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Abstract—In the Cell-Free massive Multiple-Input Multiple-
Output (CF-mMIMO) systems, a large number of distributed
users are simultaneously served by multiple Radio Access Points
(RAPs). In the uplink, each RAP receives noisy observations
from several users and must locally compress these signals before
forwarding them to the corresponding Central Processing Unit
(CPU) via multiple fronthaul channels, each subject to a rate
limitation. The challenge is to design the compressed signals at
the RAPs such that the received signals at the CPU retain as
much information as possible about the users (to be retrieved).
To address this, we adopt compression techniques based on the
Information Bottleneck (IB) principle to design local quantizers at
the RAPs by ensuring an efficient balance between the informativity
and compactness of the compressed signals. We discuss here two
different compression schemes: one that processes the signals
independently across fronthaul links and another that leverages the
side information from previously retrieved signals at the CPU. By
using side information, the latter generally provides a better trade-
off between the compression efficiency and performance, albeit
with an increased complexity. Through numerical simulations,
we demonstrate the effectiveness of both IB-based schemes
compared to the conventional compression methods, showing
their potential for improving fronthaul rate efficiency and overall
system performance in typical digital transmission scenarios.

Index Terms—6G, Cell-Free massive MIMO, distributed data
compression, information bottleneck method, remote source coding

I. INTRODUCTION

Massive Multiple-Input Multiple-Output (MIMO) technology
has become a cornerstone for addressing the ever-growing
demand for higher data rates and improved spectral efficiency
in modern wireless communication systems [1]. Massive MIMO
exploits spatial multiplexing and beamforming techniques by
utilizing a large array of antennas at base stations, enabling
the simultaneous service of multiple users over the same time-
frequency resources. This approach significantly enhances both
spectral and energy efficiency, positioning the massive MIMO
as a pivotal technology for next-generation wireless networks
[2]. Building on this, Cell-Free massive MIMO (CF-mMIMO)
has recently become a key focus as an innovative network
architecture. Its ability to eliminate cell boundaries and provide
ubiquitous coverage aligns well with the vision for 6G networks
[3], which aim to offer seamless connectivity, Ultra-Reliable
Low-Latency Communication (URLLC), and massive Machine-
Type Communication (mMTC) across diverse environments.
As 6G evolves, CF-mMIMO is expected to play a key role
in enabling the high-density, low-latency, and energy-efficient
communication demands of future wireless systems. Unlike

traditional cellular systems, CF-mMIMO eliminates the concept
of cells and cell boundaries, allowing the users to be served
by all available Radio Access Points (RAPs) simultaneously.
These RAPs are connected to a Central Processing Unit (CPU)
through a fronthaul network [4]. However, the conventional
CF-mMIMO model, where every RAP processes and transmits
signals for all users, faces scalability issues due to the linear
(or faster) growth in computational complexity and fronthaul
rates as the number of users increases [5]. The User-Centric
CF-mMIMO has introduced a more scalable solution than the
conventional CF-mMIMO model [6] where only a cluster of
RAPs, specifically those that provide the most benefit to a
given user, are responsible for serving that user. This approach
offers enhanced coverage, improved fairness, and increased
capacity [5], [7], thereby serving as the basis for our study.
Furthermore, distributed processing and cooperation among
RAPs in CF-mMIMO enables more efficient resource allocation
and interference management, boosting the overall network
performance [8].

Despite these advantages, the practical deployment of CF-
mMIMO presents challenges, particularly concerning fronthaul
capacity and signal processing overhead. The fronthaul network,
which links distributed RAPs to the CPU, becomes a critical
bottleneck, especially due to the large number of antennas
and high-dimensional signal processing in the uplink. These
factors impose strict fronthaul capacity requirements. Thus,
to mitigate this issue, signal compression techniques are
essential for reducing the volume of data transmitted over the
fronthaul network, while maintaining the necessary information
for accurate signal recovery at the CPU. Therefore, the
development of efficient compression algorithms tailored to the
specific characteristics of massive MIMO signals is crucial to
unleashing the full potential of CF-mMIMO in future networks.
In response to the performance bottleneck outlined, several
fronthaul compression methods have been proposed, such as
those in [9]–[11], which primarily utilize uniform quantization.
In this paper, we adopt the Information Bottleneck (IB) principle
[12], [13] to design compression schemes aimed at reducing
fronthaul rates in the uplink of CF-mMIMO systems.

The IB method offers a variational principle for compressing
a Random Variable (RV) such that the quantized signal
preserves as much information as possible about another
statistically correlated, relevant variable. This preservation of
information is flexible, allowing control of the trade-off between
the compactness (i.e., size reduction) and the informativity (i.e.,
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retention of meaningful content) of the compressed output
signal. The IB method formalizes this trade-off using the
Mutual Information (MI) [14] as a symmetric measure to
balance these competing objectives, enabling it to be highly
adaptable in various scenarios. A general setup happens where
several noisy observations of several RVs should be compressed
at multiple terminals such that the information of all RVs is
preserved in the compressed signals. This setup was investigated
in [15] and an iterative algorithm, the GEneralized Multivariate
IB (GEMIB) was proposed to design the local compressors.

In wireless communication systems, the IB method has been
applied in numerous ways, ranging from its usage in analog-
to-digital (A/D) converters for receiver front ends [16], to
discrete channel decoding techniques [17], [18], and more
recently, in task or goal-oriented communications [19], [20].
Beyond communication systems, IB has also been leveraged
as a powerful clustering approach in machine learning [21]. It
facilitates clustering by grouping data based on their relevance
to a target task which can be seen as an unsupervised learning
method that focuses on maximizing the relevant information
in the compressed representation. This connection between IB
and machine learning highlights its importance in designing
efficient, data-driven solutions for wireless networks.

In the next section, we start with the system model for IB-
based distributed data compression and propose the framework
to adapt the CF-mMIMO setup to this compression scheme.
Then we present two different approaches to design the IB-
based (local) compressors. In Section III, several numerical
investigations are presented to confirm the effectiveness of the
proposed approach and a brief wrap-up in Section IV concludes
this paper. Note that according to the distribution, p(a), the
realizations, a∈A, of the (discrete) random variable, a, happen.
With boldface counterparts, the same holds for the (discrete)
random vector, a1:J = {a1, · · · , aJ} and a−j

1:J = a1:J \{aj}.
Moreover, I(· ; ·) and DKL(·∥·) stand for the Mutual Information
and the Kullback-Leibler (KL) divergence [14], respectively.

II. DISTRIBUTED INFORMATION BOTTLENECK
COMPRESSION FOR CELL-FREE MASSIVE MIMO SYSTEMS

In this section, first, we detail the system model for dis-
tributed data compression based on the Information Bottleneck
(IB) method and propose a framework to tailor this general
system model to the CF-mMIMO systems. Then, we present
two different schemes to design the local IB-based compressors
in the same context.

A. System Model

We consider the system model illustrated in Figure 1(a)
for the uplink transmission in the CF-mMIMO system with
N distributed users and J RAPs connected to a CPU by J
Ideal (error-free) Rate-limited Channels (IRCs) in the fronthaul.
Each RAP j, j ∈ {1, . . . , J}, receives a set of different (non-
interfering) noisy observations, {y(j)mℓ} from the set of source
signals, {xmℓ} of users served by it. For a clear enumeration
and simplicity of formulation in what follows, we allocate Nm

(a)

(b)

Fig. 1. (a) The system model for IB-based distributed data compression.
Each Radio Access Point (RAP) has several noisy observations received via
Discrete Memoryless Channels (DMCs) from users in its service area and
must compress these signals before a forward transmission to the Central
Processing Unit (CPU) through an Ideal Rate-limited Channel (IRC) in the
fronthaul. (b) Applying a linear equalization at each RAP cancels the spatial
interference of different user signals (which get served by it) and separates
their signals.

users to each RAP m such that N =
J∑

m=1
Nm. Here, xmℓ is

an arbitrary source signal where m = {1, . . . , J} is the index
of RAP to which the user is allocated and ℓ = {1, . . . , Nm}
is the index of the user within the allocated user set to m-
th RAP in the network. Therefore, users that are allocated
to RAP m are xm1, . . . , xmNm

, however, some users in this
group are served by a cluster of RAPs as intended for CF-
mMIMO. We refer to the users served by only one RAP as
uncommon (unshared) users and those served by a cluster of
RAPs as common (shared) users, e.g., in Figure 1(a), the user
with source signal x11 served by only RAP 1 is an uncommon
user and the user with source signal xJ1 served by RAPs
1 and J is a common user. Moreover, y(j)mℓ denotes a noisy
observation of xmℓ at j-th RAP. The interrelation between xmℓ

and y
(j)
mℓ is modeled through a Discrete Memoryless Channel

(DMC) whose transition probabilities, p(y(j)mℓ|xmℓ), and input
distribution, p(xmℓ), are presumed to be known.

To fulfill these requirements in the CF-mMIMO system, we
presume a linear equalization [22] at each RAP to cancel the
spatial interference of different users (which get served by it)
and separate their signals. Therefore, the interrelation between
any arbitrary source signal, xmℓ, and the corresponding output
of the linear equalizer, y(j)mℓ, at RAP j is termed the access
channel mℓ(j) in Figure 1(b) which is modeled by a DMC.
Let yj denote all noisy observations at RAP j. Each RAP j
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compresses yj to the signal zj to transmit to the CPU through
an error-free fronthaul channel with a limited rate of Rj . Since
different noisy observations of the source signal xmℓ can be
received at different RAPs, the information of xmℓ should be
preserved in all corresponding compressed signals. For this
purpose, let vxmℓ

denote the set of all zj such that y(j)mℓ ∈ yj ,
i.e., every compressed signal that a noisy observation of xmℓ

is included in its corresponding compressor input.
In the design of IB-based compressors, the fundamental

goal is to optimize the trade-off between the information
retention and compression rate. In the context of Cell-Free
mMIMO, this involves maximizing the MI between the user
signals and the pertinent compressed representatives at the CPU
while minimizing the required fronthaul rate for transmission.
Each RAP compresses its received noisy observations before
forwarding them to the CPU. The first approach applies the IB
principle independently at each RAP [12], [23], treating the
observations for each user as separate entities. This method
is straightforward but can be suboptimal, as it does not fully
exploit the potential correlations across RAPs that are jointly
serving a certain user. The second approach, more sophisticated
but complex, leverages joint compression strategies. Through
the joint design of all compressors at different RAPs that serve
the same user, this approach can reduce the redundancy in the
compressed data [24], thereby improving fronthaul efficiency
while maintaining high reconstruction accuracy at the CPU. It
was shown in [25] that the IB-based joint design of compressors
in the CF-mMIMO systems outperforms the separate IB-based
design as well as the conventional quantizers such as the
Lloyd-Max scheme [26]. However, these schemes require a
large number of compressors at each RAP when the number
of users that it serves increases. Therefore, they have limited
practical efficiency. Here, we take advantage of the multi-source
IB-based data compression method [15] to design only one
compressor at each RAP to compress all noisy observations
from users served by that RAP. Multi-source IB-based data
compression is a novel distributed noisy source coding scheme.
It focuses on a generic setup wherein, several terminals receive
different sets of noisy observations from the users and compress
their signals before transmitting them over multiple ideal (error-
free) rate-limited channels to a remote processing unit.

Then the design problem is formulated as a basic trade-
off between two MI terms. The first one is the sum of
MI terms between each source signal and its sets of the
corresponding received signals at the CPU which is called the
relevant information. The second one called total compression
rate is the sum of MI terms between the noisy observations
(of the source signals) which are the inputs of the local
compressors and their output signals. The goal of IB-based
compression is to maximize the relevant information such that
the total compression rate does not exceed the capacity of the
corresponding fronthaul network which is similar to the concept
of data clustering, where the goal is to group observations in
a way that retains the most relevant features while reducing
the redundancy.

The relevant information is naturally quantified by the sum of

MI terms among each source signal, xmℓ, and the corresponding
set of vxmℓ

, i.e., all the compressed signals that must preserve
information about xmℓ. Therefore, for all users, the relevant
information is given by

Relevant Information =

J∑
m=1

Nm∑
ℓ=1

I(xmℓ; vxmℓ
). (1)

However, there is no single, definitive measure for compactness,
and one can apply various terms depending on the context. We
consider two sets of constraints to determine the compactness,
corresponding to the parallel [27] and successive [28] (retrieval)
processing strategies at the CPU which are used in the generic
setup of the IB-based multi-source data compression [15].

B. Parallel Processing

As the first choice of the imposed constraint set, we consider
a scenario where individual fronthaul links experience varying
rate limitations, and from a compression standpoint, no side
information is utilized when processing each observation yj ,
enabling independent parallel processing across the branches.
Let P ∗={p∗(z1|y1), · · · , p∗(zJ |yJ)} denote the optimal set of
compressors at all RAPs. The design problem is formulated
as follows:

P ∗ = argmax
P : ∀m I(ym; zm)≤Rm

J∑
m=1

Nm∑
ℓ=1

I(xmℓ; vxmℓ
), (2)

wherein, 0 ≤ Rm ≤ log2 |Zm| bits, sets an upper-bound on
the m-th compression rate, I(ym; zm). Utilizing the method
of Lagrange multipliers [29], the design problem (2) can
be reformulated as the following unconstrained optimization
problem, assuming the validity of all compressor mappings:

P ∗ = argmax
P

J∑
m=1

Nm∑
ℓ=1

I(xmℓ; vxmℓ
)−

J∑
m=1

λmI(ym; zm), (3)

where λm≥0 is associated with the rate Rm, in (2). The form
of stationary solution for the (non-convex) design problem (3)
is obtained in [15] for each local compressor {p(zj |yj) |j ∈
{1, · · · , J}} as follows:

p(zj |yj) =
p(zj)

ψPar.
zj (yj , βj)

exp
(
− dPar.(yj , zj)

)
, (4)

where, ψPar.
zj (yj , βj), serves as a normalization function that

guarantees the validity of the corresponding quantizer mapping,
and the relevant distortion, dPar.(yj , zj) is given by

dPar.(yj , zj) =βj
∑

(m,ℓ): zj∈ vxmℓ

Ep(v-jxmℓ
|yj){

DKL
(
p(xmℓ|yj , v-j

xmℓ
)∥p(xmℓ|vxmℓ

)
)}

,
(5)

with βj= 1
λj

, and v-j
xmℓ

= vxmℓ
\ {zj}. In (5), the summation

occurs over all pairs of (m, ℓ) at RAP j that have a noisy
observation y

(j)
mℓ of source signal xmℓ to compute dPar.(yj , zj).

C. Successive Processing

As the second option for the processing flow, we consider a
successive scheme where the side information from previously
retrieved signals is utilized at the CPU during the recovery of a
specific source signal. In general, this approach offers a better
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“informativity-compactness” trade-off compared to parallel
processing, albeit with increased processing complexity. This
scheme aligns well with the Wyner-Ziv framework for source
coding [30], where statistically correlated signals are used as
side information at the decoder. The design problem for the
optimal set of compressors P ∗ = {p∗(z1|y1), · · · , p∗(zJ |yJ)}
is formulated as follows:

P ∗ = argmax
P : ∀m I(ym; zm|z1:m−1)≤Rm

J∑
m=1

Nm∑
ℓ=1

I(xmℓ; vxmℓ
), (6)

where, 0 ≤ Rm ≤ log2 |Zm| bits is the rate of the m-th
fronthaul link and sets an upper-bound on the m-th conditional
compression rate, I(ym; zm|z1:m−1). In this case, there is an
additional degree of freedom: the processing order. This order
generally influences the performance and should ideally be
optimized. Henceforth, the discussion is continued with a fixed
choice of ordering. Similar to the parallel processing, by apply-
ing the method of Lagrange Multipliers, the design problem (6)
can be reformulated as an unconstrained optimization problem,
assuming the validity of all compressor mappings:

P ∗ = argmax
P

J∑
m=1

Nm∑
ℓ=1

I(xmℓ; vxmℓ
)

−
J∑

m=1

λmI(ym; zm|z1:m−1),

(7)

wherein, λm ≥ 0, is associated with the upper-bound, Rm,
in (6). It is important to note that in the special case of full-
informativity, achieved by setting λm → 0 for m = 1 to J ,
the objective functionals for both the parallel and successive
processing schemes become identical since the difference
between the objective functionals in (3) and (7) lies in their
second term, which vanishes when λm → 0.

The stationary solution for the non-convex design problem
(3) is derived in [15] for each local compressor {p(zj |yj)|j ∈
1, · · · , J}, and is given as follows:

p(zj |yj) =
p(zj)

ψSuc.
zj (yj , βj)

exp
(
− dSuc.(yj , zj)

)
, (8)

where, ψSuc.
zj (yj , βj), is a normalization function for the suc-

cessive scheme that ensures the validity of pertinent quantizer
mapping, and the relevant distortion for the successive scheme,
dSuc.(yj , zj), is calculated as

dSuc.(yj , zj) =βj
∑

(m,ℓ): zj∈ vxmℓ

Ep(v-jxmℓ
|yj)

{
DKL

(
p(xmℓ|yj , v-j

xmℓ
)∥p(xmℓ|vxmℓ

)
)}

−
∑

z1:j−1

p(z1:j−1|yj) log p(z1:j−1|zj)

− βj

J∑
k=j+1

1

βk

∑
z-j
1:k

p(z-j
1:k|yj) log p(zk|z1:k−1),

(9)

with βj = 1
λj

, and v-j
xmℓ

= vxmℓ
\ {zj}. To address the

design problems in parallel (4) and successive (8) processing
schemes, an iterative algorithm, the GEneralized Multivariate

IB (GEMIB), was presented in [15] that we use here to design
the IB-based compressors in the proposed framework for CF-
mMIMO systems.

It is worth mentioning that the above distributed IB-based
data compression techniques extend the results presented in
[25]. In that work, as in [24], [28], the input signal to each local
compressor was a noisy observation of a single common source
signal. In contrast, here, in addition to the common source
signals, different local compressors also quantize distinct sets
of noisy observations from different uncommon source signals.
Moreover, the key distinction of successive processing from
the parallel scheme lies in the inclusion of side information
at the compression rates, which further exploits the potential
correlations between the output signals of the local compressors.
This added layer of complexity in the design is reflected
in the resulting stationary solutions. When comparing the
derived relevant distortion in (9) for successive processing to its
counterpart in (5) for the parallel scheme, we observe that two
additional terms emerge. These terms arise from conditioning
the compression rates, corresponding to the incorporation
of side information in the design problem. To address the
design problems in (3) and (7), the GEneralized Multivariate
IB (GEMIB) was presented in [15]. In the next section, we
investigate the performance of GEMIB for parallel (P-GEMIB)
and successive (S-GEMIB) processing schemes.

III. NUMERICAL RESULTS

Here, we present some numerical results regarding typical
transmission scenarios in the uplink of a CF-mMIMO system
in which we apply different types of compression in the RAPs.
Let us assume N = 3 users that are served by J = 2 RAPs as
depicted in Figure 2(a). After the linear equalization at RAPs,
RAP 1 has the noisy observations y

(1)
11 and y

(1)
12 of the source

signals x11 and x12, respectively and RAP 2 has the noisy
observations y

(2)
12 and y

(2)
21 of the source signals x12 and x21,

respectively. Note that although the user with the source signal
x12 is (arbitrarily) assigned to RAP 1 following the enumeration
notation of the users in Section II.A, it gets served by both
RAPs, therefore both compressors in RAPs should preserve
information of this source signal in their outputs. Based on
this, vx12 = {z1, z2} while vx11 = {z1} and vx21 = {z2}.
We assume a DMC that approximates a discrete-time, discrete-
input, and continuous-output AWGN (Additive White Gaussian
Noise) channel with identical noise variance, σ2

n , for all access
channels from the source signals to the corresponding outputs
of equalizers at the RAPs.

To evaluate the compression schemes, we use the relevant
information that is basically the overall transmission rate, i.e.,
the sum of MI terms between the source signals and the
corresponding received signals at the CPU
J∑

j=1

Nm∑
ℓ=1

I(xmℓ; vxmℓ
) = I(x11; z1) + I(x12; z1z2) + I(x21; z2),

(10)
as the performance indicator to compare the GEMIB algorithm
in this setup with a popular vector quantization method, the

2025 14th International ITG Conference on Systems, Communications and Coding (SCC)



K-Means algorithm [31]. Since these methods are initialized
randomly, the same starting points are used for all schemes to
ensure fairness, and the best results from 100 trials are retained.
We consider the uniformly distributed source signals using a
bipolar 8-ASK (Amplitude Shift Keying) constellation with
σ2
x = 24 for three users. A total of 100 samples per access

channel were generated based on a Monte Carlo simulation.
In the first experiment, we intend to compare the performance

of P-GEMIB and K-Means methods in terms of the overall
transmission rate (10) versus different numbers of output
clusters (per RAP), and the results are illustrated in Figure 2(b).
The allowed number of output clusters of each compressor
is denoted by C = |Zj |. Note that, we choose the trade-off
parameters, λ1 = λ2 = 0.01 for the P-GEMIB algorithm as we
prioritize the information preservation to maximize the overall
transmission rate. The key takeaway is the clear performance
advantage of the P-GEMIB algorithm over the standard K-
Means routine. This superiority is evident in both information
preservation and compactness. For example, with σ2

n = 1, the
P-GEMIB algorithm achieves approximately 5 bits of relevant
information while requiring only 12 clusters, compared to K-
Means, which requires 16 clusters for the same information.
Alternatively, if the number of output clusters is fixed at 8,
P-GEMIB supports up to 4.5 bits of relevant information,
outperforming K-Means, which can support up to 4 bits.

In the last part of our numerical investigations, we compare
the performances of P-GEMIB and S-GEMIB schemes for
the design of compressors in terms of overall transmission
rate (10) and the required total fronthaul rate for supporting
it. Note that the total fronthaul rates for P-GEMIB and S-
GEMIB are I(y1; z1) + I(y2; z2) and I(y1; z1) + I(y2; z2|z1),
respectively. The allowed output clusters of compressors are
set to C = 16 and λ1 = λ2 ∈ (0.33, 0.43). Figure 2(c)
illustrates the obtained results for different noise powers in
the access channels. The key point of this section is that the
successive scheme outperforms the parallel one, providing
better information-compression trade-offs. This is because the
successive scheme leverages the available side information
to reduce the total fronthaul rate required to achieve the
desired overall transmission rate. In contrast, the parallel
processing approach neglects the side information arising
from the correlations between different fronthaul channels. To
support this, observe that based on the assumed independence
relations, the following holds

I(yj ; zj |z1:j−1) = I(yj ; zj)− I(zj ; z1:j−1)︸ ︷︷ ︸
≥0

. (11)

Hence, it can be directly concluded that conditioning on the
prior fronthaul channel output signals can either reduce the
current unconditional compression rate, I(yj ; zj), or leave it
unchanged, as mutual information is non-negative. As the
Signal-to-Noise Ratios (SNRs) of the access links increase,
the correlations between the signals at two intermediate nodes
become stronger. This, in turn, enhances the benefit of utilizing
the side information, further widening the performance gap

(a)

n

n

n

(b)

n

n

n

(c)

Fig. 2. (a) System model for simulation setup; N = 3 users employing
bipolar 8-ASK source signaling are served by J = 2 RAPs in a CF-
mMIMO network. (b) A performance comparison between P-GEMIB (3)
and K-Means [31] schemes to design the compressors at RAPs in terms of
the overall transmission rate vs the number of output clusters (per RAP).
(c) A performance comparison between P-GEMIB (parallel processing) (3)
and S-GEMIB (successive processing) (7) schemes in terms of the overall
transmission rate vs total required fronthaul rate.

between P-GEMIB and S-GEMIB schemes (in favor of the
latter) as can be observed in Figure 2(c).
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IV. SUMMARY AND OUTLOOK

In this work, we focused on the design of the distributed
Information Bottleneck (IB)-based compression schemes for
fronthaul rate reduction in the uplink transmission of Cell-
Free massive MIMO systems where several Radio Access
Points (RAPs) receive different noisy observations of distributed
users and must compress their signals before a forward
transmission through several rate-limited fronthaul channels to
the Central Processing Unit (CPU). We considered the scenario
of dealing with error-free fronthaul links, thereby addressing
the distributed (remote) source coding problems. The stationary
solutions were provided for different types of processing, i.e.,
the successive scheme that considers the side information
from already retrieved signals at the CPU and the parallel
scheme that ignores this side information. Through numerical
simulations, we have explicitly demonstrated the superiority
of the IB-based distributed compression schemes compared
to the conventional vector quantization techniques in the
preservation of the information of users. We further showed the
outperformance of the successive processing scheme compared
to the parallel approach, at the cost of an increase in the design
complexity. Future research directions include exploring IB-
based compression schemes that take the error-prone fronthaul
links into account for the design, as well as investigating IB-
based compressor designs for fully centralized systems without
requiring equalization at the RAPs.
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[28] S. Hassanpour, D. Wübben, and A. Dekorsy, “Generalized Distributed
Information Bottleneck for Fronthaul Rate Reduction at the Cloud-RANs
Uplink,” in IEEE Global Communications Conference (GLOBECOM),
Taipei, Taiwan, December 2020.

[29] D. P. Bertsekas, Constrained Optimization and Lagrange Multiplier
Methods, Academic Press, 1982.

[30] A. Wyner and J. Ziv, “The Rate-Distortion Function for Source Coding
with Side Information at the Decoder,” IEEE Transactions on Information
Theory, vol. 22, no. 1, pp. 1–10, January 1976.

[31] Anil K Jain, “Data Clustering: 50 Years Beyond K-Means,” Pattern
Recognition Letters, vol. 31, no. 8, pp. 651–666, June 2010.

2025 14th International ITG Conference on Systems, Communications and Coding (SCC)


