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Abstract—We consider a generic two-hop transmission setup.
Explicitly, a source signal is transmitted over an imperfect
channel, yielding a noisy observation. This signal shall then be
compressed at a relay node before getting transmitted further
over an error-prone and rate-limited channel to the sink, where
the source signal is decoded/reconstructed. In [1], [2], we pre-
sented a data-driven Information Bottleneck-based quantization
scheme called Deep FAVIB. For that, we derived a tractable
variational lower-bound of the original objective functional that
could be optimized using samples and utilized Deep Neural
Networks (DNNs) to realize both the quantizer/encoder at the
relay node and the decoder at the sink. Based on this work,
we now provide further investigations, showcasing the excellent
generalization capabilities of Deep FAVIB by several Symbol-
Error-Rate (SER) simulation results. Specifically, we apply the
pretrained Deep FAVIB to different environments that have not
been present in the training, and show that yet, it yields promising
results. This gives clear evidence to the fact that Deep FAVIB
can be considered as a practically efficient scheme to be utilized,
especially when dealing with the highly dynamic and challenging
environments.

Index Terms—6G, deep learning, information bottleneck, joint
source-channel coding, NTN, variational auto-encoders

I. INTRODUCTION

Consider a communication system where a User Equipment
(UE) transmits its signal over an access channel to a relay
node. This relay node compresses the received signal before
forwarding it over an error-prone and rate-limited channel to
its destination where the source signal is reconstructed. This
setup is of high interest for future communication systems such
as Non-Terrestrial Networks (NTNs). NTNs utilize satellites
and drones to enable global connectivity, especially, for the
low-populated areas. Therein, relaying aspects are key, since
information has to be distributed over different satellites to
achieve a good coverage. A relevant example of such satellite-
aided systems has been shown in Fig. 1.

Next to NTN applications, this generic setup is also found
in a variety of terrestrial applications, e.g., Cloud-based Radio
Access Networks (Cloud-RANs) [3], [4], distributed inference
sensor networks with imperfect channels to the fusion center
[5], [6] and Cell-Free massive Multiple-Input Multiple-Output
(CF-mMIMO) systems [7]–[10] with non-ideal fronthaul links.

Fig. 1. Example of a two-hop transmission setup: A noisy signal from a UE
is received by an on-ground relay node, compressed, and finally forwarded to
a satellite transponder via an error-prone forward link.

To design the local compressor, we utilize the Deep FAVIB
approach [1], [2]. It is a data-driven solution that is based upon
the Forward-Aware Vector Information Bottleneck (FAVIB)
algorithm [11]. It makes use of the Information Bottleneck (IB)
design method [12]–[14] and leverages Deep Neural Networks
(DNNs) to realize the encoding and decoding functionalities.

Deep FAVIB is an extension of some well-known concepts,
e.g., the Variational Auto-Encoders (VAEs) [15], [16] and
Deep Variational Information Bottleneck (Deep VIB) [17] to
the context of joint source-channel coding. A VAE transforms
an input signal into a latent variable (of typically much
lower dimension) before reconstructing it via a decoder. An
extension of this chain, Deep VIB [17], transforms a noisy
observation of the input signal into a latent variable. This
forms a remote source coding scheme. Extending Deep VIB to
a joint-source-channel coding setup, we get the Deep FAVIB
approach. It integrates the impacts of an error-prone foward
channel (FC) into the joint training of the encoder and decoder
DNNs in the considered two-hop transmission scenario. It has
been shown that the performance of Deep FAVIB is on par
with the State-of-the-Art (SotA) model-based scheme [1], [2].
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Fig. 2. Two-hop transmission model: A user sends symbol x over an access channel. The observation y is quantized by an encoder to signal z. This signal
is then forwarded via an error-prone channel, and the received signal t is fed into a decoder to recover the sent symbol.

In this paper, we intend to provide some further insights
into the generalization capabilities of Deep FAVIB scheme
through several numerical investigations. Specifically, we train
Deep FAVIB once for a specific scenario and then apply it to
other setups (that were not available in the training phase)
without any retraining. Yet, we show that Deep FAVIB yields
a promising performance. By this, we highlight the potential
of Deep FAVIB to be applied efficiently in practical systems,
especially, when dealing with dynamic environments in which
the statistics of access link might change frequently.

Notation: The discrete random variable, a, takes a certain
realization, a∈A, according to its probability mass function
p(a). Using boldface, the random vector, a, is given. I(·; ·),
H(·), and DKL(·||·), denote the Mutual Information (MI), the
Shannon’s entropy and the Kullback-Leibler divergence [18].
E• denotes the expectation operator.

II. SYSTEM OVERVIEW

A. System Model and Problem Formulation

Fig. 2 depicts the general two-hop transmission model. A
source emits discrete-valued modulated symbols x∈X , which
are sent over an access channel p(y|x). The channel distorts the
source signal, yielding the received signal y∈Y . The encoder
p(z|y) quantizes the signal y to signal z ∈ Z with a certain
cardinality |Z|=N . Thereafter, the signal z gets transmitted
over a rate-limited and error-prone forward channel p(t|z) with
capacity R. This yields additional distortions in the forwarded
signal t∈T . Finally, at the sink / destination, a decoder p(x|t)
reconstructs the source signal x̂. This forms a (remote) joint
source-channel coding scheme as the quantizer / encoder is
designed in a fashion that it considers the forward channel
imperfections when compressing the noisy observation y.

Next, we concisely reiterate the derivations of model-based
(FAVIB) compression scheme.

B. Model-Based Design (FAVIB)

To start the technical discussion, we construct the quantizer
p(z|y) using the FAVIB approach [11]. For that, we need to
know the full input statistics , i.e., p(x, y). In principle, the goal
is to design the quantizer in such a way that the information
about the source x is maximized in signal t, while compressing
the noisy received signal y. We formulate this as

p⋆(z|y) = argmax
p(z|y): I(y;z)≤R

I(x; t) , (1)

where we maximize the MI between x and t in order to achieve
the best information flow from the source to the sink. The
constraint w.r.t. the forward channel capacity R provides an

upper-bound to the compression rate (i.e., the MI between y
and z). We can rewrite this design problem with the Lagrange
Method of multipliers [19] as

p⋆(z|y) = argmax
p(z|y)

I(x; t)− λI(y; z)︸ ︷︷ ︸
LFAVIB

, (2)

where λ≥ 0 is directly related to the limit R. We can see a
fundamental trade-off between the information maximization
between x and t (reconstruction), and the compression between
y and z. We can further see that we incorporate the forward
channel into the optimization problem as we maximize the MI
between the source x and the output of the forward channel
t. Solving (2) yields a stationary solution, derived in [11] for
each pair (y, z)∈Y×Z as

p⋆(z|y) = p(z)

ω(y, λ)
exp

(
−λ−1

∑
t∈T

p(t|z)DKL
(
p(x|y)||p(x|t)

))
,

(3)

where ω(y, λ) is a normalization function. This forms the core
of an iterative algorithm, namely, FAVIB [11], to efficiently
address the design problem (1). Typically, for λ > 0, a soft
quantizer is achieved.

III. DATA-DRIVEN DESIGN (DEEP FAVIB)
In this section, we present the Deep FAVIB which is the

sample-based counterpart of the FAVIB algorithm. By that,
we do not require the full input statistics p(x, y) and only
need samples of the inputs. We collect them in a training data
set {xm, ym}Mm=1 with M being the number of total samples.
We solve an approximation of the FAVIB design problem (2).

A. The Variational Lower-Bound
Based on the objective function LFAVIB in (2) we introduce

a tractable Variational Lower-Bound (VLB). We write

LFAVIB = I(x; t)− λI(y; z) ≥ A− λB = LVLB , (4)

in which we introduce variables A for reconstruction and B
for compression. B is an upper-bound for compression, i.e.,
I(y; z)≤B, and A is a lower-bound for reconstruction, i.e.,
I(x; t)≥A. For A we can write

I(x; t) = H(x)︸ ︷︷ ︸
≥0

−H(x|t) (5a)

≥
∑
t∈T

p(t)DKL
(
p(x|t)||q(x|t)

)
︸ ︷︷ ︸

≥0

+
∑

x∈X ,t∈T
p(x, t) log q(x|t)

(5b)
≥ Ex,t{log q(x|t)} = A, (5c)
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Fig. 3. Detailed Deep FAVIB learning architecture, consisting of two DNNs for encoder and decoder, a softmax/argmax unit and a Gumbel (0, 1) sampler.

where q(x|t), i.e., the proxy posterior, is introduced to replace
the perfect decoder p(x|t). For the compression, we can write
the following

I(y; z) =
∑

y∈Y, z∈Z
p(y, z) log

p(z|y)
r(z)

−DKL
(
p(z)∥r(z)

)︸ ︷︷ ︸
≥0

(6a)

≤ E y,z

{
log

p(z|y)
r(z)

}
= B, (6b)

wherein r(z) is an arbitrary prior for z. For the VLB, we get

LVLB = Ex,t∼p(x,t){log q(x|t)} − λEy,z∼p(y,z)

{
log

p(z|y)
r(z)

}
.

(7)

To optimize this VLB, we need to introduce two parameterized
distributions (getting realized by DNNs) for the decoder q(x|t)
and the quantizer / encoder p(z|y). We get

LDNN = Ex,t∼p(x,t){log qϕ(x|t)} − λEy,z∼p(y,z)

{
log

pθ(z|y)
rψ(z)

}
= Et∼p(t)

{
Ex∼p(x|t){log qϕ(x|t)}

}︸ ︷︷ ︸
reconstruction

− λEy∼p(y)
{
DKL

(
pθ(z|y)||rψ(z)

)}︸ ︷︷ ︸
regularization

,

(8)

with the weights ψ, θ and ϕ. λ is again a trade-off parameter
between reconstruction and compression.

Recall that our goal is to maximize (8). For the first part of
the equation (i.e., reconstruction), we maximize the relevant
information, corresponding to minimizing the cross-entropy
loss, averaged over t. This follows the Maximum-Likelihood
learning rule [20], and is a popular loss for classification. For
the second part of the equation, a regularization is present as
a Kullback-Leibler Divergence (KLD) term, averaged over y.

B. NN Architecture and Implementation Details

In general, we want to design a soft / stochastic encoder
pθ(z|y) via a DNN, therefore we apply the reparametrization
trick [15] to allow sampling and calculate the gradients of
LDNN. This decouples sampling and the gradient calculation.
On top, we want to realize a discrete latent variable, therefore
we use the Gumbel-Softmax trick [21], [22]. This yields a
soft approximation for our categorical distribution, enabling
the gradient calculation. The detailed learning architecture has
been illustrated in Fig. 3.

The input to our encoder is the noisy source signal y∈Y ,
which is (usually) complex-valued. Hence, we need to stack
the real and imaginary parts in a 2D vector, namely, yreal,
since Neural Networks cannot handle the complex numbers
straightforwardly. The output of the NN-encoder log(π)∈RN

directly represents the log-probabilities of the categorical
distribution of z. This signal is then combined with N i.i.d.
samples drawn from the Gumbel (0, 1) distribution and stacked
in the vector g ∈ RN . The combined signal log(π)+g then
flows into a softmax / argmax unit. During inference, argmax
is used, yielding one-hot outputs / vectors, meaning one entry
is set to 1, while all other N − 1 entries are set to 0. For
training, softmax is applied as no gradients can be calculated
for argmax. For softmax training, another hyperparameter τ is
introduced. The combination of softmax with τ approximates
the argmax function. This generates the i-th entry of zsamp

zsamp,i =
exp

((
log(πi) + gi

)
/τ
)

∑N
j=1 exp

((
log(πj) + gj

)
/τ
) ∈ [0, 1], (9)

where τ >0. If τ is small, the softmax approximates argmax
more steeply, yielding rapid gradient changes. On the other
hand, large τ values yield a smooth softmax and may enable
better optimization as gradients change slowly while flowing
through. This quantizer yields the compressed signal z, which
is then forwarded over an error-prone channel, resulting in the
signal t. Finally, the NN-decoder qϕ(x|t) (with weights ϕ) is
applied to recover the source signal. This decoder is a standard
feed-forward DNN. This whole system can be interpreted as
an extension to the VAE structure. That is, the input is a noisy
observation instead of the source signal itself and the latent
variable is further disturbed before getting reconstructed by
the decoder.

C. Supervised Learning and DNNs

DNNs are (nonlinear) functions with trainable weights, here
our encoder and decoder DNNs with parameters θ and ϕ,
which are jointly trained w.r.t. a loss function, in this system
−LDNN (8). These weights are updated by using our data set
{xm, ym}Mm=1. To update the weights, we can apply Stochastic
Gradient Descent (SGD). SGD calculates the derivative of
the loss function w.r.t. the weights of a subset of the data
set in order to minimize the loss and updates the weights
accordingly. The prior rψ(z) has its own trainable parameters,
but not being realized by a DNN.
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IV. NUMERICAL RESULTS

Based on the results of our previous works [1], [2] and the
fact that we achieved the performance of SotA model-based
scheme, we now showcase the generalization capabilities of
Deep FAVIB scheme by providing Symbol-Error-Rate (SER)
simulations. To that end, we train Deep FAVIB for one specific
setup and evaluate it for other setups (that were not present
during the training) without retraining. Please recall that Deep
FAVIB is the sample-based counterpart of FAVIB [11], hence
not requiring the prior knowledge of the joint input statistics.
By that, we extend the application range of our approach as
samples / data sets ({xm, ym}Mm=1) are usually more widely
available than the joint (input) statistics.

For our system setup, we use Quadrature Phase Shift Keying
(QPSK) as the source alphabet, an Additive White Gaussian
Noise (AWGN) access channel with the noise variance σ2

n .
For the forward channel, we use an N -ary symmetric model,
meaning that a cluster flip occurs with probability e

N−1 to one
of the N−1 remaining clusters, and with probability 1−e, the
cluster is correctly forwarded. The parameters of this system
are then τ (the so-called temperature to control the smoothness
of softmax (9)), λ (the trade-off in loss (8)), σ2

n (the noise
power of the access channel), and e (the error probability of
the forward channel).

Deep FAVIB is only trained once for each parameter setup,
where a maximum of 10000 training epochs are used, with
a batch size of 10000 and M = 1e6 samples. We apply the
Early Stopping to store the weights with the lowest training
loss. As our SGD variant, we use the Adam optimizer [23]
with a learning rate of 10−5. The feed-forward configurations
of the encoder and decoder DNNs have been given in Table I.
These configurations were found experimentally to have low-
complex DNNs without sacrificing the performance. We use 3
hidden layers and the Rectified Linear Unit (ReLu) activation
functions. The output layer of the NN-encoder applies no
activation function to construct the log-probabilities log(π).
For the NN-decoder the output layer uses a softmax activation
function to classify and reconstruct the source symbols in X .

To showcase the generalization capabilities of Deep FAVIB,
we apply the pretrained Deep FAVIB to new system setups
and check the obtained performance. Therefore, we load the
weights of Deep FAVIB and apply a new test data set for
each new setup given by {xm, test, ym, test}Mtest

m=1. We also use a
different performance metric, the SER of the source alphabet,
given as

SER =
# of wrong symbols

Mtest
, (10)

where Mtest=1e6 represents the total number of test samples
for each tested setup. By that, we get a practical performance
measure for the whole system. For the upcoming setups, we
choose λ=0.01, hence solely focusing on the reconstruction
part of the loss. As found in our previous evaluations [1], [2]
we choose τ = 1 since this temperature value yields a good
performance trade-off.

TABLE I
CONFIGURATIONS FOR ENCODER DNN, DECODER DNN, AND PRIOR

Name # of Hidden Layers width of layers # of weights
pθ(z|y) 3 300, 200, 100 82816
qϕ(x|t) 3 300, 200, 100 85602
rψ(z) 0 0 N

A. 3-bit Quantization (Error-Free & Error-Prone Forwarding)

First, we show the performance results for a relatively small
3-bit quantization, i.e., N=8. We commence our investigation
with an error-free forward channel, i.e., e = 0. For that, we
train Deep FAVIB for 4 different noise powers and evaluate it
afterwards on a certain range of Signal-to-Noise-Ratio (SNR)
values. We show the plot in Fig. 4a. As a general trend, we
observe that all Deep FAVIB setups achieve a lower SER for
higher SNR values. Furthermore, as expected, we see that,
generally, for each Deep FAVIB training point, the pertinent
curve shows the best or on par performance (with other curves)
on that specific training points. For example, for a training
point of 0 dB, the red curve shows performance on par with
all other depicted results at SNR of 0 dB.

On top, we can see that the SER performance worsens, the
lower the training SNR becomes. For instance, for a training
SNR of 0 dB (i.e., the red curve) we observe the worst overall
performance. Furthermore, for this curve, the performance gap
widens for large SNR values, the further we move away from
the training point. Interestingly, this trend only holds true for
rather low training SNR, i.e. 0 dB and 4 dB. Both curves (i.e.,
red and green) still converge to a lower SER for higher SNR
values, but fall short in comparison with the other high SNR
training points.

For high SNR training points, i.e., 10 dB and 13 dB, we see
the overall best performance and generalization capability, as
the performances are very close to each other, even for low
SNR values. This means that, the Deep FAVIB setups that
have been trained for high SNR values can be used without
performance loss for low SNR values as well. Interestingly, for
the high training points, we can also observe the performance
on par with an optimally demapped QPSK without any quan-
tization. These results are expected, since essentially, for high
SNR values, 4 correctly placed quantization regions yield the
optimal demapping. These quantization regions are not found
for low SNR training points, as the noise during training is
more relevant, hence yielding extra quantization regions which
limit the performance for high SNR values.

In Fig. 4b, we depict the performance for an error-prone
forward channel with e = 0.01. Explicitly, now we observe
an error floor which is appearing in the SER performances.
Nevertheless, the overall behavior of the curves follow the
same trend as observed in Fig. 4a. The high SNR training
points yield the best performance. Interestingly, the green
curve which is trained for lower SNR, shows performance
close to the orange and blue curves. For 10 dB and 13 dB,
the curves match again. The red curve (i.e., 0 dB), shows the
largest performance gap, although still converging to lower
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Fig. 4. SER versus SNR for different noise training points for a) an error-free forward channel (e=0) and b) an error-prone forward channel (e=0.01),
with N=8 clusters and λ=0.01.

SER for higher SNR values. All in all, it is observed that,
also for the case of error-prone forward channels, Deep FAVIB
trained for higher SNR values yields the best performance. The
limiting impact of the imperfect forwarding is observable on
the obtained performance results.

Summarizing the findings for 3-bit quantization, the Deep
FAVIB shows the best generalization capability for high SNR
training points. Even for low SNR training points, the perfor-
mance is as good as the ones obtained by lower SNR training
points. Moreover, for perfect forwarding, the performance for
the high training points match the performance of an optimal
demapper for QPSK as we only need 4 decision regions to do
so. This is not the case for low SNR training points as more
quantization regions limit that performance. For error-prone
forward channels, as expected, an error floor is visible in the
obtained performance curves due to the limiting impacts of
imperfect forwarding.

B. 5-bit Quantization (Error-Free & Error-Prone Forwarding)

We now show the performance results for a rather large 5-bit
quantization, i.e., N=32 clusters. Here again, we commence
with the SER performance curves over the SNR for an error-
free forward channel that have been depicted in Fig. 5a.

The general findings of the previous investigations hold true.
On top, we can see that the performance for the high SNR
training points (i.e., orange and blue curves) remains similar,
while the lower training points (i.e., red and green) show better
overall convergence and performance behavior. Therefore, it
can be deduced that more quantization clusters increase the
overall generalization capability of Deep FAVIB. Nevertheless,
for low SNR training points, there is still a performance gap to
the optimal QPSK demapper, whose performance is achieved
by the high SNR training points.

We conclude this section by the SER performance curves
for 5-bit quantization over an error-prone forward channel with

e=0.01 that have been illustrated in Fig. 5b.
Similar to the case of error-free forwarding, the general find-

ings for 3-bit quantization hold true. Explicitly, it is observed
that the high SNR training points yield the best performance.
It is further observed that, for 5-bit quantization, the green
curve (i.e., 4 dB) now comes very close to the performances
of high SNR training points. The lowest SNR training point
(i.e., 0 dB) in red shows improved overall performance, while
still falling short of the performances of other training points.

On the whole, from the 5-bit quantization results, we can
conclude that more quantization clusters help the generaliza-
tion performance for lower SNR training points, especially, in
the case of error-prone forwarding. As expected, for high SNR
values, the performance difference is negligible, as we already
achieved the best performance (i.e., optimal demapping) with
the 3-bit quantization.

As the main takeaway, we clearly showed the (excellent)
generalization capabilities of Deep FAVIB, especially, for high
SNR training points. This gives a clear evidence to the fact
that, Deep FAVIB can be considered as a practically efficient
data-driven solution to be exploited in (highly) dynamic and
challenging environments.

V. SUMMARY

In this paper, we considered a generic two-hop transmission
setup, where a user / source is connected to the sink through a
relay node. For efficient transmission, the relay node performs
quantization, before forwarding its signal to the sink through
an error-prone and rate-limited channel. The impacts of this
imperfect forwarding must be integrated in the design of the
compression scheme. Following the Information Bottleneck
design framework, a data-driven solution, the Deep FAVIB,
was introduced next which eliminates the need for the prior
knowledge of the joint input statistics. This widens the extent
of target applications as samples are more widely available. As
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Fig. 5. SER versus SNR for different noise training points for a) an error-free forward channel (e=0) and b) an error-prone forward channel (e=0.01),
with N=32 clusters and λ=0.01.

the main contribution, here, by performing several numerical
investigations, we further showed the excellent generalization
capabilities of Deep FAVIB. Explicitly, we showed that train-
ing only once on a certain SNR point suffices to get excellent
performance on a (wide) range of SNR values, indicating that
Deep FAVIB is a practically efficient solution to be applied in
challenging and (highly) dynamic environments.
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[3] D. Wübben, P. Rost, J. Bartelt, M. Lalam, V. Savin, M. Gorgoglione,
A. Dekorsy, and G. Fettweis, “Benefits and Impact of Cloud Computing
on 5G Signal Processing: Flexible Centralization through Cloud-RAN,”
IEEE Signal Processing Magazine, vol. 31, no. 6, pp. 35–44, November
2014.

[4] S.-H. Park, O. Simeone, O. Sahin, and S. Shamai (Shitz), “Fronthaul
Compression for Cloud Radio Access Networks: Signal Processing
Advances Inspired by Network Information Theory,” IEEE Signal Pro-
cessing Magazine, vol. 31, no. 6, pp. 69–79, November 2014.

[5] B. Chen, L. Tong, and P. K. Varshney, “Channel-Aware Distributed
Detection in Wireless Sensor Networks,” IEEE Signal Processing Mag-
azine, vol. 23, no. 4, pp. 16–26, July 2006.

[6] S. Movaghati and M. Ardakani, “Distributed Channel-Aware Quantiza-
tion Based on Maximum Mutual Information,” International Journal on
Distributed Sensor Networks, vol. 12, no. 5, Art. no. 3595389, May
2016.

[7] H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta,
“Cell-Free Massive MIMO Versus Small Cells,” IEEE Transactions on
Wireless Communications, vol. 16, no. 3, pp. 1834–1850, March 2017.

[8] E. Björnson and L. Sanguinetti, “Scalable Cell-Free Massive MIMO
Systems,” IEEE Transactions on Communications, vol. 68, no. 7, pp.
4247–4261, July 2020.

[9] M. Bashar, P. Xiao, R. Tafazolli, K. Cumanan, A. G. Burr, and
E. Björnson, “Limited-Fronthaul Cell-Free Massive MIMO With Local
MMSE Receiver Under Rician Fading and Phase Shifts,” IEEE Wireless
Communications Letters, vol. 10, no. 9, pp. 1934–1938, September 2021.

[10] A. Danaee, S. Hassanpour, D. Wübben, and A. Dekorsy, “Relevance-
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