorsy, and P. Popovski,
“Federated learning in satellite constellations,” IEEE Netw., May 2023.

[5] N. Razmi, B. Matthiesen, A. Dekorsy, and P. Popovski, “On-board
federated learning for satellite clusters with inter-satellite links,” IEEE
Trans. Commun., Jan. 2024.

[6] H. Chen, M. Xiao, and Z. Pang, “Satellite-based computing networks
with federated learning,” IEEE Wireless Communications, vol. 29, no. 1,
pp. 78–84, 2022.

[7] N. Razmi, B. Matthiesen, A. Dekorsy, and P. Popovski, “Ground-
assisted federated learning in LEO satellite constellations,” IEEE Wireless
Commun. Lett., vol. 11, no. 4, pp. 717–721, Apr. 2022.

[8] L. Wu and J. Zhang, “FedGSM: Efficient federated learning for LEO
constellations with gradient staleness mitigation,” in 2023 IEEE 24th Int.
Workshop on Signal Process. Adv. in Wireless Commun. (SPAWC), 2023,
pp. 356–360.

[9] N. Razmi, B. Matthiesen, A. Dekorsy, and P. Popovski, “Scheduling for
ground-assisted federated learning in LEO satellite constellations,” in
Eur. Signal Process. Conf. (EUSIPCO), Belgrade, Serbia, Aug. 2022.

[10] Y. Shi et al., “Satellite federated edge learning: Architecture design
and convergence analysis,” IEEE Trans. on Wireless Commun., vol. 23,
no. 10, pp. 15 212–15 229, 2024.

[11] F. Zhou, Z. Wang, Y. Shi, and Y. Zhou, “Decentralized satellite federated
learning via intra- and inter-orbit communications,” in 2024 IEEE Int.
Conf. on Commun. Workshops (ICC), 2024, pp. 786–791.

[12] Z. Zhai et al., “FedLEO: An offloading-assisted decentralized federated
learning framework for low earth orbit satellite networks,” IEEE Trans.
on Mobile Comput., vol. 23, no. 5, pp. 5260–5279, 2024.

[13] A. F. Aji and K. Heafield, “Sparse communication for distributed gradient
descent,” in Conf. Empir. Methods Nat. Lang. Process., Sep. 2017.

[14] D. Alistarh et al., “The convergence of sparsified gradient methods,” in
Conf. Adv. Neural Inf. Process. Syst., Dec. 2018, p. 5976–5986.

[15] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. Agüera y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artif. Intell. Statist. (AISTATS), Fort Lauderdale, FL, Apr. 2017.

[16] I. Leyva-Mayorga, B. Soret, and P. Popovski, “Inter-plane inter-satellite
connectivity in dense LEO constellations,” IEEE Trans. Wireless Com-
mun., vol. 20, no. 6, pp. 3430–3443, 2021.

[17] L. J. Ippolito Jr, Satellite Communications Systems Engineering. John
Wiley & Sons, 2017.

[18] N. Razmi, B. Matthiesen, A. Dekorsy, and P. Popovski, “On-board
federated learning for dense LEO constellations,” in IEEE Int. Conf.
Commun., Seoul, Korea, May 2022.

[19] I. Leyva-Mayorga et al., “NGSO constellation design for global connectiv-
ity,” in Non-Geostationary Satellite Communications Systems, E. Lagunas,
S. Chatzinotas, K. An, and B. F. Beidas, Eds. Hertfordshire, UK: IET,
Dec. 2022, ch. 9, pp. 189–236.

[20] Y. LeCun, C. Cortes, and C. J. C. Burges. The MNIST database of
handwritten digits.


