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Abstract—We focus on a generic multiterminal remote source
coding scenario, appearing in a variety of real-world applications.
Specifically, several noisy observations from a remote user/source
signal should be quantized at some intermediate nodes prior to a
forward transmission via multiple error-free and rate-limited links
to a processing unit. To design the local quantizers, we follow the
Information Bottleneck method, and devise a purely data-driven
solution, which can be categorized as a Latent Variable Model in
the context of generative AI. To that end, we derive a tractable
variational lower-bound of the original objective functional, and
present the pertinent learning architecture, over which, the design
problem can be addressed by the joint training of the encoder
DNNs and the decoder DNN, e.g., by some form of the Stochastic
Gradient Descent. By several numerical investigations, we further
show that this data-driven compression scheme performs (almost)
on par with the SotA model-based approach, without requiring
the prior knowledge of the (joint) statistics of input signals. This
becomes quite important, especially, in those applications where
the joint input statistics are either unavailable or hard to estimate.

Index Terms—6G, deep learning, distributed data compression,
generative AI, information bottleneck, remote source coding.

I. INTRODUCTION

The Information Bottleneck (IB) method, that first introduced
in [1], was developed as an information-theoretic approach for
data compression. The main idea behind was to retain as much
information as possible about a target / relevant variable, when
compressing a (correlated) data set. The design problem was
formulated by modifying the single-letter characterization of
the Rate-Distortion (RD) function in Shannon’s seminal work
on the lossy source coding [2]. Later, it was shown that (see,
e.g., [3]) this modified formulation characterizes the boundary
of achievable RD region for a remote source coding problem
with the Logarithmic Loss distortion. We refer the interested
readers to [4] for a more detailed discussion on various aspects
of this variational framework from the standpoints of both the
Information and Learning theory.

From a practical perspective, it is also noteworthy that the
IB method has already been exploited in the design of various
parts of modern communication systems. Those applications
include (but are not limited to) the Analog-to-Digital (A / D)
converters [5], the (efficient) construction of Polar Codes [6],
the discrete channel decoding schemes [7], and recently in the
Semantic / Task-Oriented Communications [8].

In this work, we focus on a multiterminal extension of the
original IB setup, wherein by following a joint design, several
noisy observations from a source signal should be compressed
at some intermediate nodes, ahead of a forward transmission
via multiple error-free and rate-limited channels to a (remote)
processing unit. This (very generic) setup appears in a broad
variety of real-world applications, from distributed inference
sensor networks with rate-limited links to the fusion center,
to the Cloud-based Radio Access Networks (Cloud-RANs) as
well as (User Centric) massive Multiple-Input Multiple-Output
(UC-mMIMO) systems with rate-limited fronthaul links, and
in relaying schemes with the compress-and-forward strategy.

As the main contribution, by leveraging the framework of
Latent Variable Models (LVMs) in the context of Generative
Artificial Intelligence (GenAI), we present here a purely data-
driven distributed IB-based compression scheme that extends
the well-known concepts of Variational Auto-Encoders (VAEs)
[9], [10] and the Deep Variational Information Bottleneck [11],
while performing on par with the SotA model-based scheme.
The practical importance of such a sample-based compression
approach reveals itself in applications where the joint statistics
of input variables are either unavailable or hard to estimate.

Outline: We start our discussion by a brief presentation of
the point-to-point IB-based remote source coding in Section II
as a prelude towards the distributed extension. In Section III,
the system model and the corresponding design problem are
presented for the distributed IB-based compression approach.
This will be followed by a concise presentation of the SotA
model-based solution in Section IV. Thereupon, in Section V,
we present our data-driven approach to address the challenging
design problem purely based on a finite sample set. To further
substantiate the effectiveness of this novel data-driven method,
we present some numerical investigations in Section VI, prior
to a short wrap-up in Section VII, containing the salient points.

Notations: For the discrete random variable, a, each sample,
a∈A, happens according to the probability distribution, p(a).
The same applies to the random vector, a1:J = {a1, · · · , aJ},
with the boldface counterparts. Moreover, a-j

1:J = a1:J \{aj},
and, E•{·}, represents the expectation operator. H(·), DKL(·‖·),
and, I(·; ·), denote Shannon’s entropy, Kullback-Leibler (KL)
divergence, and Mutual Information [12], respectively. Finally,
{·}Jj=1 represents a set of J elements.
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Fig. 1. The considered system model for point-to-point remote source coding. DMC, IN, IRC, and RPU stand for Discrete Memoryless Channel, Intermediate
Node, Ideal Rate-limited Channel, and Remote Processing Unit, respectively. The Markov chain, x↔y↔z, applies.

II. POINT-TO-POINT IB-BASED REMOTE SOURCE CODING

Consider the presented system model in Fig. 1. Explicitly,
a noisy observation, y, from the user / source signal, x, should
be compressed at an Intermediate Node (IN) to the signal, z,
before getting forwarded via an Ideal Rate-limited Channel
(IRC) to a Remote Processing Unit (RPU). The interrelation
between the source signal, x, and the noisy observation, y, is
modeled through a Discrete Memoryless Channel (DMC). It
is further presumed that the source statistics, p(x), as well as
the transition probabilities, p(y|x), are given, and the Markov
chain, x↔y↔z, applies.

The goal is to design the compressor, p(z|y), in a fashion
that, while satisfying a rate constraint, the compressed signal,
z, retains as much information as possible about the source
signal, x. Mathematically, the design problem is formulated as
a constrained optimization in which, the relevant information,
I(x; z), is maximized such that the compression rate, I(y; z),
does not exceed the capacity / rate-limit, R, of the forward link.
Explicitly, the following holds

p∗(z|y) = argmax
p(z|y): I(y; z)≤R

I(x; z), (1)

in which, 0≤ R ≤ log2 |Z| bits, sets an upper-bound on the
compression rate, I(y; z). Exploiting the method of Lagrange
multipliers [13], the design problem (1) can then be recast into
the following unconstrained optimization (up to the validity of
the conditional compressor mapping)

p∗(z|y) = argmax
p(z|y)

I(x; z)− λ I(y; z), (2)

where λ≥ 0 is associated with the forward channel capacity,
R. The form of stationary solution of the design problem (2)
has been derived in [1] (for each pair (y, z)∈Y×Z) as

p(z|y) = p(z)

ω(y, β)
exp
(
−β DKL

(
p(x|y)‖p(x|z)

))
, (3)

where β= 1
λ , and ω(y, β) is a normalization function to ensure

the validity of the pertinent conditional quantizer mapping. An
iterative algorithm has also been presented in [1] to address the
design problem (2), by performing the Fixed-Point Iterations
[14] on the derived implicit solution (3).

III. DISTRIBUTED EXTENSION: SYSTEM MODEL &
PROBLEM FORMULATION

Consider the illustrated system model in Fig. 2. A source
signal, x, is observed imperfectly at J INs. These nodes should
then (locally) compress their noisy observations, yj for j=1 to
J , into the signals, zj for j=1 to J , before forwarding them

via J error-free and rate-limited channels with the capacities,
Rj for j=1 to J , to an RPU. The interrelation between the
source signal, x, and the j-th noisy observation, yj , is modeled
by a DMC whose transition probabilities, p(yj |x), as well as
its input statistics, p(x), are presumed to be known. Later on,
when we present our data-driven approach, we will relax this
presumption by requiring solely a (finite) sample set from the
joint input statistics, p(x, y1:J), instead. Also, we assume that,
given the source signal, x, the counterpart signals of different
INs are statistically independent. By following the Information
Bottleneck (IB) principle, we formulate the design problem of
the set of (local) compressors, P ={p(z1|y1), · · · , p(zJ |yJ)},
as a constrained optimization wherein the goal is to maximize
the relevant information, i.e., I(x; z1:J), without exceeding the
capacities, Rj for j=1 to J , of the individual forward links.
Mathematically, it holds

P ∗ = argmax
P : ∀j I(yj ; zj)≤Rj

I(x; z1:J), (4)

with 0≤Rj≤ log2 |Zj | bits, upper-bounding the compression
rate, I(yj ; zj), of the j-th IN. It must be mentioned that, this
design formulation corresponds to a purely parallel processing
at RPU to retrieve the source signal, x. Interested readers are
referred to [15] for a successive processing flow / strategy at
RPU to retrieve the source signal.

IV. MODEL-BASED APPROACH IN A NUTSHELL

By application of the method of Lagrange multipliers [13],
we can recast the design problem (4) into an unconstrained
maximization (up to a validity condition regarding the involved
conditional distributions), namely,

P ∗ = argmax
P

I(x; z1:J)−
J∑
j=1

λjI(yj ; zj), (5)

where λj≥0 is associated with the capacity, Rj , in the original
formulation. For a given Rj , the respective λj can be found,
e.g., via an iterative bi-section search. The stationary solution
of the design problem (5) for the j-th compressor mapping,
p(zj |yj), has been derived in [16] (for each (yj , zj)∈Yj×Zj)
as

p(zj |yj) =
p(zj)

ωzj(yj , βj)
exp
(
−βj d(yj , zj)

)
, (6)

where βj= 1
λj

, and ωzj(yj , βj) is a partition function to ensure
the validity of the pertinent conditional distribution. Moreover,
the multivariate relevant distortion, d(yj , zj), is calculated as

d(yj , zj) =
∑
z-j
1:J

p(z-j
1:J |yj)DKL

(
p(x|yj , z-j

1:J)‖p(x|zj , z
-j
1:J)
)

.

(7)
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Fig. 2. The considered system model for distributed remote source coding. Given source, x, the counterpart signals of different branches are independent.

Taking a closer look at the derived relevant distortion in (7), it
is realized that it quantifies the degree of proximity between
the conditional distributions in which yj ∈Yj is involved with
those wherein yj is replaced by its compressed representative,
zj ∈Zj . In other word, the probability of allocating yj ∈Yj to
any bin / cluster, zj ∈Zj , is commensurate with how well that
zj represents yj . An iterative algorithm has also been presented
in [16] to address the design problem (5) based on the derived
stationary solutions in (6). This algorithm, termed Multivariate
iterative IB (MultiIB), in core, runs the so-called Multivariate
Fixed-Point Iterations [14] on the implicit solutions (6).

For fixed p(zm|ym) and finite λm (m=1 to J and m 6=j),
by letting λj→0, a deterministic quantizer mapping, p(zj |yj),
is obtained, corresponding to the state of full concentration.
For finite λj , usually a stochastic quantizer mapping, p(zj |yj),
is generated, while in the case of letting λj→∞, the state of
full diffusion is achieved wherein each yj ∈Yj is allocated to
all output clusters, zj ∈Zj , equiprobably.

V. NOVEL DEEP LEARNING-BASED APPROACH

In this section, we present our data-driven approach, termed
Deep MultiIB, to address the design problem (5) based upon
a (finite) sample set from the joint statistics, p(x, y1:J), of the
source and the noisy observations. This novel approach, which
can be categorized under the umbrella of the (generative) latent
variable models, directly extends some well-known concepts,
including the Deep Variational Information Bottleneck [11] and
the Variational Auto-Encoders [9], [10].

A. Variational Lower-Bound

The first step towards developing a sample-based distributed
data compression scheme is to introduce a tractable Variational
Lower-Bound (VLB) on the objective Lagrangian in (5), i.e.,

L = I(x; z1:J)−
J∑
j=1

λjI(yj ; zj) . (8)

To that end, first we find a global lower-bound on the relevant
information, I(x; z1:J), by defining an auxiliary distribution,
q(x|z1:J), for the joint decoder. Explicitly, it holds

I(x; z1:J) = H(x)︸ ︷︷ ︸
≥0

−H(x|z1:J) (9a)

≥
∑
z1:J

p(z1:J)DKL
(
p(x|z1:J)‖q(x|z1:J)

)
︸ ︷︷ ︸

≥0

+
∑
x, z1:J

p(x, z1:J) log q(x|z1:J) (9b)

≥ E x,z1:J{log q(x|z1:J)} . (9c)

From (9a) to (9b), the non-negativity of entropy / uncertainty
(for the discrete source signal, x), has been applied. Further,
from (9b) to (9c), the non-negativity of KL divergence (a.k.a.
the information inequality) [12] has been applied.

Next, we find a global upper-bound on the j-th compression
rate, I(yj ; zj), by defining auxiliary distributions, {r(zj)}Jj=1,
for the latent priors. Explicitly, it holds

I(yj ; zj) =
∑

yj∈Yj , zj∈Zj

p(yj , zj) log
p(zj |yj)
r(zj)

−DKL
(
p(zj)‖r(zj)

)︸ ︷︷ ︸
≥0 (10a)

≤ E yj ,zj

{
log

p(zj |yj)
r(zj)

}
=
∑
yj∈Yj

p(yj)DKL
(
p(zj |yj)‖r(zj)

)
,

(10b)

wherein, from (10a) to (10b), the information inequality has
been applied. Now, we are in the position to finally define the
VLB for the design Lagrangian, L, in (8) as

LVLB=E x,z1:J{log q(x|z1:J)} −
J∑
j=1

λjE yj ,zj

{
log

p(zj |yj)
r(zj)

}
,

(11)

since from (9) and (10), it is directly deduced that
L
(
{p(zj |yj)}Jj=1

)
≥

max
q,{r}

LVLB({p(zj |yj)}Jj=1, q(x|z1:J), {r(zj)}Jj=1

)
,

(12)
and, consequently,

max
P={p}

L
(
{p(zj |yj)}Jj=1

)
≥

max
P={p}

max
q,{r}

LVLB({p(zj |yj)}Jj=1, q(x|z1:J), {r(zj)}Jj=1

)
.

(13)
Next, we consider a parameterized family for all input

arguments of the derived lower-bound, LVLB. Explicitly, we
denote by {θj}Jj=1, φ, and {ψj}Jj=1, the parameter sets for
families of distributions regarding the encoders, {p(zj |yj)}Jj=1,
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Fig. 3. The introduced learning architecture for distributed IB-based remote source coding scheme, featuring J local encoder DNNs and a joint decoder DNN.

the joint decoder, q(x|z1:J), and the latent priors, {r(zj)}Jj=1,
and by LDNN, the introduced VLB with the parameterized
input distributions, namely,

LDNN = LVLB({pθj(zj |yj)}Jj=1, qφ(x|z1:J), {rψj(zj)}Jj=1

)
.

(14)
Then, the following inequality holds

max
{p}

max
q,{r}

LVLB({p(zj |yj)}Jj=1, q(x|z1:J), {r(zj)}Jj=1

)
≥

max
{θj},φ,{ψj}

LDNN({θj}Jj=1,φ, {ψj}Jj=1

)
,

(15)
as the search space over valid distributions, {p}, q, {r}, will be
restricted to the hypothesis space of respective parameterized
families. A closer look at the derived VLB reveals that LDNN

consists of two separate terms, one for the reconstruction, and
another for the regularization. Explicitly, it applies

LDNN = Ex,z1:J∼p(x,z1:J ){log qφ(x|z1:J)}

−
J∑
j=1

λjEyj ,zj∼p(yj ,zj)

{
log

pθj(zj |yj)
rψj

(zj)

}
= Ez1:J∼p(z1:J )

{
Ex∼p(x|z1:J ){log qφ(x|z1:J)}

}︸ ︷︷ ︸
reconstruction

−
J∑
j=1

λjEyj∼p(yj)
{
DKL

(
pθj(zj |yj)||rψj

(zj)
)}︸ ︷︷ ︸

regularization

.

(16)

It is straightly seen that maximizing the relevant information,
I(x; z1:J), corresponds to minimizing the cross-entropy loss
(that is, principally, the reconstruction loss for classification,
when following the Maximum-Likelihood learning rule [17]),
averaged over z1:J . On the other hand, the counterpart term
for the compression rates, I(yj ; zj) for j = 1 to J , acts as a
regularizer since every local compressor, pθj(zj |yj) for j=1

to J , should match the corresponding latent prior, rψj
(zj), via

a KL divergence term, averaged over yj .
Finally, it must also be mentioned that the derived objective

function in (16) extends the Evidence Lower-BOund (ELBO)
that is used to train the Variational Auto-Encoders (VAEs) [9],
[10] when the Evidence itself (that is the Maximum Likelihood
objective function) becomes intractable.

B. Learning Architecture & Implementation Details

Generally, we intend to design the stochastic local encoders,
pθj(zj |yj) for j=1 to J , and the joint decoder, qφ(x|z1:J), via
Deep Neural Networks (DNNs). To estimate the gradients of
the derived objective function, LDNN, we can simply resort to
the conventional approach of exploiting the reparameterization
trick. Subsequently, by performing the Monte-Carlo sampling,
we can then replace the expectation terms with their empirical
estimates. Since the focus here is on discrete latent spaces, we
can use the so-called Gumbel-Softmax / Concrete Distribution
[18], [19] to do the trick for us, that is, to reparameterize the
underlying categorical distributions. Having all these points in
mind, we present the learning architecture of our data-driven
distributed IB-based remote source coding approach, the Deep
MultiIB, in Fig. 3.

Generally, the noisy observation, yj ∈Yj for j=1 to J , is
complex-valued. So, to be fed into the j-th local encoder DNN,
the signal, yj ∈Yj , is stacked into a two-dimensional vector,
yj real ∈ R2, that contains the inphase and quadrature parts,
separately. We do this since DNNs cannot handle the complex
numbers straightforwardly in the training phase (as complex
derivatives are not always straightforward to calculate). The
j-th local encoder that is fed by yj real outputs a categorical
distribution, πj ∈ (0, 1)N , wherein N denotes the number of
categories / bins for the discrete latent variable, zj . To generate
samples from the pertinent concrete variable, first we draw N
independent and identically distributed (i.i.d.) samples from
the Gumbel (0, 1) distribution and stack them into the vector,
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gj for j=1 to J . The sum signal log(πj)+gj is then multiplied
by the inverse of a (positive) hyperparameter, τ , known as the
temperature in the relevant literature. This scaled signal is then
fed into a Softmax unit. Consequently, the i-th entry of the j-th
sample vector, zj samp, is calculated as (i=1 to N )

z
(i)
j samp =

exp
((

log(π
(i)
j ) + g

(i)
j

)
/τ
)

∑N
`=1 exp

((
log(π

(`)
j ) + g

(`)
j

)
/τ
) ∈ [0, 1], (17)

where π(i)
j and g(i)j are the i-th entries of the vectors, πj and

gj , respectively. The lower the τ becomes, the closer behavior
to an Argmax is achieved. For τ=1, the unmodified Softmax is
achieved. By letting τ→∞, a uniform distribution is obtained
over N categories. Thus, the temperature, τ , must be chosen
carefully, as either too small or too large values of it may lead
to a poor performance (due to either experiencing a very rapid
change in the gradients or an excessively smoothed behavior).
Finally, the decoder is a standard Feed-Forward DNN.

The end-to-end chain that is illustrated in Fig. 3 extends the
conventional structure of VAEs. Particularly, in a conventional
VAE, first we go from the source, x, to a latent representation,
z, by an encoder, and then we try to retrieve / recover the source
from that latent representation by a decoder. In contrast, here,
we go from noisy observations, yj for j=1 to J , of the source,
x, to the latent representations, zj for j=1 to J , by J (local)
encoders, and then try to recover the source, x, from all latent
representations by a joint decoder.

C. Neural Networks & Supervised Learning

Neural Networks are nonlinear functions with the trainable
parameters that are called weights, here θj for j=1 to J and φ
for (local) encoders and the joint decoder, respectively. These
weights are adapted w.r.t. a loss function, here −LDNN in (16).
Given a finite data set of the source signal realizations and the
pertinent noisy observations, the weights of the encoder DNNs
and the joint decoder DNN are updated by back-propagation,
when performing some form of Gradient Descent. The goal is
to jointly train the (local) encoders and the (joint) decoder by
minimizing the loss function. Finally, it should be mentioned
that the latent priors, rψj

(zj) for j=1 to J , although having
their own sets of parameters (i.e., the probabilities of different
categories / clusters), are not implemented by DNNs.

VI. NUMERICAL RESULTS

We consider a standard, equiprobable 16-QAM (Quadrature
Amplitude Modulation) source signaling (σ2

x =10) over J=3
AWGN (Additive White Gaussian Noise) access channels with
the (same) noise variance, σ2

n . To conduct the training, we use
106 samples, with a batch size of 104, and a maximum of 104

epochs.We apply the Early Stopping to obtain the best weights.
Furthermore, we set the learning rate to 10−5, and make use
of the Adam optimizer [20]. The detailed configurations of the
encoder DNNs and the (joint) decoder DNN have been given
in Table I. Specifically, for every (local) encoder and the joint
decoder, a Multi-Layer Perceptron (MLP) has been exploited

TABLE I
THE CONFIGURATION OF ENCODER DNNS, DECODER DNN, AND PRIORS.

Denotation # of Hidden Layers Width of Layers # of Weights
pθj(zj |yj) 3 300, 200, 100 81200+101×N
qφ(x|z1:3) 3 300, 200, 100 82216+900×N
rψj

(zj) 0 0 N

with three hidden layers featuring the ReLU (Rectified Linear
Unit) activation function. For (local) encoder DNNs, the output
activation function is linear to form the log probabilities, i.e.,
log(πj). For the joint decoder, the output activation function is
a Softmax on different symbols of the source alphabet.

In Fig. 4, we present the relevant information, I(x; z1:3), by
the model-based MultiIB and the data-driven Deep MultiIB vs.
a) the cardinality of the compressors’ output alphabet, N , and
b) the total forward rate,

∑3
j=1 I(yj ; zj), for different values of

the access links’ noise variance, namely, σ2
n=0.25, 0.50, 0.75.

To obtain the pertinent curves for MultiIB, the best outcome
out of 100 trials (with different initialization) was chosen per
parameter set. Regarding the Deep MultiIB, the training was
conducted for each parameter set, and the weights were saved
and used for inference without retraining.

Focusing on Fig. 4a, it is observed that the obtained relevant
information, I(x; z1:3), increases by increasing the number of
output clusters, N , per branch (for a given access links’ noise
variance, σ2

n ). This is an expected behavior, as by increasing
N , we loosen the compression bottleneck, and consequently,
we allow a larger flow of information throughout the system.
Likewise, it is directly seen that for a given number of output
clusters, N , the relevant information, I(x; z1:3), increases by
decreasing the access links’ noise variance, σ2

n . This is also
expected, as by deceasing σ2

n , the capacities of access links
increase. Therefore, larger information about the source signal,
x, is flown into the system. As the main takeaway, it is readily
observed that the data-driven Deep MultiIB, performs (almost)
on par with the SotA model-based MultiIB, without requiring
the full prior knowledge of the joint statistics, p(x, y1:3).

Focusing on Fig. 4b, analogous behaviors are observed as
the ones already discussed for Fig. 4a, and similar justifications
are equally applicable. Explicitly, by decreasing the trade-off
parameter, λj for j=1, 2, 3, the focus is steered towards the
preservation of the relevant information (at the cost of higher
total forward rates). The main takeaway here as well is the
fact that the overall “information-compression” dynamics of
the SotA model-based MultiIB is obtainable by the devised
data-driven Deep MultiIB, only with a (finite) sample set.

VII. SUMMARY

In this work, we focused on a generic multiterminal remote
source coding scenario which appears in a broad variety of
real-world applications. Explicitly, multiple noisy observations
from a user / source signal must be quantized at some interme-
diate nodes, before getting forwarded to a processing unit via
several error-free and rate-limited links. To design the (local)
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Fig. 4. The relevant information of MultiIB and Deep MultiIB vs. a) number of output clusters and b) total forward rate. 16-QAM source signaling (σ2
x =10)

over AWGN access channels (σ2
n = 0.25, 0.50, 0.75), with a) λj = 0.01 for j = 1, 2, 3, and the temperature τ = 2 and b) N = 4, 0.25 ≤ λj ≤ 0.9 for

j=1, 2, 3, and the temperature τ=0.5.

compressors, we applied the Information Bottleneck principle
and selected the Mutual Information as the fidelity criterion.
After concisely discussing the SotA model-based solution, we
presented our purely data-driven approach, the Deep MultiIB,
that extends the well-known concepts from (generative) latent
variable models, especially, the Variational Auto-Encoders [9],
and Deep Variational Information Bottleneck [11]. Explicitly,
we derived a tractable variational lower-bound on the original
objective functional and presented a learning architecture over
which the design problem is addressed by the joint training
of the encoder DNNs and the decoder DNN. Through some
numerical investigations, we further showed that our devised
data-driven approach performs (almost) on par with the SotA
model-based solution, without requiring the prior knowledge
of the joint statistics of input signals. This clearly indicates the
importance of Deep MultiIB, especially, in applications where
the input statistics are either unavailable or hard to estimate.
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