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ABSTRACT In this article, we concentrate on a generic multiterminal joint source-channel coding scenario,
appearing in a wide variety of real-world applications. Specifically, several noisy observations from a source
signal must be compressed at some intermediate nodes, before getting forwarded over multiple error-prone
and rate-limited channels towards a (remote) processing unit. The imperfections of the forward channels
should be integrated into the design of (local) compressor units. By following the Information Bottleneck
principle, the Mutual Information is selected here as the fidelity criterion, and a novel (data-driven) design
approach is presented for two distinct types of processing flow / strategy at the remote unit. To that end,
tractable objective functions are developed, together with the pertinent learning architectures, generalizing
the concepts of Variational Auto-Encoders and (Distributed) Deep Variational Information Bottleneck for
(remote) source coding to the context of distributed joint source-channel coding. Unlike the conventional
approaches, the proposed schemes here work based upon a finite sample set, thereby obviating the call for
full prior knowledge of the joint statistics of input signals. The effectiveness of these novel sample-based
compression schemes is substantiated as well by a couple of simulations over typical transmission setups.

INDEX TERMS 6G, auto-encoders, deep learning, information bottleneck, joint source-channel coding

I. INTRODUCTION

THE original formulation of the Information Bottleneck
(IB) method [1] was based upon the Shannon’s seminal

work on lossy source coding [2]. To quantify the fundamental
limits of the inevitable “complexity-precision” trade-off, the
concept of Rate-Distortion (RD) function has been defined.
The central optimization in the IB formulation then applies
an intuitive twist on the single-letter characterization of this
RD function by lower-bounding a Mutual Information term
w.r.t. a target / relevant variable rather than upper-bounding
an expected distortion term. The cogent reason behind this
modification comes from the fact that, in many real-world
data compression applications, pinpointing a target variable
whose information must be retained becomes a considerably
simpler task compared to the (often challenging) problem of
determining the suitable distortion function. With the certain
choice of Logarithmic Loss distortion [3], it was shown later
on (see, e.g., [4]) that solving the IB constrained optimization

problem delivers the boundary of achievable rate-distortion
region for a remote / indirect source coding problem [5]–[9].
To obtain a clearer picture on this variational principle from
the vantage points of both Information and Learning Theory,
interested readers are referred to [10]–[12]. Important to note
are the connections to some other (classic) problems, ranging
from the Wyner-Ahlswede-Körner problem [13], [14], to the
efficiency of investment information [15], the privacy funnel
[16]–[18], and last but not least, the (distributed) functional
compression [19]–[23].

From a practical standpoint and apart from purely theoreti-
cal investigations, it is further noteworthy that advanced data
transmission systems have already adopted the IB principle.
The pertinent applications range from efficient construction
of the Polar Codes [24], [25], to discrete (channel) decoding
schemes [26]–[29], Analog-to-Digital converters for receiver
front ends [30], [31], and also in the semantic / task-oriented
communication schemes [32]–[35].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 6, 2025 1

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2025.3570446

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-2598-0415
https://orcid.org/0000-0003-2561-161X
https://orcid.org/0000-0003-3854-6140
https://orcid.org/0000-0002-5790-1470


HASSANPOUR et al.: A Deep Variational Approach to Multiterminal Joint Source-Channel Coding Based on Information Bottleneck Principle

The multiterminal / distributed model-based extensions of
the IB principle have also been considered in the pertinent
literature (see, e.g., [36]–[43]). These quantization schemes
mostly consider a certain scenario in which several noisy
observations from a source signal must be compressed (by
various strategies and at potentially different rates) ahead
of a forward transmission to a (remote) processing unit via
multiple rate-limited channels. Depending on whether these
forward links are presumed to be error-free or error-prone,
the underlying design problems become instances of either
(remote) source or joint source-channel coding, respectively.
The interested readers are referred to [44] for further recent
studies on both the theory and applications of the IB method.

The recent rise of machine learning-based approaches has
brought a new and fresh perspective to the design of IB-based
compression schemes. Through leveraging the capabilities of
neural networks and deep learning, innovative architectures
have been explored to (efficiently) optimize the IB trade-off
(i.a., [45]–[47]). These data-driven approaches which work
based upon a finite sample set, obviate the call for prior
knowledge of the joint statistics of input signals. Moreover,
they can efficiently handle high-dimensional and potentially
continuous data. These points make them a more attractive
choice compared to the conventional model-based algorithms
in many applications of interest. Motivated by this, herein,
we present a direct generalization of these approaches, which
have been built upon generative latent variable models, to the
context of distributed joint source-channel coding.

A. CONTRIBUTIONS
Within the scope of this article, we develop deep variational
approaches to address the design problems for a (generic)
distributed / multiterminal joint source-channel coding setup
in which several noisy observations from a common source
signal shall be (locally) compressed at multiple intermediate
nodes, before getting forwarded over a couple of error-prone
and rate-limited channels towards a (remote) processing unit.
Explicitly, by following the Information Bottleneck method,
we choose the Mutual Information as the fidelity criterion
to formulate the pertinent design problems for two different
types of processing strategies. Thereupon, we derive tractable
objective functions and introduce the corresponding learning
architectures to tackle the given design problems by standard
training of several Deep Neural Networks (DNNs), e.g., via
Stochastic Gradient Descent (SGD) with back-propagation.
The devised schemes in this article generalize (well-known)
concepts of Variational Auto-Encoder (VAE) [48], [49], Deep
Variational Information Bottleneck [45], and its distributed
extension for (remote / indirect) source coding [39], [46], to
the context of multiterminal joint source-channel coding.

To clearly realize the generality of the considered setup
here, note that it appears in a broad variety of real-world ap-
plications regarding the fifth (5G) and sixth (6G) generations
of wireless networking technologies, from cooperative relay-
ing schemes with the Quantize-and-Forward approach [50],

[51], to Cloud-based Radio Access Networks (Cloud-RANs)
[37], [52], [53], as well as Cell-Free massive Multiple-Input
Multiple-Output systems (CF-mMIMO) with the error-prone
and rate-limited fronthaul links [54]–[59], and in distributed
inference sensor networks with imperfect links to the fusion
center [60], [61].

B. OUTLINE
We start our technical discussion with the point-to-point IB-
based joint source-channel coding scheme in Section II as
a prelude towards distributed extensions. In Section III, we
present both the system model and the corresponding design
problems for the parallel and successive processing schemes.
Section IV has been fully dedicated to the presentation of our
deep variational approaches to address the introduced design
problems. Subsequently, in Section V, a couple of numerical
results are presented to corroborate the effectiveness of these
(data-driven) compression schemes. Finally, a brief wrap-up
in Section VI concludes this article.

C. NOTATIONS
The realizations, a∈A, from the (discrete) random variable,
a, occur according to the distributions, p/q/r/s. The same
holds true for the random vector, a1:J ={a1, · · · , aJ}, with
the boldface counterparts. Further, a-j

1:J = a1:J \{aj}, and
E•{·}, denotes the expectation operator. Finally, DKL(·∥·),
H(·), and I(·; ·), stand for Kullback-Leibler (KL) divergence,
Shannon’s entropy, and Mutual Information [62], and {·}Jj=1

denotes a set of J elements.

II. IB-BASED JOINT SOURCE-CHANNEL CODING:
THE POINT-TO-POINT SETUP IN A NUTSHELL
We start our discussion by introducing the point-to-point IB-
based joint source-channel coding setup and design problem,
together with a roadmap for recasting the original design
formulation into a certain form which can be addressed by
a deep variational approach. A similar roadmap is followed
later on for distributed / multiterminal extensions.

A. SYSTEM MODEL AND PROBLEM FORMULATION
The illustrated system model in Fig. 1 is considered. Explic-
itly, an intermediate node must compress a noisy observation,
y, from the source signal, x, ahead of a forward transmission
over an error-prone and rate-limited channel to a (remote)
processing unit. Denoting by, z, the compressed signal at the
input of the forward channel, and by, t, the noisy counterpart
at its output, it is presumed that both the statistics, p(t|z),
of the forward channel and its capacity, R, are known. The
source statistics, p(x), and the transition probabilities, p(y|x),
of the access channel are also presumed to be known. The
goal is to design the compressor such that the imperfections
of the forward channel are taken into account. Fully aligned
with the main idea behind the Information Bottleneck (IB)
framework [1], the design problem has then been formulated
in [63] by establishing a basic trade-off among two Mutual
Information terms.
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FIGURE 1. The system model for point-to-point joint source-channel coding. DMC, IN, and RPU stand for Discrete Memoryless Channel, Intermediate
Node, and Remote Processing Unit, respectively. The Markov chain, x↔y↔ z↔ t, applies.

On the one hand, the relevant information, I(x; t), is
the term which quantifies the informativity of outcome. On
the other hand, the compression rate, I(y; z), is the term
that quantifies its compactness. The design problem is then
mathematically formulated as a constrained optimization task
wherein, the relevant information is maximized such that the
compression rate does not exceed the capacity / rate-limit of
the forward link. Explicitly, it applies

p∗(z|y) = argmax
p(z|y): I(y; z)≤R

I(x; t), (1)

in which, 0≤R≤ log2 |Z| bits, sets an upper-bound on the
compression rate, I(y; z). Applying the method of Lagrange
Multipliers [64], we can then recast this problem into an
unconstrained maximization (up to the validity of quantizer
mapping), namely,

p∗(z|y) = argmax
p(z|y)

I(x; t)− λI(y; z), (2)

with λ≥0, being associated with the upper-bound, R, in (1).
The corresponding λ value for a given R can be found, e.g.,
via applying a bisection search on a finite range. Utilizing
Variational Calculus, the stationary solution of (2) has been
derived in [63] as

p(z|y) = p(z)

ω(y, β)
exp

(
−β

∑
t∈T

p(t|z)DKL
(
p(x|y)∥p(x|t)

))
,

(3)
for each (y, z) ∈ Y×Z , with β = 1

λ , and ω(y, β), being a
partition function to ensure a valid mapping. Specifically, for
every realization y ∈Y , the sum of calculated terms in (3)
(ignoring ω) over all output bins / clusters, z∈Z , acts as the
partition function. Furthermore, an iterative algorithm, called
Forward-Aware Vector Information Bottleneck (FAVIB), has
been presented in [63] performing the Fixed-Point Iterations
[65] on the stationary solution (3). Its convergence proof to
a stationary point of the pertinent objective functional in (2)
has also been provided.

In the following part, we build up a deep learning approach
to (approximately) address the design problem (2), when
instead of the full joint statistics, p(x, y), solely a finite
sample set, {(x(i), y(i))}Mi=1, is available. This approach
which directly generalizes the Deep Variational Information
Bottleneck (DVIB) [45] to the context of joint source-channel
coding by considering an error-prone forward link, is based
upon latent variable models, specifically, the well-known
concept of Variational Auto-Encoders (VAEs) [48], [49].

B. THE ROADMAP TO DEEP VARIATIONAL APPROACH
The starting point towards developing a data-driven design
method is to introduce a Variational Lower-Bound (VLB) on

the IB-based point-to-point / centralized joint source-channel
coding Lagrangian

LCent.
(
p(z|y)

)
= I(x; t)− λI(y; z) . (4)

To that end, by introducing two proxy distributions, namely,
q(x|t), as the decoder (to retrieve the source, x), and, r(z),
as the latent prior, the following relations hold true

I(x; t) = H(x)︸ ︷︷ ︸
≥0

−H(x|t) (5a)

≥
∑
t∈T

p(t)DKL
(
p(x|t)∥q(x|t)

)
︸ ︷︷ ︸

≥0

+
∑

x∈X, t∈T

p(x, t) log q(x|t) (5b)

≥ E x,t{log q(x|t)}, (5c)

wherein, from (5a) to (5b), the non-negativity of entropy (for
the discrete source signal, x), and, from (5b) to (5c), the non-
negativity of KL divergence, also known as the information
inequality, has been applied [62]. Moreover, it holds true that

I(y; z) =
∑

y∈Y, z∈Z

p(y, z) log
p(z|y)
r(z)

−DKL
(
p(z)∥r(z)

)︸ ︷︷ ︸
≥0

(6a)

≤ E y,z

{
log

p(z|y)
r(z)

}
=

∑
y∈Y

p(y)DKL
(
p(z|y)∥r(z)

)
.

(6b)

From (6a) to (6b), the non-negativity of KL divergence has
been applied. Now, we can define our VLB as

LVLB
Cent.

(
p(z|y), q(x|t), r(z)

)
=

E x,t{log q(x|t)} − λE y,z

{
log

p(z|y)
r(z)

}
,

(7)

since from (5) and (6), it is immediately inferred that1

LCent.
(
p(z|y)

)
≥ max

q,r
LVLB

Cent.

(
p(z|y), q(x|t), r(z)

)
, (8)

and as a direct consequence,

max
p

LCent.
(
p(z|y)

)
≥ max

p
max
q,r

LVLB
Cent.

(
p(z|y), q(x|t), r(z)

)
.

(9)
The next step is then to consider a parameterized family for
all input distributions of the introduced VLB. Specifically,
denoting by θ, ϕ, and ψ, the parameter sets for families of
distributions regarding the encoder, p, the decoder, q, and
the latent prior, r, and by LDNN

Cent., the defined VLB with the
parameterized input distributions, i.e.,

LDNN
Cent.

(
θ,ϕ,ψ

)
= LVLB

Cent.

(
pθ(z|y), qϕ(x|t), rψ(z)

)
, (10)

1For clarity: p=p(z|y), q=q(x|t), r=r(z).
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FIGURE 2. The considered learning architecture for point-to-point joint source-channel coding scheme, extending the ones for DVIB [45] and VAE [48].

it applies

max
p

max
q,r

LVLB
Cent.

(
p(z|y), q(x|t), r(z)

)
≥ max
θ,ϕ,ψ

LDNN
Cent.

(
θ,ϕ,ψ

)
.

(11)
The inequality in (11) holds true since the search space over
(valid) distributions, p, q, r, is restricted to the hypothesis
space of pertinent parameterized families.

By considering two Deep Neural Networks (DNNs) for the
encoder, pθ, and the decoder, qϕ, the learning architecture
illustrated in Fig. 2 is utilized to address the optimization
of LDNN

Cent., based upon a finite sample set, {(x(i), y(i))}Mi=1,
and the prior knowledge of the forward statistics, p(t|z). For
estimating the gradients of LDNN

Cent., the conventional approach
of utilizing the reparameterization trick [48] to enable the
Monte-Carlo Sampling, and subsequently, substituting the
expectation terms with their (empirical) estimates can be
exploited here as well. Since the principal focus of this work
is on discrete latent spaces, the Gumbel-Softmax / Concrete
Distribution [66], [67] can be utilized to do the trick for us,
i.e., reparameterizing the underlying categorical distribution.
This data-driven compression scheme was first introduced in
[68], and is called Deep Forward-Aware Vector Information
Bottleneck (Deep FAVIB).

It must be mentioned that the parameterized lower-bound,
LDNN

Cent., for the IB-based point-to-point joint source-channel
coding generalizes the well-known Evidence Lower-BOund
(ELBO) that is used to train VAEs [48], when the Evidence
itself (i.e., the direct Maximum Likelihood objective function)
becomes intractable [69].

III. MULTITERMINAL EXTENSIONS: SYSTEM MODEL
AND PROBLEM FORMULATION
For distributed compression, we focus on the depicted system
model in Fig. 3. Explicitly, a number, J , of intermediate
nodes receive noisy observations, yj for j=1 to J , from the
source signal, x. Each node, j, should then compress yj into
another signal, namely, zj , ahead of a forward transmission
over an error-prone and rate-limited channel to the (remote)
processing unit. The goal is then to jointly design the
(local) compressor units, p(zj |yj) for j =1 to J , such that
the imperfections of the forward channels are taken into
account. Similar to the point-to-point case, it is presumed
that the source statistics, p(x), as well as both access, p(yj |x),
and forward transition probabilities, p(tj |zj), and pertinent
capacities, Rj , are known for j = 1 to J . Furthermore, it
is presumed that the Markovian relation x↔ yj ↔ zj ↔ tj
applies per branch, j, and the counterpart signals of every

two distinct branches are (conditionally) independent, given
the source signal, x.

Pursuing the IB philosophy, one shall formulate the design
problem(s) as a basic trade-off among the informativity and
compactness of the resultant outcomes. The informativity is
naturally quantified by the Mutual Information, I(x; t1:J),
between the source, x, and the set of all forward channels
outputs, t1:J , that are fed into the processing unit to retrieve
the source. However, there is no natural unique choice for the
other side of trade-off. So, different meaningful expressions
can be applied. In the next part, based upon the capacities of
forward channels and the chosen processing strategy / flow at
the remote processing unit, two different sets of constraints
are introduced to stipulate the compactness of outcomes.

A. PARALLEL SCHEME: IGNORING SIDE-INFORMATION
Presuming a fully parallel processing flow at the remote unit
(to retrieve the source signal, x), the first set of constraints
comprises individual compression rates of local compressors.
In this manner, no side-information is leveraged at the remote
unit. Mathematically, the design problem is formulated as the
following constrained maximization

P ∗={p∗(z1|y1), · · · , p∗(zJ |yJ)} = argmax
P : ∀j I(yj ; zj)≤Rj

I(x; t1:J),

(12)
in which, 0≤Rj≤ log2 |Zj | bits, sets an upper-bound on the
j-th compression rate, I(yj ; zj). By exploiting the method of
Lagrange Multipliers [64], we can recast this design problem
into an unconstrained maximization (up to the validity of all
compressor mappings), namely,

P ∗ = argmax
P

I(x; t1:J)−
J∑

j=1

λjI(yj ; zj), (13)

wherein, λj≥0, denotes the counterpart of the upper-bound,
Rj , in (12). By utilizing Variational Calculus, the stationary
solution of (13) for each local compressor has been derived
in [42] (for every pair (yj , zj)∈Yj×Zj) as

p(zj |yj) =
p(zj)

ωPar.
zj (yj , βj)

exp
(
−dPar.(yj , zj)

)
, (14)

where, ωPar.
zj (yj , βj), is a normalization function that ensures

the validity of pertinent quantizer mapping, and the relevant
distortion, dPar.(yj , zj), is calculated as

dPar.(yj , zj) = βj

∑
z-j
1:J

p(z-j
1:J |yj)×∑

t1:J

p(t1:J |z1:J)DKL
(
p(x|yj , z-j

1:J)∥p(x|t1:J)
)
,

(15)
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FIGURE 3. The considered system model for distributed joint source-channel coding. All access and forward channels are presumed to be Discrete and
Memoryless with known statistics. Given the source, x, the counterpart signals of different branches are presumed to be independent.

with βj=
1
λj

, and p(t1:J |z1:J)=
∏J

j=1 p(tj |zj). Note that the
statistics of forward links directly appear in the calculation
of relevant distortion in (15). This, indeed, is the very way by
which the imperfections of the error-prone forward links are
taken into account by the compression scheme. Moreover,
an iterative algorithm, called Multivariate Forward-Aware
Vector Information Bottleneck (MFAVIB-Parallel), has been
devised in [42] which performs the Multivariate Fixed-Point
Iterations [65] on the stationary solution (14), together with
its convergence proof to a stationary point of the pertinent
objective functional.

B. SUCCESSIVE SCHEME: USING SIDE-INFORMATION
Considering a successive processing flow at the remote unit,
in which, the side-information from previous branches is
used when treating the signal of current branch, the second
set of constraints consists of conditional compression rates
of (local) compressors. This scheme, essentially, follows the
Wyner-Ziv approach for source coding [70], in which, some
statistically correlated signals are utilized as side-information
at the decoder. The design problem is then mathematically
formulated as

P ∗ = argmax
P : ∀j I(yj ; zj |t1:j−1)≤Rj

I(x; t1:J), (16)

with 0≤Rj ≤ log2 |Zj | bits, setting an upper-bound on the
j-th conditional compression rate, I(yj ; zj |t1:j−1). It should
be noted that here, generally, the processing order affects the
resultant performance. Hence, it must be optimized (e.g., via
brute-force search). Henceforth, we continue our discussion
with a fixed choice of ordering. Similar to the previous case,
by exploiting the method of Lagrange Multipliers [64], we
can recast this problem into an unconstrained maximization
(up to the validity of all compressor mappings), namely2,

P ∗ = argmax
P

I(x; t1:J)−
J∑

j=1

λjI(yj ; zj |t1:j−1), (17)

2Please note that, for the special case of full-informativity, corresponding
to letting λj →0 for all j=1 to J , the objective functions of parallel and
successive processing schemes coincide, as the difference in the Lagrangians
in (13) and (17) is in their second terms that vanishes, when letting λj →0.

with λj ≥ 0, being associated with the upper-bound, Rj , in
(16). Utilizing Variational Calculus, the stationary solution
of (17) for each local compressor has been derived in [42]
(for every pair (yj , zj)∈Yj×Zj) as

p(zj |yj) =
p(zj)

ωSuc.
zj (yj , βj)

exp
(
−dSuc.(yj , zj)

)
, (18)

where, ωSuc.
zj (yj , βj), is a normalization function that ensures

the validity of pertinent quantizer mapping, and the relevant
distortion, dSuc.(yj , zj), is calculated as

dSuc.(yj , zj) = βj

∑
z-j
1:J

p(z-j
1:J |yj)×∑

t1:J

p(t1:J |z1:J)DKL
(
p(x|yj , z-j

1:J)∥p(x|t1:J)
)

−
∑
t1:j−1

p(t1:j−1|yj) log p(t1:j−1|zj)

−βj

J∑
k=j+1

β−1
k

∑
t1:k−1, zk

p(tj |zj)p(t-j1:k−1, zk|yj) log p(zk|t1:k−1),

(19)
with βj = 1

λj
, and p(t1:J |z1:J) =

∏J
j=1 p(tj |zj). Like in

the parallel processing scheme, an iterative algorithm, called
Multivariate Forward-Aware Vector Information Bottleneck
(MFAVIB-Successive), has been presented in [42] which
performs the Multivariate Fixed-Point Iterations [65] on the
stationary solution (18), along with its proof of convergence
to a stationary point of the pertinent objective functional.

The major difference between the successive and parallel
processing schemes shows itself in the consideration of side-
information at the compression rates to further leverage the
correlations in the output signals of local compressors. This
extra level of complexity in the design formulation reflects
itself also in the derived stationary solutions. Comparing the
obtained relevant distortion (19) for successive processing
with its counterpart (15) for parallel processing reveals that
it extends it by two extra terms appearing due to conditioning
the compression rates that translates into the consideration
of side-information in the respective design problem.
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IV. DEEP VARIATIONAL CASE: OBJECTIVE
FUNCTIONALS AND LEARNING ARCHITECTURES
In this part of the article, by following the same roadmap as
the one given for the point-to-point scenario, we present the
corresponding deep variational approaches to approximately
address the design problems for both parallel and successive
processing schemes. Specifically, first, we introduce tractable
lower-bounds on the pertinent objective functionals. Then,
we parameterize their input arguments. Finally, we train the
DNNs, which represent the parameterized input arguments.

A. PARALLEL PROCESSING
Analogous to the point-to-point scenario, we commence our
discussion towards developing a data-driven design approach
by first introducing a Variational Lower-Bound (VLB) on
the IB-based parallel distributed joint source-channel coding
Lagrangian, i.e.,

LPDist.
(
{p(zj |yj)}Jj=1

)
= I(x; t1:J)−

J∑
j=1

λjI(yj ; zj) . (20)

To that end, by considering some proxy distributions, namely,
q(x|t1:J), as the joint decoder (to retrieve the source, x), and,
{r(zj)}Jj=1, as the latent priors, the following relations hold
true

I(x; t1:J) = H(x)︸ ︷︷ ︸
≥0

−H(x|t1:J) (21a)

≥
∑
t1:J

p(t1:J)DKL
(
p(x|t1:J)∥q(x|t1:J)

)
︸ ︷︷ ︸

≥0

+
∑

x, t1:J

p(x, t1:J) log q(x|t1:J) (21b)

≥ E x,t1:J{log q(x|t1:J)}, (21c)

wherein, from (21a) to (21b), the non-negativity of entropy
(for the discrete source signal, x), and, from (21b) to (21c),
the non-negativity of KL divergence has been applied [62].
Further, it holds true that

I(yj ; zj) =
∑

yj∈Yj , zj∈Zj

p(yj , zj) log
p(zj |yj)
r(zj)

−DKL
(
p(zj)∥r(zj)

)︸ ︷︷ ︸
≥0

(22a)

≤ E yj ,zj

{
log

p(zj |yj)
r(zj)

}
=

∑
yj∈Yj

p(yj)DKL
(
p(zj |yj)∥r(zj)

)
.

(22b)

From (22a) to (22b), the non-negativity of KL divergence
has been applied. Now, we can define the VLB for parallel
distributed processing scheme as

LVLB
PDist.

(
{p(zj |yj)}Jj=1, q(x|t1:J), {r(zj)}Jj=1

)
=

E x,t1:J{log q(x|t1:J)} −
J∑

j=1

λjE yj ,zj

{
log

p(zj |yj)
r(zj)

}
,

(23)

since from (21) and (22), it is immediately inferred that3

LPDist.
(
{p(zj |yj)}Jj=1

)
≥

max
q,{r}

LVLB
PDist.

(
{p(zj |yj)}Jj=1, q(x|t1:J), {r(zj)}Jj=1

)
,

(24)
and as a direct consequence,

max
P={p}

LPDist.
(
{p(zj |yj)}Jj=1

)
≥

max
P={p}

max
q,{r}

LVLB
PDist.

(
{p(zj |yj)}Jj=1, q(x|t1:J), {r(zj)}Jj=1

)
.

(25)
The next step is to consider a parameterized family for all
input distributions of the derived VLB. Specifically, denoting
by {θj}Jj=1, ϕ, and {ψj}Jj=1, the parameter sets for families
of distributions regarding the encoders, {p(zj |yj)}Jj=1, the
decoder, q(x|t1:J), and the latent priors, {r(zj)}Jj=1, and by
LDNN

PDist., the introduced VLB with the parameterized input
distributions, i.e.,
LDNN

PDist.

(
{θj}Jj=1,ϕ, {ψj}Jj=1

)
=

LVLB
PDist.

(
{pθj(zj |yj)}Jj=1, qϕ(x|t1:J), {rψj

(zj)}Jj=1

)
,

(26)
the following applies

max
{p}

max
q,{r}

LVLB
PDist.

(
{p(zj |yj)}Jj=1, q(x|t1:J), {r(zj)}Jj=1

)
≥

max
{θj}J

j=1,ϕ,{ψj}J
j=1

LDNN
PDist.

(
{θj}Jj=1,ϕ, {ψj}Jj=1

)
.

(27)
The inequality in (27) holds true since the search space over
valid distributions, {p}, q, {r}, is restricted to the hypothesis
space of pertinent parameterized families.

By considering J DNNs for local encoders, {pθj}Jj=1, and
one DNN for the joint decoder, qϕ, the learning architecture
illustrated in Fig. 4 is exploited to address the optimization of
LDNN

PDist., based upon a finite sample set, {(x(i),y
(i)
1:J)}Mi=1, and

the prior knowledge of forward channels statistics, p(tj |zj)
for j=1 to J . Analogous to the point-to-point scenario, for
estimating the gradients of LDNN

PDist., the conventional approach
of exploiting the reparameterization trick [48] to enable the
Monte-Carlo Sampling, and subsequently, substituting the
expectation terms with their (empirical) estimates can be
applied here as well. Focusing on discrete latent spaces,
once again, the Gumbel-Softmax / Concrete Distribution [66],
[67] can be employed to do the trick., i.e., reparameterizing
the underlying categorical distributions. Henceforth, we call
this data-driven scheme Deep Multivariate Forward-Aware
Vector Information Bottleneck (Deep MFAVIB-Parallel).

For the special case of error-free forward transmissions,
corresponding to the remote / noisy source coding counterpart
(over the considered scenario), the learning architecture will
remain the same as before except for the case that the (joint)
decoder, qϕ(x|z1:J), is directly fed by the samples, z1:J , from
all latent representations of individual branches. Obviously,
the first expectation term in the VLB (23) will then change
to E x,z1:J{log q(x|z1:J)}.

3For clarity: {p}={p(zj |yj)}Jj=1, q=q(x|t1:J ), {r}={r(zj)}Jj=1.
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FIGURE 4. The introduced learning architecture for parallel distributed joint source-channel coding, extending the point-to-point setup by J encoders.

B. SUCCESSIVE PROCESSING
By following the same roadmap as in the previous scenario,
first we introduce a tractable VLB on the IB-based successive
distributed joint source-channel coding Lagrangian, i.e.,

LSDist.
(
{p(zj |yj)}Jj=1

)
= I(x; t1:J)−

J∑
j=1

λjI(yj ; zj |t1:j−1) .

(28)
To that end, by introducing some proxy distributions, namely,
q(x|t1:J), as the joint decoder (to retrieve the source, x),
{r(zj)}Jj=1 as the latent priors, and, {s}={s(zj |t1:j−1)}Jj=2,
as the side-information components, first recall from (21)
that the following holds true

I(x; t1:J) ≥ E x,t1:J{log q(x|t1:J)} . (29)

Moreover, it applies

I(yj ; zj |t1:j−1) = I(yj ; zj)− I(zj ; t1:j−1) . (30)

For the second term at the right side of (30), the following
holds true

− I(zj ; t1:j−1) =
∑

zj , t1:j−1

p(zj , t1:j−1) log
p(zj)

p(zj |t1:j−1)
(31a)

=
∑

zj , t1:j−1

p(zj , t1:j−1) log

(
p(zj)

s(zj |t1:j−1)
× s(zj |t1:j−1)

p(zj |t1:j−1)

)
(31b)

=
∑

zj , t1:j−1

p(zj , t1:j−1) log
p(zj)

s(zj |t1:j−1)

−
∑

zj , t1:j−1

p(zj , t1:j−1) log
p(zj |t1:j−1)

s(zj |t1:j−1)

(31c)

=
∑

zj , t1:j−1

p(zj , t1:j−1) log
p(zj)

s(zj |t1:j−1)

−
∑
t1:j−1

p(t1:j−1)DKL
(
p(zj |t1:j−1)∥s(zj |t1:j−1)

)
︸ ︷︷ ︸

≥0

(31d)

≤
∑

zj , t1:j−1

p(zj , t1:j−1) log
p(zj)

s(zj |t1:j−1)
(31e)

=
∑

zj , t1:j−1

p(zj , t1:j−1) log

(
r(zj)

s(zj |t1:j−1)
× p(zj)

r(zj)

)
(31f)

=
∑

zj , t1:j−1

p(zj , t1:j−1) log
r(zj)

s(zj |t1:j−1)
+DKL

(
p(zj)∥r(zj)

)
.

(31g)

From (31d) to (31e), the non-negativity of KL divergence
has been applied. Recalling from (22) that, for the first term
at the right side of (30), it applies

I(yj ; zj) = E yj ,zj

{
log

p(zj |yj)
r(zj)

}
−DKL

(
p(zj)∥r(zj)

)
,

(32)
from (32), (31), and (30), it is immediately deduced that the
following holds true

I(yj ; zj |t1:j−1) ≤

E yj ,zj

{
log

p(zj |yj)
r(zj)

}
− E zj ,t1:j−1

{
log

s(zj |t1:j−1)

r(zj)

}
.

(33)

Now, we define the pertinent VLB for successive distributed
processing scheme as

LVLB
SDist.

(
{p(zj |yj)}Jj=1, q(x|t1:J), {r(zj)}Jj=1, {s(zj |t1:j−1)}Jj=2

)
= E x,t1:J{log q(x|t1:J)} −

J∑
j=1

λj

(
E yj ,zj

{
log

p(zj |yj)
r(zj)

}
− E zj ,t1:j−1

{
log

s(zj |t1:j−1)

r(zj)

})
,

(34)
since from (32), (31), and (21), it is inferred that

LSDist.
(
{p(zj |yj)}Jj=1

)
≥ max

q,{r},{s}
LVLB

SDist.

(
{p(zj |yj)}Jj=1,

q(x|t1:J), {r(zj)}Jj=1, {s(zj |t1:j−1)}Jj=2

)
,

(35)
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FIGURE 5. The introduced learning architecture for successive distributed joint source-channel coding scheme, featuring J local encoders and J−1

side-information DNNs, together with J−1 distribution combiner units for the flow of side-information across branches, and a joint decoder.

and as a direct consequence,

max
{p}

LSDist.
(
{p(zj |yj)}Jj=1

)
≥max

{p}
max

q,{r},{s}
LVLB

SDist.

(
{p(zj |yj)}Jj=1,

q(x|t1:J), {r(zj)}Jj=1, {s(zj |t1:j−1)}Jj=2

)
.

(36)

The next step is then to consider a parameterized family for
all input distributions of the introduced VLB. Specifically,
representing by {θj}Jj=1, ϕ, {ψj}Jj=1, and {ζj}Jj=2, the
sets of parameters for families of distributions regarding the
encoders, {p(zj |yj)}Jj=1, the decoder, q(x|t1:J), the latent
priors, {r(zj)}Jj=1, and the side-information components,
{s(zj |t1:j−1)}Jj=2, and by LDNN

SDist., the defined VLB with the
parameterized distributions, i.e.,

LDNN
SDist.

(
{θj}Jj=1,ϕ, {ψj}Jj=1, {ζj}Jj=2

)
=LVLB

SDist.

(
{pθj(zj |yj)}Jj=1,

qϕ(x|t1:J), {rψj(zj)}Jj=1, {sζj(zj |t1:j−1)}Jj=2

)
,

(37)
it applies

max
{p}

max
q,{r},{s}

LVLB
SDist.

(
{p}, q, {r}, {s}

)
≥

max
{θj}J

j=1,ϕ,{ψj}J
j=1,{ζj}J

j=2

LDNN
SDist.

(
{θj}Jj=1,ϕ, {ψj}Jj=1, {ζj}Jj=2

)
.

(38)
The inequality in (38) holds true since the search space over
(valid) probability distributions for the local encoders, {p},
the decoder, q, the latent priors, {r}, and the side-information
components, {s}, gets restricted to the hypothesis space of
pertinent parameterized families.

By considering J DNNs for the encoders, {pθj}Jj=1, J−1
DNNs for the side-information components, {sζj}Jj=2, J−1
(2 distributions’) combiners for the flow of side-information
across branches, and one DNN for the (joint) decoder, qϕ,
the learning architecture illustrated in Fig. 5 is exploited
to address the optimization of LDNN

SDist., based upon a finite
sample set, {(x(i),y

(i)
1:J)}Mi=1, and the prior knowledge of the

forward channels statistics, p(tj |zj) for j =1 to J . Similar
to the parallel scheme, to estimate the gradients of LDNN

SDist.,
the conventional approach of utilizing the reparameterization
trick [48] to enable the Monte-Carlo Sampling and replacing
the expectation terms with their (empirical) estimates can be
employed here as well. Focusing on discrete latent spaces,
once again, the Gumbel-Softmax / Concrete Distribution [66],
[67] can be employed to do the trick, i.e., reparameterizing
the underlying categorical distributions. Henceforth, we call
this data-driven scheme Deep Multivariate Forward-Aware
Vector Information Bottleneck (Deep MFAVIB-Successive).

For the special case of error-free forward transmissions,
corresponding to the remote / noisy source coding counterpart
(over the considered scenario), the learning structure remains
the same except for the case that every side-information
DNN, sζj(zj |z1:j−1), is directly fed by the samples, z1:j−1,
from the latent variables of previous branches. Moreover, the
(joint) decoder, qϕ(x|z1:J), is directly fed by the outputs of
combiner units. Obviously, the first and the last expectation
terms in the VLB (34) will change to E x,z1:J{log q(x|z1:J)}
and E z1:j

{
log

s(zj |z1:j−1)
r(zj)

}
, respectively.
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FIGURE 6. The detailed schematic of the encoder and concrete distribution sampler in j-th branch of the learning architecture for parallel processing.
The same individual units are applied in the learning architecture for successive processing as well.

It should be reminded that the side-information DNNs as
well as the joint decoder DNN are located at the (remote)
processing unit. Consequently, the interconnections between
different branches only happen at the receiver side, and still
the (local) compressor units do not have to exchange any
information in this successive compression scheme, similar
to the previous case of parallel processing.

REMARKS: First, it should be noted that the coefficients
of the combiner units are the extra (hyper)parameters to be
twiddled in the successive architecture. Second, by recalling
from (30) that it applies

I(yj ; zj |t1:j−1) = I(yj ; zj)− I(zj ; t1:j−1)︸ ︷︷ ︸
≥0

, (39)

it is immediately inferred that the derived upper-bound for
the unconditional compression rate, I(yj ; zj), in (22) also
applies to the conditional counterpart, I(yj ; zj |t1:j−1). If so,
why looking for another upper-bound in case of successive
processing? To answer this, note that for the second term at
the right side of (33), it applies

E zj ,t1:j−1

{
log

s(zj |t1:j−1)

r(zj)

}
=∑

t1:j−1

p(t1:j−1)
∑
zj

p(zj |t1:j−1) log
s(zj |t1:j−1)

r(zj)
=

∑
t1:j−1

p(t1:j−1)

(
DKL

(
p(zj |t1:j−1)∥r(zj)

)
−DKL

(
p(zj |t1:j−1)∥s(zj |t1:j−1)

))
.

(40)

Consequently, if for every t1:j−1, the second KL divergence
in (40) becomes less than its first KL divergence, a tighter
upper-bound compared to the parallel processing is obtained
(since the expectation term above becomes positive). This
should, naturally, be the case as s(zj |t1:j−1) is a proxy for
p(zj |t1:j−1) (for every t1:j−1) and shall better approximate
it compared to r(zj) that does not take any side-information
into account. This, indeed, is the exact point which yields
the benefits of bringing the side-information into play, when
formulating the respective design problem.

TABLE 1. The configuration of encoder/side-information/decoder DNNs.

Denotation # Hidden Layers Widths # Weights

pθj
(zj |yj) 3 300, 200, 100 81200+101×N

sζj(zj |t1:j−1) 3 300, 200, 100 80600+(300j−199)×N
qϕ(x|t1:3) 3 300, 200, 100 82216+900×N

V. NUMERICAL RESULTS
A. SPECIFICATIONS & IMPLEMENTATION DETAILS
In what follows, a standard 16-QAM (Quadrature Amplitude
Modulation) source signaling (σ2

x = 10) is considered over
J=3 branches. Each access link is modeled by a DMC that
approximates a discrete-time, discrete-input, and continuous-
output AWGN (Additive White Gaussian Noise) channel
with the noise variance, σ2

nj for j = 1, 2, 3. Every forward
link is modeled by a symmetric N×N DMC (N denoting
the number of output clusters per branch) that is specified
by the error probability, ej for j = 1, 2, 3. Explicitly, every
input symbol is received correctly with probability 1 − ej ,
and erroneously (to any other symbol) with probability ej

N−1 .
This indicates that higher values of ej correspond to less
reliable forward transmissions and vice versa.

To conduct the training, 106 samples are generated via a
Monte Carlo approach. These samples are then utilized with
the batch size of 104 and a maximum of 104 epochs. Further,
to regularize, the Early Stopping is applied. The learning rate
is set to 10−5 and Adam [71] is used as the chosen learning
algorithm to update the weights. The detailed configurations
of the encoder DNNs, the side-information DNNs, and the
(joint) decoder DNN have been presented in Table 1. All 3
types of DNNs (i.e., encoder / side-information / decoder) are
Multi-Layer Perceptrons (MLPs) with 3 hidden layers, each
featuring a Rectified Linear Unit (ReLU) activation function.
The training is performed once per parameter set, and the
weights are saved and used for inference without retraining.

The detailed schematic of the encoder and the sampler in
j-th branch of the learning architecture for parallel scheme
has been depicted in Fig. 6. Generally, the noisy observation,
yj ∈Yj for j=1, 2, 3, is complex-valued. Thus, to be fed into
the j-th local encoder DNN, the signal, yj ∈Yj , is stacked
into a two-dimensional vector, yj real ∈R2, that contains the
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FIGURE 7. The relevant information, I(x; t1:3), vs. the number of allowed output clusters,N , for a) fixed access noise variance, and b) fixed forward
error probability. 16-QAM source signaling (σ2

x =10) over AWGN access links, with λj =0.01 for j=1, 2, 3, and temperature τ=2.

inphase and quadrature parts, separately. We apply this since
DNNs cannot handle the complex numbers straightforwardly
in the training phase (as complex derivatives are not always
straightforward to calculate). The j-th local encoder that is
fed by yj real outputs a categorical distribution, ρj ∈(0, 1)N ,
where N denotes the number of categories / clusters for the
discrete latent variable, zj . To generate samples from the
pertinent concrete variable, first we draw N Independent and
Identically Distributed (IID) samples from the Gumbel (0, 1)
distribution and stack them into the vector, gj for j=1, 2, 3.
The sum signal log(ρj)+gj is then multiplied by the inverse
of a (positive) hyperparameter, τ , which is known as the
temperature in the literature. This scaled signal is then fed
into a Softmax unit. Consequently, the k-th entry of the j-th
sample vector, zj concrete, is calculated as (k=1 to N )

z
[k]
j concrete =

exp
((

log(ρ
[k]
j ) + g

[k]
j

)
/τ
)

∑N
ℓ=1 exp

((
log(ρ

[ℓ]
j ) + g

[ℓ]
j

)
/τ
) ∈ [0, 1], (41)

wherein ρ
[k]
j and g

[k]
j denote the k-th entries of the vectors,

ρj and gj , respectively. The lower the temperature value, τ ,
becomes, the closer behavior to an Argmax is achieved. For
τ=1, the unmodified Softmax is achieved. By letting τ→∞,
a uniform distribution is obtained over N categories. Hence,
the temperature, τ , should be chosen carefully, as either too
small or too large values of it may lead to a poor performance
(due to either experiencing very rapid changes in gradients or
an overly smoothed behavior). It should be mentioned that,
for the successive processing scheme, the same individual
units are used in the respective learning architecture as well.
Finally, it should also be noted that, the latent priors, rψj(zj)
for j=1, 2, 3, although having their own sets of parameters
(i.e., the probabilities of different categories / clusters), are
not implemented by DNNs.

B. MODEL-BASED VS. DATA-DRIVEN DESIGN
In the first part, we would like to compare the performance
of the State-of-the-Art (SotA) model-based MFAVIB with
the devised data-driven Deep MFAVIB algorithm. For that,
by focusing on the case of parallel processing, we consider a
symmetric setup in which all access noise variances are set to
the same value, σ2

n . Moreover, all forward error probabilities
are set to the same value, e, as well. We further set λj=0.01
for j=1, 2, 3, indicating that the main focus will be on the
preservation of the relevant information, i.e., I(x; t1:3). For
the described setup, we further present an extra performance
comparison with the case in which, per IN, the well-known
K-Means algorithm [72] is used. To avoid poor local optima,
for both MFAVIB and K-Means algorithms, the best outcome
has been chosen out of 100 runs with different initialization.

In Fig. 7a, by fixing the access noise variance to σ2
n =0.2,

we vary the number of allowed output bins / clusters (per
branch), N , and illustrate the obtained relevant information,
I(x; t1:3), for different forward error probabilities, namely,
e = 0, 0.1, 0.2, 0.3. In Fig. 7b, by fixing the forward error
probability to e=0.03, again we vary the number of allowed
output bins / clusters (per branch), N , and depict the obtained
relevant information, I(x; t1:3), for 3 different access noise
variances, namely, σ2

n =0.25, 0.50, 0.75.
Focusing on the illustrated results in Fig. 7a, it is readily

observed that, for fixed access statistics, the relevant infor-
mation increases by decreasing the forward error probability.
This can be justified by noting the fact that the capacity of
forward channels calculated as [73]

R(N, e) = log2 N+(1−e) log2(1−e)+e log2
e

N − 1
, (42)

increases by decreasing the error probability, e. Hence, by
decreasing e more information can be flown into the forward
links, and consequently, the relevant information increases as
well. It is further observed that, expectedly, by increasing the
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FIGURE 8. The relevant information, I(x; t1:3), vs. the overall forward rate,
∑

j I(yj ; zj |t1:j−1) successive /
∑

j I(yj ; zj) parallel for a) fixed access
noise variance, and b) fixed forward error probability. 16-QAM source signaling (σ2

x =10) over AWGN access links, allowed output clusters,N=4,
symmetric 4×4 forward channels, with 0.28≤λj ≤0.66 for j=1, 2, 3, τ=0.5 (Par.), τ=0.225 (Suc.), with (π

(j)
1 , π

(j)
2 )=(0.9, 0.1), for j=2, 3.

number of allowed output clusters, the relevant information
increases since the compression bottleneck is loosened. It is
further observed that, regardless of having either error-free or
error-prone forward links, the K-Means algorithm yields an
inferior performance in comparison with the proposed joint
source-channel coding schemes in terms of preserving the
relevant information, I(x; t1:3). The superior performance
by (Deep) MFAVIB, for the case of error-prone forwarding,
evidently corroborates the benefits of “forward-awareness”
by incorporating the impact of imperfect forwarding into the
design of local compressors.

Focusing on the depicted results in Fig. 7b, it is observed
that, for a given forward statistics, the relevant information
increases by decreasing the access noise variance. This can
be justified through an analogous line of argumentation as the
one already provided for the previous results, by noting the
fact that the capacity of access links increases by decreasing
the noise variance, σ2

n , thereby allowing more information
(about the user / source signal, x) to be flown into the system.
Here as well, like in the previous investigation in Fig. 7a, the
outperformance of the (Deep) MFAVIB scheme compared to
the K-Means algorithm is observed, corroborating the gains
obtained by the joint source-channel coding schemes which,
for the compression of noisy observations at different INs,
they take the imperfections of forward links into account.

Considering both results together, as the main takeaway, it
is observed that regardless of the specific choice of model
parameters, the devised Deep MFAVIB algorithm performs
(almost) on par with the SotA model-based MFAVIB routine,
without requiring the prior knowledge of the joint statistics
of the source, x, and the noisy observations, y1:3, and solely
based on a (finite) sample set. This becomes quite important,
especially, in applications where the joint statistics are either
unavailable or hard to estimate.

C. PARALLEL VS. SUCCESSIVE PROCESSING
In the second part of numerical investigations, we would like
to compare the achievable performances of the parallel and
successive processing schemes. For that, like in the previous
case, we consider a symmetric scenario in which all access
noise variances are set to the same value, σ2

n . Furthermore,
all forward error probabilities are set to the same value, e,
as well. We fix the number of allowed output clusters (per
branch) to N =4, and vary the trade-off parameters, λj for
j=1, 2, 3, within a certain range of finite non-zero values to
sweep various points in the information-compression plane.

In Fig. 8a, by fixing the access noise variance to σ2
n =0.25,

we depict the obtained relevant information, I(x; t1:3), versus
the overall forward rate, i.e.,

∑
j I(yj ; zj |t1:j−1) successive

processing /
∑

j I(yj ; zj) parallel processing, for 3 different
forward error probabilities, namely, e=0.05, 0.10, 0.15.

Conversely, in Fig. 8b, by presuming a fixed value for
the forward error probability, i.e., e=0.05, we illustrate the
obtained relevant information, I(x; t1:3), versus the overall
forward rate, i.e.,

∑
j I(yj ; zj |t1:j−1) successive processing /∑

j I(yj ; zj) parallel processing, for 3 different access noise
variances, namely, σ2

n =0.25, 0.50, 0.75.
Focusing on the presented results in Fig. 8a, it is directly

observed that, regardless of the chosen processing scheme,
by decreasing the forward error probability, larger values of
relevant information are achieved for a given overall forward
rate. To justify this, an exact line of argumentation as the
one already provided for Fig. 7a is applicable here as well.
Also, focusing on the results depicted in Fig. 8b, it is readily
seen that, regardless of the chosen processing scheme, by
decreasing the access noise variance, larger values of relevant
information are achieved for a given overall forward rate.
Again, this can be justified by the same line of reasoning as
the one already provided for Fig. 7b in the previous part.
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Focusing on both figures together, it is seen that various
points in the information-compression plane are achieved by
varying the value of trade-off parameters, λj for j=1, 2, 3.
Explicitly, large values of λj correspond to the solutions
with more focus on compactness, while the small values of
λj correspond to solutions with more focus on informativity.

As the main takeaways, first, it should be noted that the
successive processing scheme outperforms the parallel one
by better leveraging the present correlations in the signals
of different intermediate nodes (since all of them are noisy
versions of the common user signal, x). This clearly indicates
the gained benefits by using the side-information at the RPU.
Second, it should also be noted that, regardless of the chosen
specifications and the type of processing scheme, the intro-
duced (data-driven) approaches here, perform (almost) on par
with the SotA model-based algorithms without requiring the
full prior knowledge of the joint statistics, p(x, y1:3), of input
signals, and purely based on a finite sample set, instead. Once
again, this shows that the developed compression schemes
in this article can be applied (as a promising alternative) in
those applications where the joint input statistics are either
unavailable, hard to estimate, or rapidly changing, as in cases
of dealing with dynamic environments.

VI. SUMMARY
In this article, we developed new deep variational approaches
to address the challenging design problems for a (generic)
distributed / multiterminal joint source-channel coding setup
which appears in a broad range of real-world applications.
In the focused setup, a number of noisy observations from a
common user / source signal should be compressed at several
intermediate nodes before getting forwarded over multiple
error-prone and rate-limited links to a (remote) processing
unit. By following the Information Bottleneck principle, the
Mutual Information was then chosen as the fidelity criterion,
and subsequently, tractable objective functions were derived
for two different types of retrieval strategies, together with
the pertinent learning architectures. The underlying design
problems were then addressed by the standard training of
the Deep Neural Networks in the introduced architectures,
e.g., by Stochastic Gradient Descent with back-propagation.
The proposed (data-driven) latent variable-based approaches
here, whose effectiveness was substantiated through a couple
of numerical investigations over typical (real-world) digital
transmission setups, generalize several well-known concepts,
including Variational Auto-Encoders [48], Deep Variational
Information Bottleneck [45], and its distributed extension for
(indirect / remote) source coding [39], [46], to the context of
multiterminal joint source-channel coding.
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