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ABSTRACT In this work, we expand the cooperative multi-task semantic communication framework
(CMT-SemCom) introduced in [1], which divides the semantic encoder on the transmitter side into
a common unit (CU) and multiple specific units (SUs), to a more applicable design. Our proposed
system model addresses real-world constraints by introducing a general design that operates over rate-
limited wireless channels. Further, we aim to tackle the rate-limit constraint, represented through the
Kullback-Leibler (KL) divergence, by employing the density ratio trick alongside the implicit optimal
prior method (IoPm). By applying the IoPm to our multi-task processing framework, we propose a
hybrid-learning approach that combines deep neural networks with kernelized-parametric machine learning
methods, enabling a robust solution for the CMT-SemCom. Our framework is grounded in information-
theoretic principles and employs variational approximations to bridge theoretical foundations with practical
implementations. Simulation results demonstrate the proposed system’s effectiveness in rate-constrained
multi-task SemCom scenarios, highlighting its potential for enabling intelligence in next-generation
wireless networks.

INDEX TERMS Cooperative multi-tasking, deep learning, hybrid learning, information theory, implicit
optimal prior, parametric methods, semantic communication.

I. INTRODUCTION

ECENT advancements in artificial intelligence, partic-

ularly in deep learning (DL) and end-to-end (E2E)
communication technologies, have led to the rise of semantic
communication (SemCom) [2], [3], [4], [5]. It has attracted
significant attention, being recognized as a critical enabler
for the sixth generation (6G) of wireless communication
networks. SemCom is expected to play a key role in
supporting a wide range of innovative applications that will
define 6G connectivity and beyond [6]. This is because
emerging applications often have to prioritize task execution
over the precise reconstruction of transmitted information at
the receiver.

In contrast to conventional communication systems, which
are grounded in Shannon’s information theory [7] and focus
on the accurate transmission of symbols, SemCom prioritizes
understanding the meaning and goals behind transmitted

information. Therefore, designing appropriate communica-
tion systems requires moving beyond the traditional focus
on precise bit transmission and rethinking the aspects that
address communication problems. According to Shannon and
Weaver’s work, the communication problem is categorized
into three levels, each addressing a specific issue [8]:

o The technical problem: Accurate transmission of sym-
bols,

o The semantic problem: Transmitting the desired mean-
ing precisely through symbols,

« The effectiveness problem: Effectiveness of the received
meaning.

To meet the demands of emerging applications, SemCom
operates at the second level of communication where the goal
is to convey the desired meaning rather than ensuring exact
bit-level accuracy. By surpassing the traditional focus on the
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FIGURE 1. Categorization of research works in semantic communications.

precise transmission of bits, SemCom is well-suited for new
applications, such as the industrial Internet and autonomous
systems, where successful task execution is prioritized over
the exact reconstruction of transmitted data at the receiver.

Research into SemCom has explored five main
approaches, with four detailed in [9] and a fifth inspired
by Weaver’s extension of Shannon’s theory to include the
semantic level [10]. These approaches are:

o Classical approach,

« Knowledge graph approach,

o Machine learning (ML) approach,
« Significance approach,

o Information theory approach.

The classical approach utilizes logical probability to
quantify semantic information. Bar-Hillel and Carnap [11],
introduced this approach and have inspired many other works
introducing methods to measure the semantic information
of a source. As noted in [9], this definition of semantic
information primarily applies to psychological investigations
rather than communication counterparts.

Next, the knowledge graph approach represents semantics
by knowledge graph structures. This approach stores the
information such that the semantic relations between entities
are held via semantic matching models as a knowledge graph
technique [12]. For instance, [13] exploits this approach
for its proposed semantic information detection framework,
using triplets of the graph as semantic symbols.

The ML approach leverages learned model parame-
ters to represent semantics. The ML approach lacks the
communication-theoretic analysis in the semantic commu-
nication domain, relying on defined loss functions and the
closed-box nature of its tools, such as deep neural networks
(DNNSs).

The significance approach considers the significance of
information as its semantics. Although it is argued in [9] that
this approach is more about investigating the effectiveness
problem of communication, its application for the semantic
problem has been studied emphasizing fiming as semantics.
This is specifically explored in the semantic communication
domain under the Age of Information (Aol) topic [2].

Lastly, inspired by Weaver, an alternative approach extends
Shannon’s statistical probability (information theory) beyond
the technical layer to the next two levels. Recently, some
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works have adopted information theory in investigating
semantic communication, which are mentioned later.

The research work in SemCom primarily focuses on two
research directions: data reconstruction and task execution,
illustrated in Fig. 1. Initial investigations into data recovery
were led by [14] and [15], which utilized the ML approach
to reconstruct diverse data sources such as text, speech, and
images. Building on these foundational works, [16], [17],
[18], [19], [20] have extended the focus to explore com-
munication concepts like efficiency and resource allocation
in SemCom. In addition, SemCom systems dealing with
structured data have been examined through the knowledge
graph approach to enhance data recovery [21]. Recent
developments also address robustness and reliability, for
instance, [22] proposed a multi-functional reconfigurable
intelligent surface-assisted framework for semantic anti-
jamming communication, showing how semantic transceivers
and RIS can jointly provide resilience.

On the other hand, task-oriented communication or goal-
oriented communication can be categorized into single-task
processing and multi-task processing. The latter is further
divided into two directions: non-cooperative processing and
cooperative multi-task processing. Our paper specifically
addresses cooperative multi-task processing within the con-
text of SemCom. A review of the literature related to task
execution SemCom 1is provided in Section I-A.

To better situate our contribution, we note that there exist
generally two main paradigms in multi-task learning [23]:
(1) multiple tasks on different datasets, and (ii) multi-
label tasks where different classification tasks are supported
based on a single dataset. Our focus falls into the second
category, focusing on a multi-label domain, where multiple
semantic variables are extracted from the same observation
and represent different classification tasks. This perspective
is elaborated in detail in Section II.

A. RELATED WORKS

In task-oriented SemCom, the focus shifts to executing
intelligent tasks at the receivers. Most research in this area
has concentrated on single-task scenarios. For example, [24]
developed a communication scheme using the information
bottleneck (IB) framework, which encodes information while
adapting to dynamic channel conditions. Moreover, the
same authors in [25] studied distributed relevant information
encoding for collaborative feature extraction to fulfill a
single task. Reference [26] also offered a framework for
collaborative retrieval of the message using multiple received
semantic information. Recent studies have highlighted the
integration of communication with computation and sensing
(ISCC) in this context. In particular, [27] investigated a multi-
device edge inference with ISCC for improved inference
accuracy in a classification task.

To address practical communication scenarios, SemCom
systems must be capable of handling multiple tasks
simultaneously. Early efforts, such as [28], [29], explored
non-cooperative methods where each task operates on its
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respective dataset independently. Conversely, recent works
like [30], [31], [32] studied joint multi-tasking using estab-
lished ML approaches and architecture [33] for SemCom
systems. Although these works incorporated communication
aspects like channel conditions in their studies, their multi-
task processing is based exclusively on ML approaches.

On the other hand, in [1], we introduced an information-
theoretic analysis of a cooperative multi-task (CMT)
SemCom system, avoiding the closed-box use of DNN.
Reference [1] investigated a split structure for the semantic
encoder, dividing the semantic encoder into a common unit
(CU) and multiple specific units (SUs), to enable cooperative
processing of various tasks on the transmitter side. The
proposed CMT-SemCom can perform multi-tasking based
on a single observation. Further, [34] expanded the CMT-
SemCom to scenarios, in which, instead of full observation,
distributed partial observations are available. By introducing
CCMT-SemCom for multi-tasking in [34], we combined
the cooperative processing on the transmitter side with the
collaborative processing, where multiple nodes collaborate
to execute their shared task, on the receive side. In addition,
on exploring the physical layer communications aspects, [35]
has studied resource allocation for multi-task SemCom
networks.

B. MOTIVATIONS AND CONTRIBUTIONS

This work builds upon the CMT-SemCom framework intro-
duced in [1] and extends it to a more realistic setting by
incorporating rate-limited wireless communication channels.
The presence of this constraint introduces a Kullback-Leibler
(KL) divergence term in the objective function of the specific
units, which must be handled during the learning step.

To better address this constraint, we propose a separation-
based design where the CU and the SUs are optimized
in turn. This not only clarifies their distinct functional
roles but also leads to a more tractable formula-
tion of the constrained learning problem. In addition,
as shown in recent research works, ie., [16], [34],
such a separation-based design offers better compatibility
with handling different channel conditions by reduc-
ing the number of trained parameters for each channel
condition.

Existing approaches rely on a fixed prior when reg-
ularizing the KL term, e.g., [24], [36], which can limit
the flexibility and performance of the system. In contrast,
we propose to adopt the Implicit Optimal Prior method
(IoPm) in this work, which leverages density ratio estimation
to better approximate the prior in a data-driven manner.
However, while investigating, we found that directly inte-
grating IoPm into a fully DNN-based implementation of
CMT-SemCom proves ineffective due to the challenges of
instability.

To overcome this, we introduce a hybrid-learning strategy
that combines deep neural networks with kernelized-
parametric machine learning techniques. This allows us to
effectively implement IoPm while preserving the benefits of
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TABLE 1. The table of notations.

Notation Definition
S observation (input)
z semantic variables
c output of the CU
Xn output of the n-th SU encoder
n additive white Gaussian noise
Xn noise-corrupted version of x,
I(5-) mutual information
KL(- ) Kullback-Leibler divergence
E[-] expectation
L(-) objective function
(7] neural network (NN) parameters of the CU encoder
= NN parameters of the auxiliary CU decoders
bn NN parameters of the n-th SU encoder
Pn NN parameters of the n-th SU decoder
n, o mean and standard deviation of a Gaussian distribution
€ auxiliary random variable for reparameterization trick
r(-) density ratio function
w parameter vector of the density ratio estimator
Q) basis function
K(-,-) kernel function
ok kernel bandwidth

our cooperative multi-task semantic communication frame-
work.
In summary, key contributions are:

« Extending the CMT-SemCom system to operate under
rate-limited wireless channels, reflecting practical com-
munication constraints.

« Proposing a separation-based design of the CU and SUs
to achieve a more structured and effective formulation
for constrained optimization.

o Addressing the limitations of fixed-prior regularization
by adopting IoPm for more flexible and accurate KL
divergence approximation.

o Introducing a hybrid-learning approach that integrates
DNNs with parametric ML to robustly implement IoPm
within the CMT-SemCom framework.

C. ORGANIZATION AND NOTATIONS

The rest of the paper is organized as follows. Section II
presents probabilistic modeling of the proposed system
model, followed by presenting two distinct objective func-
tions that enable the separation-based design of the CU and
SUs in Section II-B and II-C, respectively. Next, Section II-D
describes the IoP method for enhanced approximation of
the constrained problem in the SUs objective function and
the proposed hybrid-learning approach. Section III presents
simulation results evaluating the performance of the proposed
CMT-SemCom across various datasets. Finally, Section IV
concludes the paper highlighting the key findings. We also
note that the notations used throughout this paper are listed
in Table 1.

8525



HALIMI RAZLIGHI et al.: SEMANTIC COMMUNICATION FOR COOPERATIVE MULTI-TASKING

Semantic Source

|
|
Observation |
(S) !

FIGURE 2. Probabilistic graphical modeling of the semantic source.

Il. SYSTEM MODEL

This section explores the separation-based design for the
proposed CMT-SemCom system model under constrained
wireless channels. We begin by presenting the probabilistic
modeling of the proposed framework in Section II-A.
Following this, we formulate two distinct optimization
problems: one focusing on the design of the CU, responsible
for promoting cooperation amongst tasks, and the other
targeting the design of the SUs, which is responsible
for the joint semantic and channel coding (JSCC). We
adopt the information maximization (Infomax) principle
in Section II-B, while employing the information bot-
tleneck (IB) approach in Section II-C to formulate the
objective function for our constrained optimization problem.
Next, Section II-D presents the IoPm and our hybrid-learning
approach.

A. SYSTEM PROBABILISTIC MODELING

We begin by presenting our interpretation of the semantic
source concept as discussed in [1]. We assume the existence
of N independent tasks. Each task is entailed with its specific
semantic variable, thus we have N semantic variables
indicated by z = [z1 z2 ... zy]. We assume that our semantic
variables are entailed with an observation, S. We define the
tuple of (z,S) as our semantic source, fully described by
the probability distribution of p(z, S). Fig. 2 illustrates our
interpretation using probabilistic graphical modeling [37] and
a stack view for a better illustration. Such a definition enables
the simultaneous extraction of multiple semantic variables
based on a single observation. For instance, consider an
image featuring both a tree and a number. One task may
entail determining the presence of a tree, resulting in a
binary semantic variable. Meanwhile, another task could
focus on identifying the number within the image, yielding
a multinomial semantic variable.

In this paper, we assume N tasks specify semantic
variables to be delivered to their respective recipients through
semantic decoders leveraging task-relevant information
extracted by CU and SUs. It was demonstrated that when
semantic variables share statistical relationships, CMT-
SemCom enables cooperative processing and significantly
improves performance in multi-task cases by utilizing com-
mon information [1].

Our system model has, on the transmitter side, the encoder
split into one CU and multiple SUs. The CU encoder outputs
a representation ¢, which is the common relevant information
extracted from the semantic source, via pCU(c|S). Next,
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FIGURE 3. lllustration of the proposed separation-based design for the
CMT-SemCom framework under rate-limit wireless channels.

each SU, encodes ¢ into a task-specific information x,
using pSUn(x,|c). These channel inputs are then transmit-
ted through a rate-limited additive white Gaussian noise
(AWGN) channel, resulting in received signals X, = x,, +n,
where n ~ N (Od,anzld), and d indicates the number of
channel uses (the limiting constraint) or in other words, the
size of the encoded task-specific information, x, € Rénx1,
On the Rx side, the semantic decoder p P (Z,|%,) delivers
the semantic variable z; from X,. The system model is also
illustrated in Fig. 3.

Subsequently, the Markov representation of our system
model for the n-th semantic variable is outlined as follows:

p(Zn, %n. xn, c|S)
= p P (2,1%,) p N (R, 1x,) p U (eule)p “YelS). (1)

B. CU OBJECTIVE FUNCTION

To begin the separation-based design for the CU, which
is shared amongst all SUs, we formulate the following
optimization problem, adopting the Infomax principle.

pUelS)" =arg max I(c;2). 2)
pCY(lS)
Hence, our objective is to maximize the mutual

information between the CU output,c, and the underlying
semantic variables, z = [z1 22 ... zy]7, associated with the
observation. Considering the availability of a sample set
instead of the true distribution for p(S,z), we approximate
the semantic source distribution with the corresponding
available sample set [38]. Moreover, we employ the vari-
ational method, which is a way to approximate intractable
computations based on some adjustable parameters, like
weights in neural networks (NNs) [36]. The technique is
widely used in machine learning, e.g., [39], and also in
task-oriented communications, e.g., [24] and [25]. Thus,
we approximate the posterior distribution pU(c|S) by
variational approximation using NN parameterized by 6.
This approximation yields p0CU(c|S) and we present the CU
objective function as follows.

L) ~ I(c:2)
~ /p(S’Z)P(;CU(CIS) log p(z|c) dS dz de
~ Ep(,CU(CIS)[ Eps.0[ logple) ]]. 3)
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Algorithm 1 Training the CU Encoder
Require: Preprocessed training dataset:
(s, zﬁ’”’, e, zl(\’,")}meM, number of iterations T, batch
sizes M,
Ensure: The trained parameters # and =
1: for epoch t =1 to T do
2: for n=1to N do
: Randomly select a minibatch {(S™, z,S"’))}%';l

3

4 Compute the mean vector {f,gn }%”:1

5: Compute the standard deviation vector {o Sm}%i]
6: for m =1 to M, do

7 Sample the {el}f‘:1 ~N(0,1)

8 Compute ¢! = Kesm + 0 s © €

9

end for
10: Compute the log-likelihood log qgn(znlc(’"’l))
11: end for
12: Compute the loss L% based on (6).
13: Update parameters @ and = through backpropaga-

tion.
14: end for= 0

The outer expectation shows how the CU integrates
the common knowledge extraction amongst the SUs and
emphasizes our distinct approach caused by our architecture
in cooperative processing. In addition, a detailed derivation
for the infomax objective function of the CU can be found
in [1]. Given the availability of the semantic source, denoted
by the joint probability distribution p(S, z) and the posterior
distribution pHCU(c'lS), the semantic space posterior p(z|c)
could be fully determined:

CU
pile) = f PS-Dpy €S o
po(c)

Considering that pg(c) = f p0CU(c|S) p(S)dS could be
also available. However, due to intractability of high dimen-
sional integrals, we apply another variational approximation,
replacing the true posterior distribution with its approxima-
tion pz (z|c) where E = [&, &, ... &y]7 is the parameters of
the corresponding NNs of the auxiliary decoders for training
the CU. Thus, the objective function in (3), is expressed as
below.

ECU(ov E)~ Ep‘,CU(c\S) []Ep(S,z)[ logpz (Z|c)] ]

“4)

®)

Further, we approximate the expectations with Monte
Carlo sampling following data-driven approach, given that
there exists a dataset {S(’"),zgm),..., W)}%zl where M
represents the dataset size and N denotes the number
of available tasks. Thus, the empirical estimation of the

objective function can be expressed as:

L
[ i 2 loere, (znle) }]

m=1
(6)

1L
L

=1

N

x|

n=1

LY@, )~
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Additionally, we have applied the reparameterization
trick [36], to overcome the differentiability issues in the
backpropagation of the objective function by introducing
cmh = Reism+ 0 clsm © €' where the auxiliary variable €/ ~
N(0,1) and © represents the element-wise product. Details
on how the CU loss function is differentiable with respect
to (w.r.t) @ and the reparameterization trick are deferred
to the Appendix A. In (6), L is the sample size of the
reparameterization trick, fixed to one, signifying that the CU
updates once, encompassing N specific features. M,, appears
for the minibatch size of {(S™, z,(qm))}}nt;l"=1 and for simplicity
we assume that the minibatch sizes are equal across semantic
variables, M,, = M. The training procedure for the CU is
described in Algorithm 1.

C. SU OBJECTIVE FUNCTION

SUs are responsible for the JSCC, transmitting task-specific
information such that the respective recipients can decode the
intended semantic variables. To design the SU concerning the
rate-limited wireless communication channel, we formulate
the following constraint optimization problem.

p SUs I(i‘n; Zn)

(xple)* = arg  max
pSY(xnle)
subject to I(x,;¢) < Ry,.

)

Our formulation in (7), aims at maximizing the mutual
information between the channel output, X, and the intended
semantic variable while bounding the mutual information
between the encoded signal, x, and the input of the SUs, c.
The limited rate of the corresponding channel, R,, is
considered to limit the number of channel uses, d,, by the
n-th SU. This is how we adopt the information bottleneck
method (IBM) [40], seeking the right balance between the
inference accuracy and communication overhead using the
mutual information as both an objective function and a
constraint.

By employing the Lagrangian method [41] to optimization
problem (7), we reformulate the objective function as:

£SU" zl(fn;Zn) —A(I(xy;¢) —Ry). (8)

We drop the constant term, AR,, in (8) to get the simplified
equivalent objective function. Moreover, as in Section II-B,
the mutual information terms in (8) are generally intractable
due to high-dimensional integrals. Also, following a data-
driven approach, we leverage the variational approximation
to form a tractable lower bound. Thus, expanding the
mutual information terms and approximating the posterior
distribution of the SU, pSU" (x,]c), with NN parameterized
by ¢, yielding p; LU” (x,]c), we end up with the following
objective function:

L SUn (¢n) = I(-i'n; Zn) —A(xy; c)
~ Do (2n:€) [Epgf(xnc) [Ep(i'n |xn)[ logp(zn |£n):| :I
—AKL(pgl@lolpen) | ©)
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where in (9), the outer expectation represents the effect of
the pre-trained CU. The detailed derivation of the objective
function above is deferred to Appendix B. Owing to the
pre-trained CU, pg(z,, ¢) is already available as:

Po(zn,€) = /p(zn,S)po(CIS)dS.

The log-likelihood function appearing in the first term
of the objective function (9) can be fully described when
quU(xn|c) is available by:

(10)

dc dx,

A P8 @n, €) pe (xnle) p(nlxn
p(ealfn) = / 2 (Enles) (11)

p(En)
however, same as (4), we must once more use approxima-
tions and replace the true likelihood distribution with its
approximated version py, (zn |X,), where ¥, is the parameters
of the corresponding NN for the n-th task-specific decoder.
Therefore, the objective function is expressed as:

L5 (¢, ¥,)

~ po(zn,c)[ ]Ep;f(mc)[log qy, (znl%n) |

—XKL(pqi?(xnw)np(xn))]. (12)

As we have a DNN-based implementation fol-
lowed by an E2E learning fashion, improved to
be effective for task-oriented communication [42], we
emphasize performing JSCC by the SU encoders by
p(;nU(fc,Jc) = quﬁSnU(xn|c)p(£n|xn)dxn. This means we are
taking semantic and channel statistics into account in a joint
manner. In addition, we note that a detailed discussion on
the approximation error analysis for the objective function
in (12) is provided in Appendix C.

For the regularization term in (12), where the KL
divergence appears, adopting a variational marginal posterior
distribution for p(x,), which can be also called the prior
distribution of the SU’s output space, is necessary. Fixing the
marginal posterior distribution, or the prior, to choices such
as a standard Gaussian distribution, introduced and mostly
used in training variational autoencoder structures [36], or
a log-uniform distribution, which is favored for its sparsity-
inducing properties, has been the most common approach
taken in the literature, e.g., [25], [43], [44] for adopting
standard Gaussian prior and [24], [45] for log-uniform.
The primary motivation behind these choices is that they
allow the KL divergence term to be computed in closed
form, greatly simplifying optimization. We refer to this
approach as the explicit prior (EP) method, since the prior
is explicitly fixed to either a Gaussian or log-uniform
distribution. However, this convenience comes at the cost
of sub-optimality as the prior is restricted for mathematical
tractability rather than for faithfully modeling the data.
To address this limitation, we modify the loss function to
incorporate density ratio estimation, enabling a more flexible
and accurate approximation of the KL divergence and, in
turn, a better approximation of the objective function.
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D. IMPLICIT OPTIMAL PRIOR METHOD
To optimally deal with the regularization term, we modify
the KL divergence in (12) as follows:

KL(pgV o) Ipn))

p¢SnU (xn |c) A Q(xn)
p(xn) q(xn)

= Epsue [ log

— SU pxy)
= KL<p¢” (xn|c)||CI(xn)) - E],(E’:J(xnp)[ log m} )

13)

where ¢(x,) is an arbitrary distribution, typically chosen
as either a standard Gaussian or a log-uniform distribution,
to ensure that the KL divergence can be computed in
closed form. This trick, introduced in [46] for a variational
auto-encoder, enables us to implicitly manage the prior
distribution by estimating the density ratio p(x,)/q(x,) and
prevent fixing a distribution. Reference [46] estimates the
prior using a DNN-based classifier accompanied by several
regularization techniques to fine-tune the estimator. In our
investigations, we faced many issues while adopting the
method in [46] to our multi-tasking SemCom framework.
The issues include the convergence of the DNN-based
classifier and the complexity of fine-tuning due to the
existence of several regularization parameters.

To overcome these issues, we propose using classical
parametric ML methods to estimate density ratios by intro-
ducing a hybrid-learning approach. To develop our density
ratio estimation for the implicit optimal prior method (IoPm)
in CMT-SemCom, we follow the probabilistic classification
approach amongst other approaches of density ratio estima-
tion [47]. Using the probabilistic classification approach has
advantages such as straightforward implementation and the
possibility of direct use of a standard classification algorithm.

Specifically, we train a probabilistic binary classifier
to distinguish between samples drawn from the arbitrary
distribution, g(x;), and samples drawn from the distribution
produced by the semantic encoder, p(x,). The key insight is
that the classifier’s outputs can be transformed to approxi-
mate the density ratio, which in turn allows us to compute
the regularization term without requiring an explicit prior.

For this, we first sample from ¢(x,) and assign labels
y = 0 to them. Next, labels y = 1 go to samples from p(x;,)
which are available using ancestral sampling [38] from the
output of our encoder, qunU(x,,|c). Then, p(x,|y) is defined
as:

p(xn) y= 1,
= 14
Thus, our density ratio can be expressed as:
_ pxn) _ plaly=1)
r(xp) = =
qxn)  plenly =0)
_pO=1lx)ply=0)  ply=1lx,) (15)

~ py=0x,)ply=1)  p(y=0lx,)’
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Algorithm 2 Density Ratio Estimation Using Kernelized LR
Require: Samples x, ~ p(x,), samples x, ~ g(x,), kernel
bandwidth oy,
Ensure: Estimated density ratio 7(x,)
1: Step 1: Generate labels for samples:

: Step 4: Train logistic regression model:

. Fit logistic regression on K with labels y, and get @

: Step 5: Estimate density ratio for new data points X:

: Compute the kernel matrix Kpew between saved X' from
training and the new data X

D () = exp(Knew : ‘:))

: Step 6: Return estimated density ratio 7(x)

2y, =1,,y,=-1,

3: Step 2: Combine samples and labels:
4: X = [xp; x4]

5.y = [¥p: ¥4l

6: Step 3: Compute tzhe Gaussian kernel:
7. K= exp(—%

8

9

—_
—- O

—_
W N

where in (15), we cancel p(y = 0) with p(y = 1) since we
draw an equal number of samples from both distributions.
Therefore, given an estimator of the posterior probability
p(ylx,), we can estimate the density ratio. In this work, we
leverage logistic regression (LR) classification that employs
a parametric model of the following for the posterior
distribution:

-1
p(y|xn;w)=(Hexp(—ysz(xn)%)) , (16)

where €2(x;,) is a basis function and ® is the parameter
vector. Our LR model parameter is learned so that the
penalized log-likelihood is maximized:

K T
& = arg max [ Zlog (1 +exp(— ka(xﬁlk)> w)) + waa)i|,
k=1
(17)

In (17), the term yw’® serves as a regularization term
for the LR objective function, preventing overfitting. A
key advantage of the LR objective function in (17) is
its convexity, which guarantees that gradient descent (GD)
methods can converge to the global optimum [48]. Finally,
using (15) and (16), our density ratio estimator (DRE) is
expressed as:

1+ exp(Q(xn)T(?))
1+ exp( - Q(x,,)Tc?))

For the DRE in (18), we use the Gaussian kernel for the
basis function with kernel bandwidth, o as:

12
K(x.x) zexp<_ u)

2
207,

= exp(Qx,) ®).  (18)

FLR(Xn) =

19)

where x’ denotes the stored samples of x, from both
distributions, obtained in the previous step, that we store for
the next inference step of the DRE. This reflects our use of a
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FIGURE 4. lllustration of the proposed hybrid-learning approach for the n-th SU.

memory-based method [38] for the DRE that involves storing
the samples used in training to make inferences for future
data. A detailed description of the DRE procedure is provided
in Algorithm 2, with further discussions in Section III.

By employing the kernelized LR, we implement the IoPm
within the CMT-SemCom framework to more effectively
handle the regularization term, representing the commu-
nication overhead introduced by the rate-limited wireless
channels. Fig. 4, illustrates our hybrid-learning approach,
which combines this classical kernelized DRE with our
DNN-based semantic transmission. The output of the n-th
SU, x;,, is sampled and provided to the DRE. In the DRE unit,
the samples from ¢(x,) are also drawn, and the regularization
is estimated by (18). This estimate is then used to update the
SU’s objective function in each training iteration. As training
progresses, improved encoder outputs lead to more accurate
density ratio estimates, which in turn refine the overall loss
function.

Applying the discussed IoPm, the approximated objective
function in (12) becomes:

£39 (¢, ¥,)

~ By (ae) [ E, 50,10 [108 9y, (nl%2) ]

—A {KL(p,ji}J(xnlc)HQ(xn)) - Ep;U(xnlc)[ log ;'(xn)] }]
(20

Given that a minibatch of {zf,m), c(’”)}%; | can be selected

from the joint distribution pg (z,, ¢) and leveraging the Monte
Carlo sampling as we did for (6), we end up with the
empirical estimation of the objective function:

£, ~ 5 [ LS sy, (s
n> ¥n) ~ M, I 249y, ZnlX, ):I

m=1 =1

faonss) - 15 6] o

=1
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It is worth mentioning that in (21), we apply the
reparameterization trick to overcome the differentiability
issues in the backpropagation as previously discussed in
Appendix A. For the term, representing the correspond-
ing channel rate, the reparameterization trick exists as
D = e em O €L

n Xnlc Xplc

It is important to note that the integration of parametric
DRE with DNN-based SUs is feasible in practice, particu-
larly when using stochastic gradient descent (SGD) as the
optimizer for training the SU networks with the objective
function in (20). The use of SGD enables a key simplification
by allowing us to treat the DRE as a fixed, non-trainable
component during the SU training. Specifically, the term,
]Ep SUGx,| ollog 7(x,)], is not included in the backpropagation
progess for updating the SU parameters ¢,,. This decoupling
is what enables our hybrid-learning approach, where the DRE
is trained separately using classical methods, while the DNN-
based SUs are trained via SGD. Without this separation, the
DRE would need to be differentiable and involved in gradient
updates, significantly complicating the training pipeline. A
detailed explanation of why this integration is compatible
with SGD-based optimization is provided in Appendix D.

1) KL DIVERGENCE CLOSED-FORM EXPRESSION

Finally, the last step is to manage the KL divergence term in
eq. (21). We assumed the Gaussian distribution for our SU
encoder such that pdfnU(xnlc) ~ J\f(uxn|cm, 0x,lcn1). Thus, the
proper selection of the arbitrary prior g(x,), e.g., standard
Gaussian or log-uniform, can result in a closed-form solution
for the KL term in eq. (21). In addition, since we compare
our proposed method with the two most widely adopted
fixed priors: the standard Gaussian and the log-uniform
distribution in the EP method in Section III, we need to
directly calculate the KL term in eq. (12) for fixed p(x,).
Here, we present the KL divergence calculation for both
cases.

Standard Gaussian Prior: When the arbitrary distribution
q(x,) in eq. (21) (or, equivalently, the fixed prior in the EP
method p(x,) in eq. (12)) is chosen as the standard Gaussian,
the KL divergence reduces to the well-known closed-form
expression between two Gaussian distributions:

KL(p,fnU (Xale) Ilq(xn)>

= > logaT + 0+ Uy e — 1]). 22)

Xnlc

We note that this results from computing the KL diver-
gence between the output distribution of each SU encoder,
D qu (x,|c) and its corresponding prior g(x;) (or, equivalently,
p(x,) in the EP method). In other words, the SU objective
(L SUn (¢,,, ¥,,)) is per SU and is calculated for the n-th SU.

Log-Uniform Prior: Alternately, when ¢(x,) (or equiva-
lently, p(x,) in the EP method) is selected as a log-uniform
distribution, the KL divergence can also be approximately
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Algorithm 3 Training the n-th SU Encoder and Decoder
Require: Preprocessed training dataset:
(s, zﬁm), ) (m optimized parameters @,

) Z]\I )}m€M7
number of iterations 7, batch sizes M,

Ensure: The trained parameters ¢,, ¥,, and
1: for epoch t=1to T do

2: Randomly select a minibatch {(S, z,(,m))}j‘f": |
3: Extract {c’"}/:l[”=1 from the learned py’(c|S)
4: compute the mean vector {uxn|cm}xi] and the stan-

dard deviation vector {Gc\sm}%ll
5 for m =1 to M,, do
6 Sample the {¢™D} ~ A(0,T)
7: Compute x,(qm’l) = Ry jem + Oxylem O emb
8 end for
9:  Compute the log-likelihood log gy, (z,|%""")
10: Compute the density ratio based on Algorithm 2
11: Compute the gradients of £ in (21)
12: Update parameters ¢, and ¢,
13: Compute the total loss value £ based on (21).
14: end for=0

expressed in closed form by taking advantage of the results
of [49], [50] as follows:

KL(pg (1) () )
= s loga; — Ee (1,00 log lel] + C

~ k1o (ky + k3 log o) — %log(l —i—alfl) +C, (23)

where

2 P
e
—
T

k1 = 0.63576, kp =1.87320, k3 = 1.48695.

o =

and C is a constant. Besides, x,({) is the i-th dimension in
x,, and o (-) denotes the sigmoid function.

Consequently, the empirical approximation of the objective
function in (12) is calculated as above. The training
procedure for the n-th SU adopting the standard Gaussian
for the arbitrary prior is described in Algorithm 3.

lll. SIMULATION RESULTS

To evaluate the effectiveness of our proposed CMT-SemCom
design over rate-limited wireless channels using the hybrid-
learning framework, we consider two representative tasks
in our multi-label tasks paradigm: binary and categorical
classification. These correspond to two different semantic
variables, modeled as z; ~ Bernoulli and zo ~ Multinomial.
We begin by assessing the accuracy of our proposed density
ratio estimator. Then, we present the overall performance of
the CMT-SemCom across various datasets. In addition, we
examine system behavior under different levels of channel
constraint. Finally, we compare the proposed IoPm with two
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TABLE 2. Encoder-decoder NN architecture for the proposed CMT-SemCom.
(a) NN structure for the MNIST dataset

Layer Properties
Dense size: 256, activation: ReLU
cU Dense size: 256, activation: ReLU
Dense (ptc) size: 128, activation: Linear
Dense (o¢) size: 128, activation: Linear
Dense size: 128, activation: ReLU
Decaux | Dense (T1) size: 1, activation: Sigmoid
Dense (T2) size: 10, activation: Softmax
Dense size: 64, activation: ReLU
Dense size: 64, activation: ReLU
SU Dense (pt,,) | size: 32, activation: Tanh
Dense (0%, ) | size: 32, activation: Sigmoid
Dense size: 32, activation: ReLU
Dec Dense (T1) size: 1, activation: Sigmoid
Dense (T2) size: 10, activation: Softmax
(b) NN structure for the CIFAR-10 dataset
Layer Properties
Conv2D filter size: 32, Kkernel size:
(8,8), activation: ReLU
Conv2D filter size: 32, kernel size:
(8,8), activation: ReLU
MaxPooling2D | pool size: (2,2)
Dropout dropout rate: 0.1
CU Conv2D filter size: 32, kernel size:
(8,8), activation: ReLU
MaxPooling2D | pool size: (2,2)
Dropout dropout rate: 0.2
Conv2D filter size: 32, kernel size:
(8,8), activation: ReLU
MaxPooling2D | pool size: (2,2)
Dropout dropout rate: 0.2
Flatten -
Dense (pe) size: 256, activation: Linear
Dense (o¢) size: 256, activation: Linear
Dense size: 256, activation: ReLU
Dense size: 128, activation: ReLU
Decaux | Dropout dropout rate: 0.2
Dense (T1) size: 1, activation: Sigmoid
Dense (T2) size: 10, activation: Softmax
Dense size: 256, activation: ReLU
Dense size: 256, activation: ReLU
Su Dense (p,,) size: 128, activation: Tanh
Dense (0%,,) size: 128, activation: Sigmoid
Dense size: 128, activation: ReLU
Dec Dense (T1) size: 1, activation: Sigmoid
Dense (T2) size: 10, activation: Softmax

widely used baselines that follow explicit fixed prior (EP)
method (standard Gaussian and log-uniform prior).’

IThe simulation code of this paper is available at https://github.com/ant-

uni-bremen/CMT-SemCom_IoPm.
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TABLE 3. Specification of the parametric kernelized DRE.

Component Description
Model Logistic Regression
Kernel Radial Basis Function kernel
Training Quasi-Newton Method
Kernel BW o =19
MNIST Regularization | v = 1.5

Sample size 2000
Kernel BW o =5.0

CIFAR-10 | Regularization | v = 2.0
Sample size 4000

A. SIMULATION SETUP

We examine the proposed framework across two widely
adopted datasets in semantic/task-oriented communica-
tion [24], [25], [45], [51], [52], [53], [54]. The MNIST
dataset of handwritten digits [55], contains 60,000 images
for the training set and 10,000 samples for the test set.
Moreover, the CIFAR-10 dataset [56] consists of 60000,
32 x 32 color images in 10 classes, with 6000 images
per class. There are 50000 training images and 10000 test
images. For a specific number of tasks denoted by T,
we shape our semantic source as {S(m), ng)’ el z(Tm)}M:].
The implemented DNN structure and the specification of
the parameterized DRE are listed in Table 2 and Table 3,
respectively. The specifications are found heuristically such
that the performance is maximized.

B. DRE PERFORMANCE

To implement the IoPm using the density ratio trick, we
initially explored a DNN-based approach for the DRE, moti-
vated by the generalization capabilities of DNNs. However,
within the context of our CMT-SemCom framework, we
encountered various challenges related to convergence and
hyperparameter tuning. For simple cases like a single
variational autoencoder, i.e., [46], many techniques such
as dropout, dynamic binarization, early stopping, etc., are
employed together to fine-tune the estimator. However, these
strategies failed to stabilize training in our more complex
multi-task setting.

As a result, we turned to a classical parametric ML
method, which offers a simpler and more reliable implemen-
tation. This approach not only avoids the instability of DNN
training but also provides the potential for optimal estimation
under correct model specification, making it well-suited for
our hybrid-learning framework.

We first evaluate the behavior of the DRE in a simple
one-dimensional setting. As shown in Fig. 5, the estimator
accurately captures the density ratio between two univariate
Gaussian distributions, x; ~ N(0, 1) and x; ~ N (1, 2). The
performance changes depending on the DRE’s specification,
i.e., sample size, kernel, etc., and the specification used in
our evaluations is included in the figures.

To inspect how dimensionality affects the performance of
the proposed DRE, we extend this analysis to multivariate
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FIGURE 6. The histogram of the true density ratios for different data dimensions.

cases with increasing dimensions. Figs. 7 (a, b, c) present
scatter plots of the estimated density ratios in 1D, 2D, and
4D. The evaluations in these figures, are for estimating
the density ratio of two multivariate Gaussian distribution.
For instance, for the 4D case the distributions are x; ~
N (i, Z1), where p; = [1111]" and £, = Iy—q, and
x2 ~ N (2, 2), where py =[0000] " and Xy = 4-Tyes.
We observe that as the dimension increases, the accuracy of
the DRE decreases.

This decline in performance is further illustrated in Fig. 6,
which shows the histograms of the true density ratios for 2D
and 4D cases. We observe that as the dimension increases,
the values of the density ratios tend to concentrate around
lower values. This concentration makes it difficult for the
estimator to distinguish between regions of high and low
density, especially under limited sampling.

Further, we evaluate the impact of varying sample sizes
on the DRE performance. To investigate the effect of sample
size, we evaluate the DRE in the 1D case and keep all
other specifications the same across different sample sizes.
Figs. 7 (a, b, c) illustrate this impact for sample sizes of
500, 1000, and 2000. We observe that the DRE benefits
from increased sample sizes up to a point but it degrades
with more samples due to the fact that the kernel becomes
noise sensitive, and can have memory expansion as well.
For investigation on the impact of other DRE specifications,
e.g., kernel bandwidth, we invite the interested readers to
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check our published simulation codes available at https://
github.com/ant-uni-bremen/CMT-SemCom_IoPm.

We note that for our further experimental evaluations,
we employed a grid search with cross-validation to select
the best combination for the DRE specifications, and these
specifications are listed in Table 2 for different datasets.
Moreover, we examined other kernels for the basis function,
such as the Polynomial kernel and the Sigmoid kernel, to
inspect their ability to capture the complex interactions in
high dimensions, but the Gaussian kernel still had the best
performance.

C. IMPACT OF THE IoPM ON COOPERATIVE
MULTI-TASKING

We evaluate the effectiveness of the proposed rate-limited
CMT-SemCom enabled by IoPm by measuring task execu-
tion error rates. Specifically, we compare two scenarios:

e w.CU (with CU): Both SUs cooperate through the CU
to execute their tasks.

e w.0.CU (without CU): CU is omitted and each SU
execute its task independently, using the semantic source
directly as input without any cooperation.

Fig. 8(a) presents the comparison for the MNIST dataset.
The results clearly show that the cooperative processing
case (w.CU), CMT-SemCom, improves performance for both
Taskl and Task2. In contrast, w.0.CU exhibits a steadier
and slower improvement. This behavior is explained by
our hybrid-learning strategy. In the early stages of training,
the DRE struggles to provide accurate estimates because
the encoder in the SU has not yet converged. As training
progresses and the SU starts producing more meaningful
outputs, the DRE becomes more effective, leading to visible
performance gains.

Moreover, the cooperative processing enabled by the
CMT-SemCom framework accelerates this convergence by
allowing tasks to share semantic information, thereby reduc-
ing the number of iterations required to achieve high
accuracy.

A similar behavior is observed for the CIFAR dataset,
as shown in Fig. 8(b). While cooperation still improves
performance, the gap between w.CU and w.0.CU is smaller
compared to the MNIST case. Nevertheless, the results
confirm that even for complex datasets, [oPm-based CMT-
SemCom facilitates the task execution performance.

D. IMPACT OF THE CHANNEL CONSTRAINT
We investigate the influence of rate-limited wireless channels
on the performance of the proposed CMT-SemCom frame-
work by varying the number of the available channel uses
(d). We note that d is a translation of the rate constraint and
a quantitative representation of the limit. The average task
execution error rate for both tasks serves as the evaluation
metric to capture how constrained bandwidth affects system
accuracy.

Fig. 9(a) and Fig. 9(b) illustrate this effect for the MNIST
and CIFAR datasets, respectively.
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FIGURE 7. Performance of the proposed DRE for different specifications of data dimensions and number of samples.

For the MNIST dataset, a clear performance degradation
is observed as the channel becomes more constrained. The
task execution error increases from approximately 2% at 64
channel uses to over 36% at 4 channel uses. This behavior
highlights the sensitivity of the system’s performance to
channel limitations.

For the CIFAR dataset, the behavior differs. While
performance degrades at extreme channel limitations (e.g.,
4 and 8 channel uses), the error rate remains relatively
stable across a broad range. Moreover, the steeper drop in
performance below the 16 channel uses for CIFAR dataset
indicates a threshold effect. Once the encoded representation
faces a specific limit, the loss of information becomes
significant, and a sharp drop in task execution quality takes
place. The impact is less dramatic for the MNIST.

E. HYBRID-LEARNING loPM VS. EP

Finally, we compare our proposed hybrid-learning based
IoPm approach with the two widely used fixed priors in
EP method, which are the standard Gaussian and the log-
uniform prior. As shown in Figs. 10(a) and 10(b), our
hybrid-learning-based IoPm consistently outperforms the EP
method for both tasks in the MNIST dataset, resulting in
improved execution accuracy for both tasks. We observe in
both figures that the performance gap between the IoPm
and the fixed standard Gaussian prior is larger than the gap
between the IoPm and the fixed log-uniform. This reflects
the larger error of the model assumption with the Gaussian
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distribution for the encoded feature. This demonstrates the
advantage of using a learned, data-driven prior over a fixed
distribution.

For the complex dataset, CIFAR, we observe the same
performance gain for the IoPm in comparison with the
standard Gaussian prior for both tasks. This is shown in
Figs. 10(c) and 10(d). In addition, we note that the gap
between the IoPm and the standard Gaussian grows when
the task becomes more complex (as for Task2, Fig. 10(d))
and as a result its corresponding encoded feature is more
complicated. Further, comparing the IoPm with the log-
uniform prior, Fig. 10(d) shows that the proposed method
maintains its better performance for Task2, while for the
simpler one (as Taskl, Fig. 10(c))the performance difference
is less pronounced. This is due to the fact that the log-
uniform assumption fits well in modeling the encoded feature
distribution.

Overall, we observe that the proposed hybrid-learning
IoPm reaches clear performance gains in comparison to the
EP method. This performance gain is more considerable
compared to the widely used explicit standard Gaussian
prior independent of the dataset. The proposed method also
mitigates the model assumption error for the latent prior in
related domains, e.g., variational autoencoders, information
bottleneck-based task-oriented communication, etc.

We also note that the extra computational cost intro-
duced by the IoPm is incurred only during offline
training. Therefore, the proposed method does not
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FIGURE 8. Performance of the CMT-SemCom under the hybrid-learning loPm.

increase complexity in inference time as the DRE is
used only during the training for a more accurate
approximation of the KL divergence term. A detailed
discussion on the comparison of computational complex-
ity between the IoPm and the EP method is provided
in Appendix E.

IV. CONCLUSION

In conclusion, we advanced the CMT-SemCom framework
by addressing practical constraints and extending its appli-
cability to rate-limited wireless channels. We employed a
separation-based design for the split semantic encoder to
have a clear delineation of responsibilities between the CU
and SUs, facilitating a more structured formulation of the
communication process. Further, we tackled the regular-
ization challenge within the joint semantic and channel
coding process by employing the implicit optimal prior
method (IoPm) to enhance the system’s performance. We
proposed a hybrid combination of DNN and kernelized-
parametric ML methods to improve the approximation of
the constrained problem. Through simulations on diverse
datasets, we demonstrated the effectiveness of the proposed
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FIGURE 9. Impact of the rate limitation of the wireless channel on the proposed
CMT-SemCom.

framework in achieving reliable multi-task communication
under rate constraints compared to explicit prior (EP)
method. Our comparisons with EP include the two widely
used fixed priors in the related literature: the standard
Gaussian prior and the log-uniform. These two explicit priors
are widely used in the literature to model the encoded/latent
feature prior. Additionally, this work brings up further
research questions, such as exploring alternative parametric
methods for the DRE, like the ratio matching method
instead of the kernelized LR, or examining dimensionality
reduction techniques to better exploit the current DRE’s
capabilities and improve performance in complex settings
where higher dimensionality is required, i.e., more complex
tasks. dynamic adaptation of semantic encoding structures
to varying network requirements.

APPENDIX A

DIFFERENTIABILITY OF THE CU LOSS FUNCTION

Here we first show the differentiability of (5) w.r.t # and
then details on the reparameterization trick are provided.
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FIGURE 10. Comparison of the proposed hybrid-learning loPm with the EP method on MNIST and CIFAR-10 datasets.

A. DERIVATIVE W.R.T THE CU ENCODER PARAMETERS
The differentiability of the CU loss function w.r.t E is clear
since it is explicitly stated in (5), however how @ is updated
through the backpropagation is not explicitly visible. Thus,
below we show how (5) is differentiable w.r.t 6.

L CU(O, E) ~ IEp(S,z) [EP0CU(C|S)[ f(Z) ] ]

where z = g(c, E), and ¢ = A(S, 0, €). Thus, (5) can be
expressed as:

LVEO, B) ~ Byis [ By cu s [ £801(S. 0., 2] |
Consequently:

LY@, ) ~f(g(hS,0,€), E))
LY. 8) _of dg oh

00 ~dg oh 00

B. REPARAMETERIZATION TRICK

We assume that pGCU(c|S) = N(c(S; 0), o2I), where ¢(S; 0)
states the deterministic function which maps S to ¢ param-
eterized by 6. It is obvious that ¢ ~ p(,CU(c|S) and then
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in backpropagation when the update w.r.t § wants to be
executed there will be a problem by:

Vo]EpoCU(qS)[ f(g(c(S;0), E)) |

Therefore, we introduce a new variable € as ¢;; = ¢; + €;,
where we keep ¢; a deterministic variable and €;; a sample
drawn from N\ (0, 021) distribution. Doing so, the expectation
would be w.r.t p(e) as follows, and the differentiability w.r.t
0 will be possible.

V"EpocU(qs)[f(g(C(S; 0), E))]
= VoEp[ f(g(c(e.S: 0), E
po| Vof(g(c(e,S; 8), &

>~ Vpf(g(c(e, S; 0), E))

)]
)]

APPENDIX B
THE APPROXIMATED SUs’ OBJECTIVE FUNCTION

L39($,,) = I(%n; 20) — A1 (x5 €)

// X, Zn log (Z(n| )n) dz, dx,
Zn
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U(xn| )

—A( //p(xn,c) log PG dx,,dc)

= [ //P(inv Zn) log P(Zn|5‘\7n) dzn dX, + H(Zn):|

. (xale)
—A( /fp(xn,c) log —— o dx,,dc)

Further, we omit the constant entropy term, H(z,) and
exploit the underlying Markov chain structure in (1).

) ~ ff//po<zn,c>p£U<xn|c>

p(%nlxn) log p(znl%y) dzn %y dx, de

_)‘( ///pﬂ(zn,c)
p(xn)
~ pa(zn,c)[ / / Py nlO)p(Ralxy)

Ing(Zn |£n) dx, dx,
Py (xnle)
O T ik,
pxn)

Next, we adopt the definition of the KL [57],

L:SUn(¢

= / Py (xale) log

KL(lle) = [ Flog,
and the approximated loss function is expressed as:
r SuU, (¢n)
P (2n.€) [E SU(x,,\c)I: p(fcn|xn)[ 10gp(zn|£n)]]

—AKL(pgU ale)px) |

It is important to note that pg(z,,c) is readily
available at this stage, owing to the pre-trained
CU. In essence, we construct our Markov chain
by treating pg(zs,¢) as a new, derived source
distribution.

APPENDIX C

SU OBJECTIVE APPROXIMATION ERROR ANALYSIS

In (12), pSY(xplc), called SU encoder, is modeled in terms
of a DNN parameterized by ¢,,. Thus, the encoder is treated
as part of model selection, and its error is about model mis-
match. The approximation error it brings to the loss function
L5Yn (¢, ¥,), is reflected through the KL divergence term
KL(qu:J(xn|c)||p(x,,)). The variational approximation error
comes from the decoder, where the true posterior, p(z,|%,)
is approximated by gy, (z./%;). The mismatch between
the true and approximated posterior indicated the error in
the variational approximation, and therefore, the loss will
have another approximation error through the log-likelihood
function (LLF).

8536

Thus, the approximation error for the objective consists
of two terms:

o LLF variational approximation error
« Model mismatch error

We begin with the LLF variational approximation error.
We use a variant of Pinsker’s inequality [58] which relates
variational divergence to KL divergence as introduced
n [59]:

sup |P(A) —
ACZ

QA < = KL(PIIQ)

substituting the probabilities P and Q with the decoder’s true
and approximated ones:

. . 1 . .
1P (2nl%n) — gy, (zaln)* < 3 KL(pznl%n) gy, @nl%n)).

and, similar to the definition assumed for the evidence lower
bound, for instance, in variational autoencoders [59], [60],
we define our approximation quality as e-tight for some
e >0if

Ep,ff(ffnlf) [ KL(P(Zan) | |%//n (Zl’l |£"))] S €,

further, we assume p(z,|%,) > o and gy (2,]%,) > a.

Thus, taking the expectation from both sides of the
Pinsker’s inequality, we bound the variational approximation
error for the LLF term as:

B0 i, jc) | 1102P(nkt) — Togay, (wlé) | < 55 +o(e.

=242

The detailed proof of getting this bound has been provided
in [59]. Next, applying the Cauchy-Schwarz inequality
(IE[XY]|? < E[X?] E[Y?]) to the error bound, we get LLF’s
error to our loss as follows:

B i 08P a5 — ogay, 2|

= \/Epgf(ffﬂc) [l Ing(Zn |-£'n) —loggy, (Zn |-£'n) |2]

€ €
=V2a2 T =y

Next, we move to the model mismatch. We once more
use the assumption of ¢’-tightness for ¢/ > 0 in the
model selection. It has been shown in [61] that for the
continuous case with a non-linear encoder/decoder (general
neural networks), this ¢’-tightness is satisfied. Therefore, we
bound the error for our model approximation by:

Epyto| KL(pgV Gnle) Ipenle) )| < €

Finally, considering £ 3U» as the true objective function, the
approximation error for the objective in (12) is expressed by
the following upper-bound:

L SU, /

_ o, SU, L
L (¢n’ wn) = 20(2 + €
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APPENDIX D

BACKPROPAGATION OF THE SU LOSS FUNCTION

Here we show why we ignore the 7(x,) in the backpropaga-
tion of the approximated objective function of the n-th SU
in 20. We use the SGD over mini-batches to train our SU
encoder, and the update procedure looks:

o o= D Ve, £V (85 9)
T ieM;
Thus, when optimized DRE is employed in the objective
function, the gradient term becomes zero, and that is why we
ignore the involvement of 7(x;) in the optimization of the SU
encoder. It is obvious that for other non-linear optimization
techniques, such as Adam, the ignorance of the DRE in the
updating step of the SUs is not possible.

Vo,Pp, Xn)
Epy, x| Vb, 1029, (X0)] = /P¢n(xn)udx

Py, (Xn)
= Vg, fp¢n (x,) dx, =0

n

APPENDIX E
loPM COMPUTATIONAL COMPLEXITY
On training computational complexity, let m be the number
of the DRE training samples, and d be the dimensionality
of the SU encoder output. The computational complexity
of our Gaussian kernel, represented in eq. (19), will be
O(m?d), which is the operations for computing the kernel
Gram matrix, and therefore, O(mz) for storing the matrix.
In addition, the LR classifier is trained for T iterations of
gradient descent over the samples, and the total computa-
tional complexity of the training using the transformed kernel
will be O(Tm?). In contrast, the EP methods (fixed standard
Gaussian and log-uniform priors), with which we compared
our proposed IoPm, do not require the DRE and therefore
have lower training complexity and training time. However,
as mentioned earlier, since the DRE is present only during
offline training, the training complexity is manageable due
to the possibility of using powerful resources.
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