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Abstract

Artificial Intelligence (AI) is becoming increasingly prevalent in daily life,
driven by rapid advancements in Machine Learning (ML) since 2010. These
breakthroughs, enabled by innovations such as specialized hardware, Deep
Neural Networks (DNNs), and advances in training techniques, have allowed
AI systems to match or even exceed human performance in tasks like au-
tonomous driving and medical diagnostics, with systems such as ChatGPT
and AlphaGo standing out as key examples. These achievements have raised
public awareness and acceptance of AI technologies.

In the realm of wireless communication, emerging applications such as
virtual reality and autonomous systems are pushing traditional digital com-
munication systems to their limits. Conventional content-agnostic approaches
struggle to meet the growing demands for bandwidth, power efficiency, and
low latency.

This dissertation explores mastering these challenges by integrating ML
techniques into wireless communication systems. It introduces CMDNet, a
novel framework for symbol detection, designed to improve communication
efficiency by combining strengths of traditional model-based designs with
those of advanced ML methods. Furthermore, integrating semantic content
into communications is identified as crucial for further enhancing system effi-
ciency. Semantic communication aims at transmitting the meaning conveyed
by the data rather than the exact bits, which can introduce a model deficit
that challenges traditional communication designs. This challenge in design
of semantic communication is addressed using advanced ML techniques, as
demonstrated in the SINFONY approach.

Together, these contributions demonstrate how ML advances, such as
DNNs, can overcome existing limitations in terms of model and algorithmic
deficits and significantly enhance the efficiency and capabilities of future
communication systems.
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Kurzfassung
Künstliche Intelligenz (KI) wird im Alltag zunehmend präsenter, angetrieben
durch rasante Fortschritte im Bereich des Maschinellen Lernens (ML) seit
2010. Diese Durchbrüche, ermöglicht durch Innovationen wie spezialisierte
Hardware, tiefe Neuronale Netze (Deep Neural Networks, DNNs) sowie
verbesserte Trainingsmethoden, haben es KI-Systemen erlaubt, in Aufgaben
wie autonomem Fahren und medizinischer Diagnostik menschliche Leistungen
zu erreichen oder gar zu übertreffen. Systeme wie ChatGPT und AlphaGo
sind herausragende Beispiele hierfür. Diese Erfolge haben das öffentliche
Bewusstsein für und die Akzeptanz von KI-Technologien deutlich erhöht.

Im Bereich der drahtlosen Kommunikation bringen neue Anwendungen
wie virtuelle Realität und autonome Systeme die traditionellen digitalen
Kommunikationssysteme an ihre Grenzen. Herkömmliche inhaltsagnostische
Ansätze haben Schwierigkeiten, die wachsenden Anforderungen an Bandbre-
ite, Energieeffizienz und geringe Latenzzeiten zu erfüllen.

In dieser Dissertation geht es um die Bewältigung dieser Herausforderun-
gen durch die Integration von ML-Techniken in drahtlose Kommunika-
tionssysteme. Vorgestellt wird CMDNet, ein neuartiges Framework zur
Symboldetektion, das darauf abzielt, die Kommunikationseffizienz durch
die Kombination der Stärken modellbasierter Methoden mit denen der
fortgeschrittenen ML-Verfahren zu verbessern. Darüber hinaus wird die In-
tegration von semantischen Inhalten in die Kommunikation als entscheidend
für die weitere Verbesserung der Systemeffizienz identifiziert. Semantische
Kommunikation zielt darauf ab, die Bedeutung der Daten zu übertragen,
anstatt deren exakte Bits, was zu einem Modelldefizit führt. Dieses stellt
herkömmliche Kommunikationsansätze vor große Herausforderungen. Beim
Design der semantischen Kommunikation werden diese mithilfe fortschrit-
tlicher ML-Techniken gelöst, wie mit dem SINFONY-Ansatz demonstriert.

Zusammen zeigen diese Beiträge, wie ML-Fortschritte, z. B. DNNs, beste-
hende Beschränkungen in Bezug auf Modell- und Algorithmusdefizite
überwinden und die Effizienz und Fähigkeiten zukünftiger Kommunika-
tionssysteme erheblich verbessern können.
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Chapter 1

Introduction

1.1 Motivation and Background

Artificial Intelligence (AI) is becoming increasingly prevalent in everyday
life [HB23]. This surge is largely due to rapid advancements in Machine
Learning (ML), a subfield of AI, since 2010, which have led to significant
breakthroughs. Special hardware and software such as Graphics Processing
Units (GPUs) and automatic differentiation systems, innovations in Deep
Neural Network (DNN) models and advances in training have enabled the
creation of algorithms that match or even surpass human performance in
certain tasks [CMS12]. These achievements include advancements in image
processing [KSH12], enabling applications such as autonomous driving and
medical diagnostics, as well as the development of autonomous AI systems
like AlphaGo, which have defeated professional players in complex games
like chess and Go [SHM+16]. Notably, Go was once considered a game that
required uniquely human intuition and strategic thinking to win.

For example, doctors are now assisted by expert systems in evaluating med-
ical image data for disease diagnosis, with some systems surpassing human
expertise [CGGS13]. Moreover, the fundamental open problem of protein
folding which saw little progress for half a century, as traditional methods
were slow, expensive and required extensive laboratory work or simulative
resources, could be solved efficiently by recent DNN approaches [BB23].
Biologists can now predict protein structures from amino acid sequences, to
understand cellular processes and for practical design such as optimizing
vaccine antigens for stability and effectiveness. This breakthrough has signif-
icantly contributed to the fast development of mRNA vaccines, particularly
during the COVID-19 pandemic. Recent advancements in generative AI and
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Figure 1.1: Image generated by the AI tool “DALL-E”, developed by OpenAI,
to depict: “How this PhD thesis contributes to be one puzzle piece
in the mystery of the universe in 16:9 format”.

Natural Language Processing (NLP) [VSP+17] have also led to the develop-
ment of powerful chatbots, e.g., Chat Generative Pre-Trained Transformer
(ChatGPT), which help users master their daily tasks. Similarly, major tech
companies like Apple, Google, Microsoft, and Amazon have introduced their
own voice assistants—Siri, Google Assistant, Cortana, and Alexa—further
integrating AI into everyday life. These advancements have significantly
increased public awareness and visibility of AI technology.

In Fig. 1.1, we present an impressive example of how AI can generate a
painting with philosophical depth based on a simple command prompt. This
is only one illustration of how AI paves the way for many new possibilities.

However, image generation is a completely different task compared to
solving problems with AI in a technical context: ML techniques must be
adapted carefully to address challenges in communications. These challenges
were tackled within the scope of a series of research projects, during which
the content of this thesis was developed1:

• Momentum—Mobile Medizintechnik für die integrierte Notfallver-
sorgung und Unfallmedizin: The goal was to enable rapid medical
diagnosis in ambulances during emergency transport. Reliable and fast
wireless resource allocation and transmission of medical information
to doctors is of the highest priority.

1This work was partly funded by the Federal State of Bremen and the University
of Bremen as part of the Humans on Mars Initiative in the seed project HiSE, and
by the German Ministry of Education and Research (BMBF) under grant 16KIS1028
(MOMENTUM) and grant 16KISK016 (Open6GHub).
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• Open6GHub—6G für souveräne Bürgerinnen und Bürger in einer
hochvernetzten Welt: Germany’s contribution to the global 6G harmo-
nization and standardization process aims to ensure European tech-
nological sovereignty with a broad scope, encompassing security and
resilience, 3D networks including satellites and airplanes, connected
intelligence for enhanced resource efficiency and joint communication
and sensing, flexible network topologies, and the utilization of higher
frequency bands. Under the keyword of connected intelligence, one
specific goal was to explore new PHY/Multiple Access Channel (MAC)
layer concepts such as exploiting the semantic content of transmitted
messages to ensure flexibility across diverse 6G transmission scenarios.

• HiSE—Human-integrated Swarm Exploration: The goal was to develop
effective communication to facilitate accurate Human Decision-Making
(HDM) in human interaction with (mobile) AI robotic systems, reduc-
ing the risk of critical failures and enabling efficient remote operation
for production and habitation on Mars.

The motivation behind all these projects stems from a broader trend:
New applications such as autonomous driving, medical diagnostics, and
virtual reality are driving rapid data traffic growth and increasingly specific
application demands. These challenges were addressed in the Momentum
project in a medical context by prioritization and/or new communication
architectures.

However, the increasing data demands cannot be effectively managed
through content-agnostic, i.e., digital, communication alone, as it constrains
efficiency in terms of bandwidth, power, latency, and complexity trade-
offs [XYN+23]. Current systems already operate near the Shannon limit,
necessitating a paradigm shift towards integrating semantic content into
system design for future wireless communication standards, such as 6G, as
explored in the Open6GHub project.

By focusing on the semantic content of the data—the meaning or essential
information as required by the application and/or the user to execute a task
rather than the exact bits themselves—, semantic communication introduces
a novel approach that goes beyond traditional semantics-agnostic trans-
mission methods [Wea49; PSB+20; LWZ+21; SB21; UKE+22; GQA+23].
This shift enables compression and coding techniques that can significantly
reduce bandwidth, power consumption, and latency, leading to more efficient
wireless communication systems.

The need for careful integration of semantic content into communications
becomes evident when humans interact with (mobile) assistance systems,
especially in hazardous environments like nuclear accident sites, extraterres-
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trial exploration, and automated Industry 4.0 production facilities. Accurate
HDM is vital for reducing the risk of critical failures and relies on effective
and efficient communication, as investigated in the HiSE project. This in-
cludes evaluating the condition of a tool in a manufacturing plant to prevent
costly shutdowns or utilizing robotic swarms in extraterrestrial settlements
to identify essential resources for survival [SBD+24; BLR+25].

1.2 State of the Art and Open Challenges
The successes of ML have not gone unnoticed by communications engi-
neers [WWW+17], meaning that ML is becoming increasingly important in
communications engineering.

Traditionally, engineers build an abstract mathematical model of the
environment and derive algorithms within the framework of statistics and
information theory [Sim18b]. In wireless communications, we have in general
linear models that represent reality well, i.e., that are empirically well-founded
and abstract the underlying physical processes up to standard processing
steps. This is because the electromagnetic propagation medium of air can be
regarded as linear and radio frequency frontend devices including non-ideal
or non-linear components like amplifiers, mixers, oscillators, filters, and
analog-to-digital converters are designed to create conditions where linearity
holds approximately true. Nowadays, there exist already many solutions for
the design of transmitters and receivers in wireless communication systems
based on linearity, stationarity and Gaussian distributions [OH17].

However, this traditional engineering approach faces limitations when one
of the following deficits is present:

• Model deficit: The traditional approach struggles to account for non-
idealities in models, such as those of radio frequency frontend devices,
and constrains design choices toward achieving linearity, potentially
resulting in suboptimal efficiency. More pronounced is the deficit
in modeling fiber-optical and molecular channels [FG18; KCT+18],
complicating the development of effective transceiver solutions. More-
over, current digital transceiver technologies are designed without
consideration of semantic aspects [Sha48]. Exploiting these aspects
requires knowledge of the semantic relationship between an observation,
such as an image, and its meaning—like identifying a dog or a cat.
These real-world tasks such as pattern recognition can be difficult to
model analytically and may be only described by data samples, further
highlighting the model deficit.

• Algorithm deficit: As outlined, in digital wireless communications,
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established models, such as Additive White Gaussian Noise (AWGN),
accurately represent reality and enable the development of optimized
algorithms. However, these optimized algorithms can be too complex
for practical implementation, leading to what is termed an algorithm
deficit. For instance, in massive or large Multiple Input Multiple
Output (MIMO) detection, the complexity of calculating the optimal
solution increases exponentially with system size [SDW17; SDW19;
BBD21]. Even the efficient implementation of the so-called Maximum
A Posteriori (MAP) detector, the Sphere Detector (SD), becomes
impractical due to high energy consumption and latency. Further, it
is difficult to find a trade-off sweet spot with approximative solutions
resulting in compromises.
If the transmitted data is also protected by a channel code, the code
structure must be considered for MAP detection. Since the code
length usually exceeds the number of antennas, the problem dimensions
grow significantly, making it evident that these problems should be
addressed separately. As a result, communication systems typically
break down the overall problem into smaller, mostly independent sub-
problems [OH17]. These sub-problems can then be solved efficiently
and optimally. While the potential for improvement through joint
design is partially exploited—e.g., via joint iterative equalization and
decoding with soft information propagation—a unified, end-to-end
optimization approach is usually not considered.

These cases are precisely where ML approaches can play to their strengths:
ML algorithms in their most basic form do not need a model to capture
their environment, these rely solely on data for design. First, an architecture
such as a DNN and the training settings are selected. Then, the optimal
parameters of the model are learned based on the available data that can
cover unforeseen imperfections. This adaptability is a key advantage of ML,
but it also offers a second benefit targeting the model deficit: By choosing an
architecture with low complexity, it is possible to design practical algorithms
that are energy-efficient and have low latency.

Meanwhile, complete transmitter and receiver structures have been learned
by interpreting transmitter, channel and receiver as an AutoEncoder (AE)
which is trained end-to-end similar to one DNN [OH17]. The insights gained
from a simple AWGN scenario showing Bit Error Rate (BER) performance
equal to that of handcrafted systems have aroused great interest in commu-
nications engineering.

A downside of ML approaches is the increased demand for data and
computing power: If existing, highly optimized solutions are simply replaced
by AI applications—even when using ever-improving GPUs for efficient
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training—this can greatly increase power consumption and latency. Another
drawback of ML is that it does not align with the traditional, systematic
methodology of engineering. Training DNNs is often perceived as an art,
lacking clear guidelines for selecting architectures and training settings,
both of which significantly impact the achievable performance and training
convergence. Furthermore, in the end it is not clear how the solution was
arrived at, if it is the global solution, and what it actually means. The lack
of in-depth interpretability, also in the mathematical sense, is a problem
that, judging by the current state of research, is still very poorly understood.

Considering the strengths and limitations of both traditional and ML
techniques, the question arises whether rethinking conventional wireless
communication systems or transmitter and receiver structures through the
lens of ML could lead to new architectures that achieve a better balance
between performance, energy consumption, and latency.

For a comprehensive review on the State of the Art (SotA) in applying
ML techniques to communications since the beginning of this dissertation
project, we refer the reader to Sec. 3.2 and Sec. 4.2.

1.3 Thesis Objectives
We have seen that one of the key challenges lies in the careful integration of
new ML concepts into communication systems, as their blind application
does not lead to success. Well-thought-out approaches, developed over
multiple generations of mobile communication standards, cannot be simply
replaced by a “data-is-everything” mindset without sacrificing some of their
benefits.

In this thesis, therefore, we aim to explore how recent promising ML
approaches, such as DNNs, can be leveraged to enhance traditional commu-
nication design. The primary research objectives identified are:

1. Establish a Common Theoretical Framework: Identify a uni-
fied theoretical foundation for integrating communications and ML
techniques, such as Variational Inference (VI) and DNNs.

2. Optimize Model-Based Communication Design: Investigate
ways to effectively improve traditional model-based digital communi-
cation design by incorporating ML techniques while avoiding common
drawbacks, such as increased data and computational requirements,
which can lead to higher latency. Explore how to combine the strengths
of both model-based and data-driven approaches.
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3. Incorporate Semantic Aspects into Communication Design:
Develop a theoretical framework for integrating semantic aspects into
communication systems and leverage ML to design a semantic com-
munication system. Validate the potential of the system in diverse
application areas.

1.4 Thesis Style and Structure
This dissertation adopts a cumulative format, with its core built around
multiple original publications that directly address the stated objectives.
To reflect on the larger context and uncover the interdependencies of the
included publications, a detailed discussion of the overall contributions is
provided in Sec. 1.5. The chapters of this thesis are classified into two
categories:

• Chapters starting with Publication are a faithful reproduction of the
original papers reformatted to A5.

• The other chapters, including the appendices, extend the contents of
the publications and place them in a larger context.

Furthermore, in line with the objectives, the thesis can be divided into two
thematic parts

• Part I: Machine Learning for Digital Communications

• Part II: Semantic Communication

each dedicated to the challenge of an algorithm deficit and a model deficit,
respectively.

Fig. 1.2 illustrates the logical structure of the dissertation as well as the
interpendencies within it, presented in the form of a block diagram. We
show the main contributions, i.e., innovative approaches, inside green boxes.
These exploit, enrich, and extend preexisting approaches, represented within
gray boxes. These include original ML techniques, communication pioneering
works, i.e, SotA approaches where ML is applied to communications, early
semantic information theory, and HDM models from psychology. Preexisting
approaches and innovations can be categorized thematically into the two
dissertation parts, i.e., different communications areas, and into different
ML branches, i.e., Supervised, Unsupervised and Reinforcement Learning as
well as the broader category Tricks. Arrows indicate the influences/flow of
new ideas starting from preexisting works. On these arrows, crucial changes
in model assumptions are presented via formulas. Surface-level advantages
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Main Challenge

ML Techniques

State of the Art

Own
contributions

Digital
Communications
[Algorithm Deficit]

Semantic
Communication

[Model Deficit]

InfoMax problem:
max I (x,y)/max I (z,y)

Tricks Supervised Unsupervised Reinforcement

Amortized Monte Carlo Variational Inference

DNNs [KSH12],
ResNet [HZRS16a]

Concrete Relaxation
[JGP17; MMT17]

Deep Unfolding
[HRW14; BS19]

Policy Gradi-
ent [SLH+14]

DetNet [SDW19],
MMNet [KAHF20]

AE [OH17], DeepSC
[XQLJ21], VL-
VFE [SMZ22]

RL-AE [AH19a]

CMD [BBD20]
MAP Detection

CMDNet [BBD21]
MIMO Soft Detection
p(x|y) ≈ qφ(x|y)

+high ac-
curacy
+low com-
pex

Exploration-aware
receiver [BSW+23]

SINFONY [BBD23]
Semantic

Transceiver Design
+data rate
+latency
+power

RL-SINFONY
[BBD24]

+separate Tx and Rx
+no channel model
–slow convergence

Resource Alloca-
tion [GBBD22a;

GBBD22b;
GBBD23]

Quantized Det-
Net [Hae21]

Early Semantic
Information

Theory [SW49;
CB52; BBD+11a;
Hof13; BBDH14]

Psychology:
Human Decision-
Making Models

[Nos84; SJRvH24]

End-to-End Sensing-
Decision Frame-
work [BLR+25]

+low required detail
level
–probabilistic decisions

p(x) ≈ p(x̃)

qφ(x|y) → qφ(z|y)

p(x|s) = pθ(x|s) pθ(x|s) ̸= δθ(x − µθ(s))

Figure 1.2: Thesis overview: Logical structure with categories and main challenge
as well as interdependencies of ideas. Main thesis contributions:
green. Influencing ideas: gray. Arrows: flow of ideas and model
changes.
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and drawbacks are given next to the green contribution boxes. Light green
boxes indicate contributions that are inside the scope of the dissertation but
are not shown here for the sake of extent. To understand the details such as
formulas and abbreviations, we expect the reader to be familiar with the
contents of the chapters.

1.5 Contributions

1.5.1 Main Contributions
The main contributions of this thesis, directly aligned with the stated
objectives and the block diagram from Fig. 1.2, are:

1. Information Maximization (InfoMax) framework: We identified
the InfoMax problem as the main challenge when optimizing compo-
nents of a communication system [BBD21; BBD23]. As the central
solution approach, we elaborate a lower bound and Amortized Monte
Carlo variational inference from a theoretical perspective.

2. Data-driven theory of MIMO soft detection + CMDNet ap-
proach: We extend model-based massive MIMO soft detection towards
a hybrid approach Concrete MAP Detection Network (CMDNet) com-
bining strengths of model-based and data-driven approaches using the
concrete relaxation and deep unfolding, while providing a unified theo-
retical view on soft detection [BBD20; BBD21; Bec23]. Furthermore,
we shed light on how common ML training practices are challenged
by communication theory and how an algorithm deficit instead of a
model deficit changes the view.

3. Semantic communication theoretical foundation + SINFONY
approach: Extending beyond former pioneering efforts [Wea49;
BBD+11a; BBDH14], we enrich the familiar concepts of informa-
tion theory in communications to include semantic information and
identify the InfoMax principle and its variation, the Information Bot-
tleneck (IB) problem, to be proper design criteria [BBD23; Bec24]. To
tackle the model deficit in semantic communication and to remove
the information barrier caused by hard Variable-Length Codes (VLC)
source coding in the classic block-wise digital design, we propose a
new data-driven approach Semantic INFOrmation TraNsmission and
RecoverY (SINFONY).

4. Diverse semantic communication application areas: We use the
theoretical insights and data-driven approach to make distributed
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exploration of a physical process communication-aware and vice
versa [BSW+23] and to create a probabilistic end-to-end sensing-
decision framework that wirelessly links the sensed data of an as-
sistance system with human decision-making by semantic communi-
cation [BLR+25]. To enable online refinement, we extend the data-
driven semantic communication design towards separately optimized
transmitter and receiver using Reinforcement Learning (RL) tech-
niques [BBD24]. Many simulative investigations underline that SIN-
FONY is superior to classic digital design requiring less bandwidth,
power, and latency.

1.5.2 Discussion of Contributions
Since this is a cumulative dissertation, a comprehensive discussion of its
contributions and interdependencies is presented. The contributions are
diverse and manifold:

• In Chapter 2, we lay the foundation of this thesis by introducing
the most important concepts from ML such as Amortized Monte
Carlo (MC) VI and powerful DNN models. These fundamentals are
presented from a unique view with a unique notation connecting
ML concepts and communications design closely through the lens
of information theory instead of traditional ML practices. One of
our central insights of this thesis is that we can use the InfoMax
principle as an overall learning framework for receiver learning and
transceiver design. Based on this principle, we derive the Maximum
Likelihood (MaxL) criterion — commonly used for optimization in
communications — as a special case of the InfoMax criterion and
Kullback–Leibler (KL) divergence minimization. Most notably, we
reflect on the approaches used in this thesis in the more general context
of ML theory — illuminating their background and interconnections
within the web of ML concepts — thereby motivating both their choice
and possible alternatives. For instance, we derive the Mean-Field
Variational Inference (MFVI) solution for MIMO detection providing
numerical results that reveal the suboptimality of the Information (I)-
compared to the Moment (M)-projection and argue that overfitting

— i.e., decreased generalization performance due to a Monte Carlo (MC)
approximation with too few samples — remains a valid concern, even
though the recently discovered double descent phenomenon suggests
improved generalization for large-capacity models.

• In Chapter 3, i.e., the publication [BBD21], we propose a hybrid ap-
proach to overcome the algorithm deficit in soft detection with large
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system dimensions, e.g., in digital massive MIMO systems. Inspired
by recent ML research, we first introduce a CONtinuous relaxation of
the prior probability mass function (pmf) of the disCRETE Random
Variables (RVs) by a probability density function (pdf) from [JGP17;
MMT17] to the MAP detection problem [BBD20]. The benefit of this
concrete relaxation is that the degree of approximation, which becomes
exact for a limit value, can be controlled directly via a hyperparameter.
With our new approach Concrete MAP Detection (CMD) [BBD20],
we replace exhaustive search by computationally cheaper continuous
optimization to approximately solve the MAP problem in any differen-
tiable probabilistic non-linear model by gradient descent. Second, we
combine the strengths of model- and ML-based approaches to unfold
the gradient descent iterations into our new DNN-like model Concrete
MAP Detection Network (CMDNet) [BBD21]. Following this so-called
idea of deep unfolding, we can optimize a few parameters given a fixed
number of iterations to further improve detection accuracy while limit-
ing complexity. The low parameter number allows dynamic adjustment
to different working points and potentially fast online training. Thirdly,
given the information-theoretic perspective from Chapter 2, we derive
the classification optimization criterion from the KL divergence. We
show that we learn offline an approximation of the Individual Optimal
(IO) detector avoiding the drawback of high computational training
complexity typical for purely data-driven ML approaches. By doing
so, we are able to provide detection probabilities, i.e., reliable soft
outputs, to account for subsequent decoding, e.g., in MIMO systems, in
contrast to literature [SDW19; KAHF20]. Numerical results of MIMO
systems including a variety of simulation setups, e.g., correlated chan-
nels, demonstrate CMDNet to be a generic and promising approach
competitive to SotA and superior to other recently proposed ML-based
approaches. Notably, simulations in coded systems reveal CMDNet’s
soft outputs to be reliable for decoders in contrast to [SDW19]. In
conclusion, the hybrid CMD approach features a promising trade-off
between detection accuracy and complexity.

• In Appendix A, we extend the analysis on CMDNet providing the com-
plete derivation of binary CMD extending beyond [BBD20], and prove
that CMD and binary CMD are different algorithms for BSPK symbols.
Most notably, we provide insights how we proceed systematically in ML
optimization to arrive at the CMDNet solutions of [BBD21]. We dis-
cuss different training aspects such as the influence of hyperparameter
choices including the optimization algorithm, batch size and number
of layers in the context of established ML practices. We shed light
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on how these practices are challenged by communication theory and
how an algorithm deficit instead of a model deficit changes the view.
For example, we figure out that using Adaptive Moment Estimation
(Adam) as the optimization approach — known to generalize worse
than Stochastic Gradient Descent (SGD) — indeed leads to compara-
ble performance with infinite model-generated data, i.e., an algorithm
deficit. Further, after introducing the cross-entropy loss as a measure of
soft information to enable deeper investigations, we state that the main
benefit of validation loss, i.e., tracking the generalization performance,
transforms into being a less noisy observation of the current training
progress having an algorithm deficit with infinite model-based gener-
ated data. Moreover, we show the unexpected result that optimization
of CMDNet with respect to (w.r.t.) Mean Square Error (MSE) loss like
related approaches leads to comparable performance — mainly with a
different Signal-to-Noise Ratio (SNR) weighting with an excellent BER
in high SNR regions. This explains why corresponding approaches
do work well, although this practice is not properly motivated from a
theoretical view. Further, we reveal CMDNet’s sensitivity to starting
weight initializations, requiring heuristics different from standard DNN
practice, and that evaluating its training convergence in combination
with offline training is not insightful. A first simple online learning
investigation shows that a default low-complex DNN is not able to
achieve competitive performance with reasonable training complexity
and only a small performance increase with CMDNet. We explain that
a mismatch of CMDNet parameters can be considered as overfitting
and show CMDNet’s robustness. Finally, we propose two extensions of
CMDNet to overcome design flaws of non-convexity, i.e., Parallel Con-
crete MAP Detection (CMDpar) and Hypernetwork-based Concrete
MAP detection (HyperCMD), to improve accuracy.

• In Chapter 4, i.e., the fundamental publication [BBD23], we contribute
to the theoretical modeling and problem formulation in semantic
communication, extending beyond former pioneering efforts [Wea49;
BBD+11a; BBDH14]. In particular, we adopt the terminus of a seman-
tic source and include it in communications’ complete Markov chain,
including semantic source, communications source, transmit signal,
communication channel, and received signal. By doing so, we enrich
the familiar concepts of information theory in communications to in-
clude semantic information and identify the InfoMax principle and its
variation, the IB problem, to be proper design criteria, as outlined in
Chapter 2. Our take on semantic communication does not differentiate
but merges all Levels A, B, and C according to Weaver compared
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to literature [XQLJ21; BSW+23] and aims to encode the semantic
information contained in an observation such that the meaning at the
receiver is best preserved. This perspective is different from the IB
view in [SMZ22], and we further exploit different ML-based solution
approaches, i.e., we maximize approximately the Mutual Information
(MI) for a fixed encoder output dimension that bounds the informa-
tion rate. To tackle the model deficit in semantic communication, we
propose a new data-driven approach Semantic INFOrmation TraNs-
mission and RecoverY (SINFONY). We design and evaluate it for a
distributed multipoint scenario where the meaning behind multiple
observations, i.e., images, at different senders are communicated to a
single receiver for semantic recovery of its contents. This scenario is
different compared to [AZ21; SMZ23] in that we include the communi-
cation channel. Numerical experiments demonstrate that SINFONY
achieves significant savings in both data rate and power consumption
compared to classic digital communication.

• In Chapter 5, the publication [BBD24], we tackle the practical problem
that data-driven ML approaches such as the AE or SINFONY typi-
cally used in semantic communication exhibit a high online learning
complexity and are difficult to adapt with an unknown channel once
deployed. Hence, we extend the data-driven semantic communication
design towards separately optimized transmitter and receiver using RL
techniques, i.e., the Stochastic Policy Gradient (SPG). In particular,
we derive the application of the SPG for both classic and semantic
communication from the InfoMax principle in contrast to [AH19a].
Additionally, no known or differentiable channel model is required for
Reinforcement Learning-based SINFONY (RL-SINFONY). This allows
for online refinement of the semantic design. Numerical evaluations in
the distributed SINFONY scenario show performance comparable to a
channel model-aware approach, albeit with a decreased convergence
rate.

• In Appendix B, we delve deeper into key aspects of semantic communi-
cation from Chapter 4 and Chapter 5. Considering philosophical and
interdisciplinary views, we show that meaning, i.e., semantics, is closely
related to phenomenon of emergence in the universe and that there
are multiple semantic hierarchical levels that can be viewed through
the lens of Shannon’s information theory. Further, we extend the sim-
ulative comparison of SINFONY and classical digital communication
design to the exemplary dataset CIFAR10. The performance gap w.r.t.
all competing approaches prove semantic communication to be even



14 1 Introduction

more effective in more challenging scenarios. Moreover, we shed light
on our design choice by showing performance results of alternative
SINFONY designs. For example, using separate Rx modules for each
received signal only lead to small gains reflecting that we made proper
assumptions about image processing and channel models. Most notably,
we reveal where the difficulties in introducing semantics to a classic
digital design lie, i.e., an information barrier due to hard VLC source
coding. The key insight follows to remove the block-wise structure like
in the semantics-tailored design SINFONY. Lastly, we elaborate on the
differences between the system models of Chapter 4 and [BSW+23],
provide a different semantics example of floating-point bits transmis-
sion validating the numerical results of [BSW+23], and present ideas
to overcome the slow training convergence of RL-SINFONY as well as
how to train it with a non-differentiable objective function measuring
semantic similarity.

• In Chapter 6, the publication [BLR+25], we propose a probabilistic
end-to-end sensing-decision framework that wirelessly links the sensed
data of an assistance system to HDM by semantic communication.
In this context, semantic communication conveys the meaning be-
hind the sensed information relevant to HDM when humans perform
assistance-supported tasks. Integrating interdisciplinary perspectives
from communications and psychology, the framework aims to enhance
our understanding of how semantic communication impacts HDM and
can improve its effectiveness. To investigate this interplay, we model
HDM as a cognitive process and reveal both in theory and simulations
the fundamental design trade-off between maximizing the relevant se-
mantic information and matching the cognitive capabilities of the HDM
model. Using SINFONY and the HDM model of Generalized Context
Models (GCMs) on specific datasets, our initial analysis demonstrates
how semantic communication can balance the level of transmitted
information detail in feature extraction with human cognitive capabili-
ties while demanding less bandwidth, power, and latency compared
to classical Shannon-based methods. Notably, our findings reveal that
increasing information does not always enhance decision accuracy. Fi-
nally, we discuss challenges for future research, including the design
of effective information presentation through visualization and explor-
ing game-theoretic approaches to address sender-receiver conflicts of
interest. Own contribution: In [BLR+25], as the first authors, we
provided the foundation by contributing the content on semantic com-
munication and the overall theoretical framework with its extension to
both presentation and HDM optimization. This includes its concep-
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tualization, description and evaluation, along with the development
of a software interface for the GCM [Bec24]. The psychology-related
sections on HDM, the selection and simulation of the GCM, and a
few identified challenges were developed collaboratively, with primary
input from the other authors.

For reproducibility of our research, the simulation software of CMDNet and
SINFONY is available at [Bec23; Bec24].
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Other notable works
Last but not least, we shortly mention other notable works we published
during the time of the dissertation:

• We published the results of my master thesis [Bec17] on Compressive
Sensing – Spectral Estimation for Cognitive Radios in two confer-
ences [BBD17; BBD18] and one journal article [BBD19]. There, we
exploit the sparseness of edges in the power spectrum to define a
new compressive sensing problem demonstrating high detection ac-
curacy of occupied given a fraction of the original samples [BBD17;
BBD18]. Further, we present practical results using Software Defined
Radio (SDRadio) hardware with over-the-air-measurements, as well as
a demonstration on Wi-Fi and Bluetooth signals [BBD19].

• In the supervised master thesis [Hae21], we exploit the learning com-
pression algorithm to constrain the weights of Detection Network
(DetNet) [SDW19], a generic DNN MIMO detector, to be within a
predefined codebook that effectively translates into bit-shift operations.
In particular, we use a Lagrangian augmentation with a quadratic
penalty. In [AH19b], the idea is applied to generic DNN-based AE
transceiver design. Results show that we can maintain the detection
accuracy high while significantly decreasing complexity using bit-shift
operations and coarse fixed-point arithmetic.

• Further, the results of a supervised master thesis [Gra20] on the
application of RL techniques to resource allocation problems were
published in [GBBD22a; GBBD22b; GBBD23]. Deep Q-Networks are
used to optimize switching between different model-based resource
scheduling algorithms [GBBD22a] whereas Deep Deterministic Policy
Gradient (DDPG) with continuous action spaces is used to learn
entirely new scheduling algorithms with special regard to priority
users [GBBD22b]. Both achieve high performance on a flexible sum-
utility goal. The technique of weight anchoring is used in [GBBD23] to
find a solution that is nearby the solution of another learning problem
to fixate desired behavior. Thereby, infrequent priority messages are
not unlearned as proven by simulations.

• In the publication [BSW+23], we propose a framework to couple
“exploration-aware” communication and a “communication-aware” ex-
ploration tightly using probabilistic ML techniques. To obtain a
mutually-aware design, we model the physical process to be explored
by multiple agents by means of Factor Graphs (FGs) and design
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ML-based “communication-aware” swarm exploration algorithms that
follow active inference principles. To link exploration to communi-
cation, we transmit the semantics, i.e., messages of the factor node
describing key distribution parameters of the exploration RV to be
exchanged between neighboring agents. Since we provide a probabilis-
tic estimate instead of raw data that the message passing algorithm
can integrate seamlessly, this can be seen as a first step towards a
semantic design. By a “tight” integration of the communication chain,
we enable the exploration strategy to balance the inference objective
of the swarm with inter-agent communication. The design considera-
tions can also be applied to semantics-agnostic settings and seen as an
instance of Joint Source-Channel Coding (JSCC), a view meanwhile
supported by semantic communication research [XQLJ21; GQA+23].
Based on a first numerical example with a semantic receiver tailored to
digitally transmitted data from distributed full waveform inversion, we
demonstrate that simply adapting the receiver to account for semantics
yields a notable semantic performance gain. Further, we can achieve
near-optimal semantic performance with a DNN of low complexity.
Replacing the “classical” transmission, we can thus reduce the cost
in terms of required data rate, latency, power and complexity while
preserving the desired functionality of the whole distributed system.

• In the scope of the HiSE project [SBD+24], we propose a conceptual
framework for integrating humans with a multi-agent robotic system
for hazardous remote exploration and maintenance tasks, e.g., on
Mars. Key challenges include the scarcity and unknown distribution
of resources, limited processing power, and the need for fast decisions
with minimal latency. To address these, the framework incorporates
semantic communication to efficiently transmit and visualize relevant
exploration data from rovers to human operators, aiding in decision-
making.

• Semantic communication typically adapts communication to specific
meanings or tasks, limiting its application to single use cases. To
support multiple tasks, the work [HTB+25] extends the InfoMax
framework of [BBD23] with SINFONY by multiple semantic interpre-
tations in the semantic source from [HBD24]. To facilitate cooperative
multitask processing and improve training convergence, the semantic
encoders are divided into common and specific units, extracting com-
mon low-level features and separate high-level features. Simulation
results on the numerical example of distributed sensed observations
from [BBD23] highlight the effectiveness of this approach in scenarios
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with statistical relationships, comparing cooperative and independent
task processing.

1.7 Nomenclature
We present the basic notation we use throughout this thesis. For a complete
list of all symbols, we refer the reader to the glossary at the end of this
dissertation.

• A RV is denoted by a lower case italic letter a.

• A column vector is denoted by a lower case bold letter a.

• A matrix is denoted by an upper case bold letter A.

• We extract elements of a matrix by anm or [A]n,m. The columns are
extracted by A∗,j and rows by Aj,∗. Sets of matrices are indexed using
subscripts without comma separation, e.g., Anm.

• Realizations are denoted by sanserif letters, e.g., a.

• For better readability, we simplify the notation of pdf pa(a) = p(a = a)
of the RV a to p(a) and use the same notation for a pmf.

• Ea∼p(a)[f(a)] denotes the expected value of f(a) with regard to both
discrete or continuous RVs a.

• H (p(a)) or H (a) denotes the Shannon entropy of p(a) and DKL (p ∥ q)
the KL divergence between p(a) and q(a).

• I (x; y) denotes the MI between multivariate RVs x and y.

• The natural logarithm is denoted as ln(·) whereas log2(·) is the log-
arithm w.r.t. the basis 2. Both logarithm and exponential functions
exp(a) = ea are applied element-wise to vectors.

• |A| denotes the cardinality of the set A.

• |a| denotes the absolute values of a.

• ∥a∥j denotes the j-norm of a, defaulting to j = 2.

• arg max • and arg min • denotes the argument that maximizes or
minimizes the expression •.
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• 0 and 1 are the all-zero and all-one matrices or vectors, respectively. I
is the identity matrix.

• AT and AH denote the transpose and hermitian of a matrix, respec-
tively.

• The partial derivative of function f(a) w.r.t. a is denoted as ∂f(a)
∂a .

• diag {a} denotes the diagonal operator placing the vector entries on
the diagonal of an all-zero matrix.





Chapter 2

Fundamentals of Machine
Learning for
Communications

In this chapter, we lay the theoretical foundation of the thesis. We explain
basic Machine Learning (ML) concepts crucial to understand the contents
and contributions of this thesis.

2.1 Overview
Machine Learning (ML) is a broad research area involving lots of different
techniques [Bis06; Sim18a] and a subset of Artificial Intelligence (AI). While
AI refers to the broader concept of machines or systems that can perform
tasks that typically require human intelligence, such as reasoning, problem-
solving, and understanding language, ML focuses specifically on enabling
systems to learn from data.

At a first glance, the different ML techniques seem like a mixed collection of
unrelated approaches. Looking more closely, a common foundation with their
root in probability theory can be revealed: information theory. Originally,
Shannon introduced this theory to describe communication of information
in 1949 and thus termed it communication theory [Sha48]. Therefore,
information theory lies at the heart of both ML and communications. The
probabilistic view of information theory crucially influenced research on AI
and has paved the way for many advances in both theory and practice in
recent years. A detailed description of how recent ML advances influenced
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Unsupervised
Transceiver Learning:

InfoMax

Supervised
Receiver Learning:

KL Divergence

Amortized
Variational Inference

Monte Carlo Approximation

Probabilistic Models (DNNs)

Figure 2.1: Main ML concepts of this thesis and their relation to each other.

communications research can be found in Chapter 3.
In the following section, we explain the most important terms in ML and

in particular those used in this thesis to equip the reader with what is needed
to understand the fundamentals and insights provided here. Then, we want
to answer the question of what learning actually is and describe the basic
problem of learning, the task at the core of ML, via information-theoretic
measures.

The key principles of ML for communications applied in this thesis are
shown in Fig. 2.1. For the learning of a whole transceiver, we propose
to use the Information Maximization (InfoMax) principle. From InfoMax,
we can derive the Kullback–Leibler (KL) divergence minimization as the
receiver learning criterion. Deviating from the shown scheme, we start
with the latter concept in Sec. 2.3 and crucial ML terms in Sec. 2.2 for
a better introduction of the key principles, and extend these towards the
more general InfoMax principle in Sec. 2.6. We use amortized Variational
Inference (VI) (see Sec. 2.4) and probabilistic models including Deep Neural
Networks (DNNs) (see Sec. 2.7) to overcome algorithm deficits when it comes
to digital communications (see Chapter 3, Appendix A) and model deficits
for semantic communications (see Chapter 4, Chapter 5, Appendix B). This
combination further requires Monte Carlo (MC) methods from Sec. 2.4.5
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which can be used if only a finite number of samples is available.

2.2 Taxonomy
ML problems rely on inference, i.e., the process of using a trained model
to make predictions based on new, unseen data. In ML, there are two
approaches for modeling [Sim18a]:

• Generative Models: The observation distribution p(y) or the joint
distribution p(x, y) between target variable x ∈ Mx and observation
variable y ∈ My from domain Mx and My is modeled and learned. In
both cases, we model the observation distribution p(y) such that we can
generate realizations of observations. The predictive distribution p(x|y)
is inferred from the joint distribution by application of Bayes’ theorem.
We note that in communication designs a directed generative [Sim18a]
and probabilistic system model p(x, y) = p(y|x) · p(x) is often used.

• Discriminative Models: The predictive inference distribution p(x|y)
is directly modeled and learned. We can directly discriminate the
target variable x based on the posterior.

The main three types of ML problems are [Bis06; Sim18a; BB23]:

• Supervised Learning: An observation or input variable y is mapped
onto a label or target variable x. The goal is to learn this mapping
given a dataset or probabilistic model p(x|y). We explain this in
more depth in Sec. 2.3, Sec. 2.5 and Sec. 2.7. Supervised learning
distinguishes two type of problems with respect to (w.r.t.) the target
variable x, which have a counterpart in the communications domain
(the communications term is given in brackets):

– Classification (Detection): The target variable x is from a
discrete set, i.e., x ∈ M, and the task is to classify the observation
y into one of the categories in Mx = M.

– Regression (Estimation): The target variable x is continu-
ous, e.g., x ∈ R with Mx = R, and the task is to estimate it from
y.

• Unsupervised Learning: Only unlabeled data of the observation y
is available, and the goal is to leverage similarities and dissimilarities
among data points to learn patterns and structures. This can be
achieved through techniques such as clustering, dimensionality reduc-
tion, representation learning and generative modeling, which includes
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learning the properties of the underlying generative mechanism, e.g.,
p(y). We refer the reader to Sec. 2.6 about the InfoMax principle
that concludes with a comparison between discriminative and directed
generative modeling in unsupervised learning.

• Reinforcement Learning (RL): The goal is to learn optimal sequen-
tial actions x given an observation y of the environment to maximize
a reward [GBBD22b; GBBD23]. Interacting with the environment
changes its state, meaning the history of actions must be considered.
In this thesis, the use of Reinforcement Learning (RL) is derived from
unsupervised learning in Chapter 5, revealing how close the underlying
ML concepts are interrelated [BBD24].

Furthermore, there are two essential learning paradigms, each differentiated
and explicitly leveraged in Chapter 3 and Appendix A [Sim18a]:

• Offline learning: The model is trained offline in a single pass with
high training complexity using an entire dataset, capturing statistical
properties of all use cases. Once trained, it is deployed for inference
with low runtime complexity.

• Online learning: The model is trained incrementally, updating with
small batches of data as new data arrives. This approach enables the
model to adapt to changes in the data distribution or to specific subset
statistics, reducing potential mismatch and improving performance,
respectively. However, it introduces additional training complexity
during inference and carries the risk of catastrophic forgetting of prior
knowledge [GBBD23]. The performance difference between online and
offline training is known as the amortization gap (see Sec. 2.4.2) — the
price paid for achieving efficient deployment with offline learning.

The two main motivations to apply ML techniques in lieu of the conventional
engineering flow are [Sim18b]:

• Model deficit: There is insufficient domain knowledge or a lack
of a physics-based mathematical model, making it difficult to apply
model-based approaches.

• Algorithm deficit: Even if a (complex) model exists, the algo-
rithms derived to solve the specific problem may be computationally
intractable. Using efficient learning models such as Deep Neural Net-
works (DNNs), may yield algorithms of low complexity.
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2.3 Basic Problem of Learning: Approximate
Inference

What is learning? For humans, learning at an abstract level means improving
in a certain task after observing several trials of it. For example, a child
gradually gains control over their feet by interacting with them, a process
known as learning by doing. In the physical world, a task is embedded into
a complex environment with many interdependencies, most of which we as
human beings are unable to fully observe due to limited sensory information
or time. Even if we could observe everything, processing all this information
would require an infinitely complex brain. However, probabilistic models
can capture the physical world with sufficient accuracy by focusing on the
most relevant factors while managing uncertainties, noise, and variations
without needing to account for every detail. Thus, a probabilistic description
of the task’s underlying phenomena, excluding minor influences as stochastic
variations, naturally suggests itself. Besides natural intelligence, this is also
true for AI.

Following this discussion, uncertainty can be decomposed into aleatoric
uncertainty, arising from irreducible noise that cannot be attributed to any
cause, and epistemic uncertainty, which reflects a lack of knowledge and can
be reduced with sufficient learning. In an idealized world with no inherent
randomness, aleatoric uncertainty vanishes, and all uncertainty becomes
epistemic—and thus fully learnable. In conclusion, reducing uncertainty
in the probabilistic description is the essence of learning, leading to more
reliable inferences and actions.

Interestingly, probabilistic descriptions are also commonly used in com-
munications, where the uncertainty about data and noise sources must
be managed effectively. This approach dates back to 1948, when Claude
Shannon proposed a landmark paper titled “A Mathematical Theory of
Communication” [Sha48]. Today, his ideas have formed the broad field of
information theory which has driven research in the past and made several
technologies such as wireless communications possible. The common proba-
bilistic viewpoint shows the close connection between communications and
ML in their theoretical foundation and roots.

2.3.1 Inference
Probabilistic View: To capture the thoughts about the probabilistic
viewpoint on learning more precisely and mathematically, let us assume a
Random Variable (RV) x ∈ Mx from domain Mx distributed according
to a probability density function (pdf) or probability mass function (pmf)
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p(x). In the following, we will use the term pdf interchangeably with pmf
for the sake of concise explanation. Our task shall be inference, i.e., to make
predictions or to infer the value of x.

In communications, this could for example mean to infer the transmitted
signal x at the receiver. For a discrete symbol alphabet, i.e., x ∈ M, given
the Maximum A Posteriori (MAP) criterion, this is done by choosing the
element x of the set M with the highest probability which is commonly
referred to as the task of detection. In order to detect a symbol successfully,
we have to know the pdf p(x).

Information-theoretic View: Successful detection depends on the degree
of uncertainty: If uncertainty is maximum, i.e., all symbols from M have
equal probability, we cannot make any prediction about x. If we know
the symbol, uncertainty is zero. A measure of uncertainty reflecting these
thoughts is given by the Shannon entropy

H (p(x)) = −
∑︂

x∈M
p(x) log2 p(x) (2.1)

= Ex∼p(x)[− log2 p(x)] (2.2)

from information theory and is usually measured in “bits”. In (2.2),
Ex∼p(x)[f(x)] denotes the expected value of f(x) with regard to both dis-
crete or continuous RV x. In the following, we will make use of the natural
logarithm and of the unit “nats”, as this simplifies the upcoming analysis.
Furthermore, H (p(x)) and H (x) will be used interchangeably throughout
this thesis. In the example of detection or estimation, the entropy should be
rather low to decrease uncertainty.

Bayesian Inference: For brevity, we have so far defined distributions over
single RVs x. However, all considerations extend naturally to distributions
over multivariate RVs x ∈ MNx×1

x and y ∈ MNy×1
y from domain Mx and

My.
Probabilistic inference in communications is typically based on a directed

generative model — a known joint distribution p(x,y) = p(y|x) · p(x) with
forward model or likelihood p(y|x) and prior distribution p(x). To infer the
unobserved variable x given an observed variable y, we need to compute the
posterior distribution p(x|y) according to Bayes’ theorem:

p(x|y) = p(x,y)
p(y) = p(y|x) · p(x)

p(y) . (2.3)
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The latter is used in communication systems for optimal Maximum A
Posteriori (MAP) design to estimate the probability of each possible sent
symbol to be the original symbol given the received signal. This stochastic
approach enables to not only make point estimates of the most probable
symbols, but to reflect also the uncertainty via distribution p(x|y), which can
be exploited by advanced algorithms, e.g., soft decoding, as soft information.

Posterior calculation — that we will also use in (2.49) — requires calcula-
tion of the marginal

p(y) =
∑︂

x∈MNx

p(x,y) . (2.4)

Marginalization becomes computationally demanding if the latent variable
x is from a large alphabet MNx

x = MNx . Even when the calculation of
the posterior is not required, we still do not avoid the potential intractable
summation or integration w.r.t. x ∈ M, which is a common challenge in
learning and inference tasks.

In communications, when it comes to symbol detection, this could corre-
spond to having a symbol alphabet of 16-Quadrature Amplitude Modulation
(QAM). If we have a vector of symbols x ∈ MNx , the number of symbol
combinations grows to |M|Nx and even a moderate vector length Nx makes
it impossible to compute the posterior exactly. The same applies in coding
theory, where the size of an alphabet grows exponentially with the length of
the code word. Since even MAP detection of moderately sized code words
becomes computationally intractable and as most codes work well for long
code word lengths, the necessity of an approximation becomes evident.

2.3.2 Approximate Inference and Learning
So far, we only considered the task of inference or prediction based on the
model pdf p(x,y) and identified its two main problems:

1. We may not have exact knowledge of the true joint pdf p(x,y) and
have to learn it, as outlined in Sec. 2.3.

2. Even if we know p(x,y), performing Bayesian inference on it can be
computationally intractable.

Hence, we have to approximate p(x|y) in (2.3) by an alternative pdf q(x|y).
This process constitutes approximate inference and inherently introduces
the notion of learning: The closer q(x|y) aligns with the true pdf p(x|y),
the more we reduce epistemic uncertainty in inference — thereby capturing
the essence of learning, as discussed in Sec. 2.3.
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2.3.3 Kullback-Leibler Divergence Measure
To quantify how well p(x|y) is approximated by q(x|y), we can use
information-theoretic divergence measures [Sim18a]. The Kullback–Leibler
(KL) divergence between two pdfs p(x) and q(x) is defined as:

DKL (p(x) ∥ q(x)) = Ex∼p(x)

[︃
ln p(x)
q(x)

]︃
. (2.5)

It can be interpreted as the amount of extra information needed to rep-
resent data x ∼ p(x) from the true pdf p(x) when assuming x ∼ q(x)
and has important properties: Application of Gibbs’ inequality reveals
non-negativity [Sim18a], i.e.,

DKL (p(x) ∥ q(x)) ≥ 0 , (2.6)

and thatDKL (p(x) ∥ q(x)) = 0 holds if and only if p(x) = q(x). Furthermore,
it is neither symmetric, i.e., DKL (p(x) ∥ q(x)) ̸= DKL (q(x) ∥ p(x)), nor does
it satisfy the triangle inequality, which implies that it is not a valid distance
metric. Non-symmetry has several theoretical and practical implications,
which will become important in Sec. 2.4.1.

Just like the Mean Square Error (MSE) for deterministic functions, the
KL divergence can be used to define an optimization criterion for deriving a
tight probabilistic approximation q(x) of p(x). We conclude that mini-
mization of the KL divergence is a suitable optimization criterion
for supervised learning of q(x), i.e.,

q∗(x) = arg min
q(x)

DKL (p(x) ∥ q(x)) . (2.7)

The connection of a learning criterion based on the KL divergence to the
fundamental information-theoretic measure of entropy becomes clear if we
rewrite the KL divergence into a sum of cross-entropy H (p(x), q(x)) and
entropy H (p(x)):

DKL (p(x) ∥ q(x)) = Ex∼p(x)[− ln q(x)] − Ex∼p(x)[− ln p(x)] (2.8)
= H (p(x), q(x)) − H (p(x)) . (2.9)

The cross-entropy can be interpreted as a measure of uncertainty when
assuming q while p is true. Since we defined the basic learning problem (2.7)
w.r.t. its approximation q, we can neglect the entropy term H (p(x)) in-
dependent of q and use the cross-entropy as the learning criterion. The
optimization problem underlying learning now reads:

q∗(x) = arg min
q(x)

H (p(x), q(x)) . (2.10)
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Throughout this thesis, when the distributions p and q are clear from the
context, we will adopt the notations DKL (p ∥ q) and H (p, q) for brevity.

2.4 Approximate Inference Techniques
Several approaches exist to derive pdf approximations that address the
aforementioned inference challenges. In the following sections, we briefly
introduce some of the most fundamental approximate inference techniques.

2.4.1 Variational Inference
Moment-Projection

As we have seen in Sec. 2.3 from an information-theoretic viewpoint, learning
involves minimization of a divergence between a true and approximating pdf.
And in fact, the general learning problem of the form (2.7) is the general idea
behind Variational Inference (VI): An additional auxiliary distribution, the so-
called variational posterior q(x) = q(x|y = yi), is introduced and optimized

— for each realization yi with i = 1, . . . , N — in order to approximate the
true and maybe intractable posterior p(x|y). By this means, we approximate
the posterior computation (2.3) by an optimization problem avoiding the
marginalization (2.4). In its basic form, the learning problem in (2.7) now
reads

q∗(x) = arg min
q(x)

DKL (p(x|y = yi) ∥ q(x)) (2.11)

and holds for a fixed value or observation realization y = yi. If this opti-
mization problem is unconstrained, i.e., no constraints are imposed on q(x),
the unique and trivial solution is q∗(x) = p(x|y = yi).

The key idea of Variational Inference (VI) is to choose a suitable model
q(x|φ) with advantageous properties, such as being member of the exponen-
tial family (see Sec. 2.7) and parametrized by a vector φ ∈ RNφ×1, allowing
to solve (2.11) with limited complexity. Note that the optimization problem
is now constrained by the set of distributions {q(x|φ)} defined by the given
variational parametrization φ:

φ∗
i = arg min

φ
DKL (p(x|y = yi) ∥ q(x|φ)) (2.12)

= arg min
φ

Ex∼p(x|y=yi)[− ln q(x|φ)] (2.13)

= arg min
φ

H (p(x|y = yi), q(x|φ)) . (2.14)
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The solution q(x|φ∗
i ) of (2.12) is commonly known as the Moment (M)-

projection of the posterior p(x|y) into the set {q(x|φ)} [Sim18a]. If the set
is large enough to contain distributions close to the true posterior, then
approximate equality q(x|φ∗

i ) ≈ p(x|y = yi) is guaranteed. The objective
function in (2.13) is the cross-entropy and derived by (2.9) and (2.10). Note
that optimization in (2.13) requires knowledge of the true posterior. Thus,
the optimization problem does not appear to be solvable. Fortunately, this is
not true if q(x|φ) belongs to the exponential family. Then, the M-projection
can be obtained by moment matching to the moments of p(x|y) [Sim18a].
Most notably, we can exploit amortized inference to exchange the dependence
on p(x|y) by one on p(x,y) — explained in Sec. 2.4.2 and being extensively
used throughout this thesis — to enable optimization with the M-projection
in general.

Information-Projection

Recalling that the KL divergence is non-symmetric, we can change the
order of p(x|y) and q(x) in (2.11) to arrive at a different optimization
problem [Bis06; Sim18a]:

φ∗
i = arg min

φ
DKL (q(x|φ) ∥ p(x|y = yi)) (2.15)

= arg min
φ

Ex∼q(x|φ)[ln q(x|φ)] − Ex∼q(x|φ)[ln p(x|y = yi) · p(y = yi)]

+ ln p(y = yi) (2.16)
= arg min

φ
Ex∼q(x|φ)[ln q(x|φ)] − Ex∼q(x|φ)[ln p(x,y = yi)] (2.17)

= arg min
φ

DKL (q(x|φ) ∥ p(x,y = yi)) . (2.18)

Its solution is known as the Information (I)-projection. The unique solution
without constraints on q(x) is again q∗(x) = p(x|y = yi). Moreover, problem
reformulation (2.18) avoids the need of computing the desired posterior
p(x|y), only requiring the joint generative distribution p(x,y). The opti-
mization term in (2.17) is the so-called variational free energy [Sim18a]. The
I-projection tends to underestimate the support of p(x|y) and places mass
on one of its modes [Bis06; Sim18a]. This can be explained by the fact that
q(x|φ) needs to be 0 whenever p(x|y) = 0 for the KL divergence to remain
finite. The opposite argumentation of an overestimating support applies to
the M-projection. For an illustrative comparison of I- and M-projection, we
refer the reader to [Bis06; Sim18a].

Lastly, we note that the Laplace approximation provides a simpler alter-
native for approximating the posterior of continuous RVs, fitting a Gaussian
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distribution with a mean equal to one of the true distribution’s modes —
such as the MAP estimate — and a local precision observed around it [Bis06].

Beyond Conventional Divergence Measures

The KL divergence is only one of several divergence measures to quantify the
distance between two distributions. It belongs, like the symmetric Jensen-
Shannon divergence, to the more general α-divergence [Sim18a]. Changing
the value of α, we are able to find projections between that of DKL (p ∥ q)
and DKL (q ∥ p), i.e., between the I- and M-projection. In fact, the α-
divergence itself is part of the larger class of f -divergences Df (p ∥ q) which
include Generative Adversarial Networks (GANs) [Sim18a]. GANs learn
the divergence measure through data-based optimization of a discriminator
leading to State of the Art (SotA) performance, e.g., in image generation.

2.4.2 Amortized Inference
A major insight of solving problem (2.12) and (2.15) is that the variational
posterior q(x|φ) must be derived for each observation y = yi independently.
This may become computationally inefficient. To overcome this problem, the
idea of amortized inference introduces an inference variational distribution
q(x|y,φ) conditioned on y and valid for each observation y = yi [Sim18a;
BB23]. This can be for example parametrized by a Deep Neural Network
(DNN) model capable of approximating arbitrarily well (see Sec. 2.7). Once
q(x|y,φ) is learned, only inference but no optimization is required anymore.
With conditioning of the M-projection in (2.12) on y, we arrive at the
following problem:

φ∗ = arg min
φ

Ey∼p(y)[DKL (p(x|y) ∥ q(x|y,φ))] . (2.19)

Now, the KL minimization is amortized across multiple values of y — a
crucial tool in this thesis, e.g., in Chapter 3 and Chapter 4.

Applying the marginalization across y to the KL divergence decomposition
from (2.9) including conditioning on y, we see that the marginalized entropy
term Ey∼p(y)[H (p(x|y))] is still independent of q(x|y,φ). It follows that
amortized minimization of the cross-entropy is equivalent to that of the KL
divergence (2.19). Rewriting the amortized cross-entropy objective function

Ey∼p(y)[H (p(x|y), q(x|y,φ))] = Ey∼p(y)
[︁
Ex∼p(x|y)[− ln q(x|y,φ)]

]︁

= E(x,y)∼p(x,y)[− ln q(x|y,φ)] (2.20)

by the law of iterated expectations [Sim18a], reveals an important insight:
In (2.20), or—as we will see later—in (2.60), the expected value is calculated
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w.r.t. the joint distribution p(x,y): Therefore, through amortization, explicit
knowledge of the true posterior p(x|y) which may be of intractable complexity
is not required.

Note that in Sec. 2.5.2 we show that the MC approximation of amortized
inference applied to the M-projection is equivalent to the Maximum Like-
lihood (MaxL) problem. Moreover, amortized inference can be defined for
the I-projection (2.15) by conditioning on y as well.

2.4.3 Mean-Field Variational Inference
Another common and useful assumption in VI to make marginalization
computationally tractable is that the variational posterior q(x) factorizes
into Nx distributions qn(xn) according to

q(x) =
Nx∏︂

n=1
qn(xn) , (2.21)

such that the RVs xn are statistically independent.

I-Projection

If we further perform an I-projection (2.15) iteratively for one target RV xn
at a time and assume the factors qm(xm) for all other RVs xm with m ̸= n
to be fixed, we arrive at the method of Mean-Field Variational Inference
(MFVI). Problem (2.15) w.r.t. each factor qn(xn) then reads:

q∗
n(x) =arg min

qn(x)
DKL (q(x) ∥ p(x,y = yi)) (2.22)

=arg min
qn(x)

− Exn∼qn(xn)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E
x\n∼

Nx∏︁
m̸=n
m=1

qm(xm)

[︁
ln p(xn,x\n,y = yi)

]︁

⏞ ⏟⏟ ⏞
Ex\n[ln p(x,y=yi)]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−
Nx∑︂

m=1
H (qm(xm)) (2.23)

=arg min
qn(x)

DKL
(︁
qn (xn) ∥ exp(Ex\n [ln p(x,y = yi)])

)︁
, (2.24)
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where x\n is a vector containing all entries of x except for xn. After solving
the minimization problem of (2.24) [Bis06; Sim18a], we arrive at:

ln q∗
n(xn) = Ex\n [ln p(x,y = yi)] + c (2.25)

q∗
n(xn) =

exp
(︁
Ex\n [ln p(x,y = yi)]

)︁
∑︂

xn∈Mx

exp
(︁
Ex\n [ln p(x,y = yi)]

)︁

⏞ ⏟⏟ ⏞
=−c

(2.26)

with constant c. Finally, this results in an iterative algorithm: We are able
to compute an approximate posterior q(x) by cycling through computation
of its factors (2.26) iteratively for all n ∈ {1, . . . , Nx}. These serial updates
correspond to solving the I-projection by coordinate descent, which requires
choosing a starting point. Since each serial step ensures that the variational
free energy (2.22) monotonically decreases, the convergence of the MFVI
iterations to a stationary point of problem (2.24) is guaranteed [Bis06;
Sim18a]. This is not true for parallel updates. Convergence must be checked
via the remaining change in free energy. Most notably, the form of each
factor qn(x) is not restricted — a crucial benefit. Typically, the true joint pdf
p(x,y) is composed of distributions of the so-called exponential family, e.g.,
Gaussian and Bernoulli distributions, making the marginalization in (2.26)
tractable. Note that the RVs are only interdependent through the update
equations (2.26), while the statistical dependencies present in the true
posterior are ignored in the mean-field approximation.

M-Projection

In Chapter 3, we show the application of MFVI to the M-projection [BBD21].
We derive by (3.4) and (3.31) that the KL divergence decomposes into a
sum of individual cross-entropies between the Individual Optimal (IO) true
posteriors p(xn|y) and the variational factors qn(xn) and the constant entropy
term H (p(x|y)) [Bis06; BBD21]:

DKL (p(x|y) ∥ q(x)) = Ex∼p(x|y)[ln p(x|y)] +
Nx∑︂

n=1
H (p(xn|y), qn(xn)) .

(2.27)

Thus, the optimal solution without restrictions on q(x) is the minimum of
the individual cross-entropies H (p(xn|y), qn(xn)) [Bis06]:

q∗
n(xn) = p(xn|y = yi) =

∑︂

x\n∈Mx
Nx−1

p(x|y = yi) . (2.28)
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This means that for the M-projection with MFVI, a closed-form solution
exists, i.e., the IO posterior, and no iterative procedure, as it is the case for
the I-projection, is required. However, as already outlined, the calculation
of the posterior and its marginalization in (2.28) may be intractable.

Fano’s Inequality: In detection problems, the MAP estimate of (2.28)
is known as the IO detector. It minimizes the symbol/bit error probability
or Symbol Error Rate (SER)/Bit Error Rate (BER) in communications.
The IO posterior can be related via the conditional entropy H (xn|y) =
H (p(xn,y), p(xn|y)) to the error probability p(xn ̸= x̂n) of inferring xn ∈ M
by the detector x̂n = f(y) ∈ M given the observation y with the posterior
p(xn|y), e.g., by Fano’s inequality [CT06]:

H (p(xn ̸= x̂n)) + p(xn ̸= x̂n) · ln (|M| − 1) ≥ H (xn|x̂n) ≥ H (xn|y) .
(2.29)

For example, channel effects such as high noise and interference translate
into high (aleatoric) uncertainty in the posterior and thus a high condi-
tional entropy H (xn|y) — eventually increasing the minimum possible error
probability p(xn ̸= x̂n).

Using an amortized M-projection with approximation qn(xn|y,φ), we
approach the conditional entropy H (xn|y) as a lower bound minimiz-
ing the cross-entropy in (2.27) amortized across y. This lower bound
Ey∼p(y)[H (p(xn|y), qn(xn|y,φ))] ≥ H (xn|y) can be derived combining (2.6)
and (2.9) and introducing conditioning on y. The amortized cross-entropy
Ey∼p(y)[H (p(xn|y), qn(xn|y,φ))] — usually numerically calculated based
on samples as the training or validation loss in ML toolboxes — can be
used to compute a conservative estimate of the minimum error probability
via (2.29).

2.4.4 Variational Inference: MIMO Detection Example
To show how MFVI can be used in communications, we apply MFVI to the
example of detection in a Multiple Input Multiple Output (MIMO) system
covered more deeply in Chapter 3 and Appendix A. We assume the prior
p(b|α) and the variational posterior q(b|φ) of bit sequences b to be Bernoulli
pmfs and a Gaussian pdf for the generative and real-valued MIMO system
model p(y|x,H, σ2

n) with transmit symbols x ∈ MNT×1 from Binary Phase
Shift Keying (BPSK) alphabet M = {−1, 1}, received signal y ∈ RNR×1,
channel matrix H ∈ RNR×NT with channel statistics H ∼ p(H), and noise
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variance σ2
n ∈ R+ (see Chapter 3):

p(b|α) =
Nbit∏︂

n=1
p(bn|αn) =

Nbit∏︂

n=1
α(1−bn)
n · (1 − αn)bn (2.30a)

q(b|φ) =
Nbit∏︂

n=1
q(bn|φn) =

Nbit∏︂

n=1
φ(1−bn)
n · (1 − φn)bn (2.30b)

x = 1 − 2 · b (2.30c)
p(y|x,H, σ2

n) = N
(︁
H · x, σ2

n · I
)︁
. (2.30d)

Factorization of the prior pmf p(b|α) means we assume statistical indepen-
dence between the incoming bits in b. The prior probability of each bit
being bn = 0 is p(bn = 0|αn) = αn ∈ [0, 1] and the corresponding posterior
probability to be learned is q(bn = 0|φn) = φn ∈ [0, 1]. Note that NT = Nbit
for BPSK and that all distributions belong to the exponential family.

I-Projection: We derive parallel update equations [LL09] for the I-
projection with (2.26) and y = yi as:

φ(j+1) =ρ
(︃

ln
(︃

α

1 −α

)︃
+ 2
σ2

n

[︂
HTy − D ·

(︂
2 ·φ(j) − 1

)︂]︂)︃
(2.31a)

D =HTH − diag
{︁

HTH
}︁

(2.31b)

with the sigmoid activation function ρ (see Appendix C). To derive the
serial updates in (2.26), we optimize one row of equation (2.31) at a time to
compute φ(j+1)

n , performing the optimization in a sequential, row-wise man-
ner. The posterior probabilities φ(Nit) of q(b|φ(Nit)) = q(b|y,H, σ2

n,α,φ
(0))

from (2.31) after Nit iterations can be passed as soft information, e.g., trans-
formed into Log-Likelihood Ratios (LLRs) = ln(φ(Nit)/(1 − φ(Nit))), to a
soft decoder closely interfacing equalization and decoding by iterative joint
equalization and decoding. This resembles a factorization of both actually
statistical dependent steps being too computational complex when solved
together in one problem. As an extension, we could include the noise vari-
ance σ2

n as one of the parameters to be estimated leading to a variational
Expectation Maximization (EM) algorithm [LL09].

Numerical Results: The results when MFVI is applied for detection in a
128 × 64 massive MIMO system with independent and identically distributed
(i.i.d.) Gaussian channel matrix p(H) = N (0, 1/NR · I), φ(0) = α = 0.5 · 1,
and Nit = 64 iterations (see Chapter 3), are shown in Fig. 2.2, and compared
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Figure 2.2: BER curves of MFVI-based detection methods in a 64 × 32 massive
MIMO system with Quadrature Phase Shift Keying (QPSK) modu-
lation. Effective dimension of the equivalent real-valued system with
BPSK modulation is 128 × 64 and for iterative algorithms Nit = 64.

to MAP sequence detection using the Sphere Detector (SD), as well as the
Minimum Mean Square Error (MMSE). We see that MFVI-Successive Inter-
ference Cancellation (SIC) with serial updates from (2.26) performs close to
the SD for low Signal-to-Noise Ratio (SNR) since it is guaranteed to converge
to a stationary point [Bis06; Sim18a]. In contrast, MFVI-Parallel Interfer-
ence Cancellation (PIC) applying parallel updates in (2.31) cannot beat the
MMSE equalizer. In a symmetric 64 × 64 MIMO system, we can observe a
similar behavior, but now both approaches cannot compete with the MMSE
equalizer hinting towards the suboptimality of the MFVI solution (2.26) for
MIMO detection. At first, statistical independence, i.e., full factorization, in
the posterior q(b|φ) or equivalently q(x|φ) w.r.t. BPSK symbols xn with
a full-entry channel matrix H seems to be a crude assumption. However,
there are two major flaws specific to the I-projection:

1. As outlined in Sec. 2.4.1, the I-projection tends to underestimate
the support and place all its mass on one mode of p(x|y). This
becomes a drawback if there exist multiple symbol vectors with a
similar probability, as even more likely symbol vectors may not be
covered appropriately.

2. In fact, there is no guarantee that the serial updates converge to the
global minimum of (2.22), and that the optimum coincides with the
individual true posteriors, i.e., qn(xn) = p(xn|y).
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M-Projection: Applying the MFVI assumption to the M-projection for
MIMO detection, we can overcome these drawbacks: Via (2.27), we can
show that the optimal solution q∗

n(xn) in (2.28) is the soft output, i.e., the
symbol-wise posterior p(xn|y), of the IO detector (3.4), and that we can learn
an approximation qn(xn|φn) of it. The IO detector minimizes the individual
SER which directly translates into BER for BPSK symbols. Moreover, the
M-projection tends to overestimate the support and thus covers better the
uncertainty, i.e., the most likely symbol vectors, or the multi-modality caused
by the interference.

In Chapter 3, we exploit these benefits to design a low-complex soft
detector that achieves low BER [BBD21]: We define an inference distribution
q(x|y,φ) for all y = yi for amortized inference, avoiding knowledge of the
intractable individual posteriors p(xn|y) and constraining the solution space
by incorporating model knowledge from the pdf p(x,y) into q(x|y,φ). The
detector obtained by data-driven optimization (see Sec. 2.5) performs close
to the SD, e.g., in a symmetric 64 × 64 MIMO system, in contrast to the
solution (2.31) of the I-projection.

Beyond Mean-Field: At this point, we note that as an alternative to
MFVI we can assume the same factorization for q(x|y,φ) as the joint
distribution p(x,y). This is the so-called Bethe approximation and can be
solved by means of loopy belief propagation [Sim18a]. One simplification of
the latter is Approximate Message Passing (AMP) which leads to competitive
performance in MIMO detection as will be shown in Chapter 3.

2.4.5 Monte Carlo Methods
One crucial approximate inference technique besides VI techniques is Monte
Carlo (MC) sampling [Bis06; Sim18a]. To make the explanation of MC
methods more precise, let us apply them to our basic marginalization prob-
lem (2.4). To do so, we rewrite into the new form

p(y) =
∑︂

x∈MNx
x

p(y|x)p(x) = Ex∼p(x)[p(y|x)] . (2.32)

By drawing N i.i.d. samples xi ∼ p(x), i = 1, . . . , N , we are able to approxi-
mate the expected value (2.32) by its consistent estimator, i.e., the empirical
average

p(y) ≈ 1
N

N∑︂

i=1
p(y|x = xi) . (2.33)
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We note that MC sampling is the origin of a phenomenon known as overfitting.
We will uncover this in Sec. 2.5.5.

2.5 Data-driven Supervised Learning for Re-
ceiver Inference

Given the approximate inference techniques of MC methods and amortized
inference, we can now formulate the supervised learning problem of approxi-
mating the true posterior distribution p(x|y) from a data-driven perspective.
Doing so reveals its information-theoretic relation to the Maximum Likeli-
hood (MaxL) and MAP principle and that no knowledge of the true posterior
is required.

2.5.1 Monte Carlo Variational Inference
To learn a discriminative model in a supervised manner, we usually assume
an inference variational distribution q(x|y,φ) according to amortized VI in
Sec. 2.4.2. The optimization criterion to obtain the M-projection is then
amortized minimization of the KL divergence (2.19) or equivalently of the
cross-entropy in (2.20). An important implication of using the objective
function (2.20) is that explicit knowledge of the true posterior p(x|y) which
may be of intractable complexity is not required through amortized inference.

To learn q(x|y,φ) by minimizing (2.20), we can exploit a MC approx-
imation of (2.20) from Sec. 2.4.5 and restrict to N pair of i.i.d. samples
D = {(xi, yi)}

N
i=1 from the joint distribution p(x,y) collected in a set D. This

combination of MC and VI techniques is referred to as Monte Carlo varia-
tional inference. Now, the empirical cross-entropy is the new optimization
objective:

E(x,y)∼p(x,y)[− ln q(x|y,φ)] ≈ − 1
N

N∑︂

i=1
ln q(xi|yi,φ) . (2.34)

This learning criterion (2.34) based on samples resembles more closely what
humans understand if they think of learning, since they are usually not aware
of the underlying process p(x,y). Additionally, this criterion defines the
concept of data-driven supervised learning: Based on pairwise observations
(xi, yi), the relation between both variables is learned.
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2.5.2 Relation to Maximum Likelihood
Likewise, the approximate equality (2.34) shows the fundamental relation
between cross-entropy, KL divergence and the Maximum Likelihood (MaxL)
criterion. To explain this, let us take a step back and recall the MAP
criterion for model selection: It selects the most probable model q(φ|x,y)
or model parameters φ given realizations, i.e., a training set, of x and y.
With Bayes’ theorem

q(φ|x,y) = q(x,φ|y)
q(x) ∼ q(x|y,φ) · q(φ) , (2.35)

we can relate to the variational distribution, i.e., likelihood q(x|y,φ), and
the prior pdf q(φ) on the models {q} or model parameters φ. Assuming a
non-informative prior q(φ) = c in (2.35), it holds q(φ|x,y) ∼ q(x|y,φ).

A so-called training set typical for supervised learning consists of the
collection D of i.i.d. samples or data we mentioned so far. With this set D,
the MaxL problem w.r.t. the parameters φ now reads:

φ∗ = arg max
φ

q(x1, . . . , xN |y1, . . . , yN ,φ) (2.36)

= arg max
φ

N∏︂

i=1
q(xi|yi,φ) (2.37)

= arg min
φ

− 1
N

N∑︂

i=1
ln q(xi|yi,φ) . (2.38)

After having reformulated the problem w.r.t. the negative log-likelihood, we
observe that the MaxL objective function in (2.38) is an empirical approxima-
tion of the information-theoretic measure of cross-entropy in (2.34). In other
words, (2.20) and (2.38) are asymptotically equivalent or approximately the
same for large N :

lim
N→∞

− 1
N

N∑︂

i=1
ln q(xi|yi,φ) = E(x,y)∼p(x,y)[− ln q(x|y,φ)] . (2.39)

Therefore, for large N , the MaxL problem can be interpreted to minimize
the amortized KL divergence or cross-entropy between the true pdf p(x|y)
and the approximating pdf q(x|y,φ).

2.5.3 MAP Criterion
To move beyond the MaxL principle towards the Maximum A Posteriori
(MAP) criterion, we introduce a non-uniform prior pdf q(φ) to (2.35). This
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means we do not only regard the model’s RVs, but also all parameters φ
explicitly as RVs. Now, we can define the MAP criterion w.r.t. the parameters
φ:

φ∗ = arg max
φ

ln q(x1, . . . , xN ,φ|y1, . . . , yN ) (2.40)

= arg min
φ

− ln q(x1, . . . , xN |y1, . . . , yN ,φ) − ln q(φ) (2.41)

= arg min
φ

− ln q(φ) −
N∑︂

i=1
ln q(xi|yi,φ) . (2.42)

The prior pdf q(φ) acts like a regularization term. For example, if we choose
q(φ) to be a Gaussian or Laplace distribution, it gives lower probability to
large values of φ, which can help avoid overfitting (see Sec. 2.5.5) [Bis06;
Sim18a]. Furthermore, with a Gaussian or Laplace distribution, we ar-
rive at the l2- and l1-regularization, respectively. If the prior pdf q(φ) is
uniform/constant, MaxL and MAP criterion coincide.

2.5.4 Fully Bayesian Inference
We note that the MaxL and MAP criterion only select the most probable
parameters φ for the given training set D. Under the strong assumption that
both observed data, data to be inferred and parameters φ follow the same
distribution q(x|y,φ) = p(x|y,φ), i.e., the true joint distribution p(x,y,φ)
is known, we can exploit fully Bayesian inference by marginalizing the model
parameters φ:

p(x|y,D) =
∫︂
p(x, x1, . . . , xN ,φ|y, y1, . . . , yN )

p(x1, . . . , xN |y1, . . . , yN ) dφ (2.43a)

=
∫︂
p(x|y,φ) · p(x1, . . . , xN |y1, . . . , yN ,φ) · p(φ)

p(x1, . . . , xN |y1, . . . , yN ) dφ (2.43b)

=
∫︂
p(x|y,φ) · p(φ|x1, . . . , xN , y1, . . . , yN ) dφ (2.43c)

with

p(x1, . . . , xN |y1, . . . , yN ) =
∫︂
p(x1, . . . , xN |y1, . . . , yN ,φ) · p(φ) dφ (2.43d)

=
∫︂
p(φ) ·

N∏︂

i=1
p(xi|yi,φ) dφ . (2.43e)

With this fully Bayesian perspective, inference and learning are one process.
Thus, we can account for uncertainties of the parameter estimation during
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inference and quantify epistemic uncertainty [Bis06; Sim18a]. A drawback is
that marginalization of the model parameters φ adds computational cost
and can become intractable as for example with DNNs. To find a tractable
approximation, VI techniques can be exploited [Bis06].

Considering a generative model p(x,y,φ) in communications, a fully
Bayesian approach means that uncertainties in the system variables φ, such
as channel and noise variance, can also be taken into account and can
subsequently be estimated. For example, the respective prior distributions
of channel and noise as well as the uncertainty in their estimation from pilot
data can be included for improved soft detection.

Prior Distributions: For a likelihood p(x|y,φ) from the exponential
family, conjugate priors p(φ) can be selected such that the posterior p(x,φ|y)
belongs to the same class of distributions. Then, computation of the posterior
is analytically tractable [Sim18a]. However, this does not imply analytical
tractability in computing the posterior predictive pdf p(x|y,D) in (2.43).

Furthermore, we note that in a fully Bayesian approach the shape of the
parameter prior p(φ|ψ) is defined via hyperparameters ψ which themselves
have to be chosen carefully. If we further introduce a prior p(ψ) on the
hyperparameters, we enter the realm of hierarchical models [Sim18a]. As a
hybrid approach, the empirical Bayes method estimates the hyperparameters
of the prior from the data [Sim22].

2.5.5 Monte Carlo Methods and Overfitting
We made use of MC sampling when empirically approximating the amor-
tized cross-entropy in (2.34) or (2.39): We replaced expected values by
empirical averages over samples of the joint distribution p(x,y) to define a
supervised learning problem in the form (2.34) that alleviates intractable
marginalization.

At this point, we note that the equivalence of this approximation is only
assured for sufficiently large N due to the law of large numbers. Additionally,
the variance of the approximation error scales with 1/N . In order for the
MC approximation to work, the number of samples N therefore has to be
sufficiently large. Otherwise, if N is too small, we fit q(x|y,φ) to a few
samples or points which results in a well-known phenomenon in supervised
learning, known as overfitting. If overfitting occurs, generalization to unseen
data points becomes poor.

In particular, large-capacity models q(x|y,φ) such as DNNs from a larger
hypothesis class, i.e., the set of all possible models q(x|y,φ), are prone to
overfitting, as these models can better fit to the training data. With such
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models, the estimation error (or variance) in generalization dominates the
bias, which is caused by the choice of a low-capacity model. This explains
why low-capacity models q(x|y,φ) oftentimes generalize better when the
training set is small. In contrast, when much data is available, low-capacity
models tend to underfit. For illustration of overfitting and underfitting, we
refer the reader to [Bis06; Sim18a].

Bias-Variance Trade-off: This relationship can be formulated math-
ematically as the bias-variance trade-off [Bis06; Sim18a] from statistical
learning [Sim18a] and is discussed in [Bis06; Sim18a] w.r.t. the MSE loss.
While a MSE loss permits a straightforward decomposition into bias and vari-
ance, recent research has shown that clean decompositions can be achieved
with g-Bregman divergences [Hes25]. Since the KL divergence (2.5) is a
g-Bregman divergence, it has a bias-variance decomposition [Hes25]. Its
decomposition is also valid for the cross-entropy (2.10) or (2.20), that is
widely used in this thesis for learning, and can be rewritten into a constant
entropy and KL divergence term via (2.9).

2.5.6 Training, Validation, Test Datasets
To detect overfitting when training on samples, i.e., a finite dataset, based
on (2.34), the dataset is typically split into training set D, validation set DVal,
and test set DTest. First, we select and train a model q(x|y,φ) and observe
the validation loss to evaluate its generalization performance. The cycle of
model selection and training continues until the validation loss no longer
decreases. We explain this for the example of [BBD21] in Appendix A.3.2 in
more detail.

In fact, after training and validation of a model q(x|y,φ), we need to
evaluate the generalization capability once again with a test set. This
is because we selected the model to minimize the validation error itself
computed with a finite dataset DVal.

Since a well-defined model is typically available in digital wireless commu-
nications, it is possible to generate virtually unlimited training data, thereby
mitigating overfitting and enabling high generalization performance with-
out the use of validation or test datasets. We elaborate on this point in
Appendix A.

As a final remark, we note that the fully Bayesian approach can partly
mitigate overfitting by accounting for high epistemic uncertainty in parameter
estimation when data is limited. However, validation remains necessary
w.r.t. the hyperparameters ψ.
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2.6 Information Maximization Principle for
Unsupervised Learning of Communica-
tions Design

Moving beyond learning how to infer or predict in a supervised manner, e.g.,
how it would be done on the receiver side, let us extend the previous model:

• We now assume a typical communications Markov chain s → x → y
with input signal s ∈ MNs×1

s , i.e., the source, transmit signal x ∈
MNx×1

x , and received signal y ∈ MNy×1
y : We describe this chain by a

probabilistic encoder — a pdf pθ(y|s) = p(y|s,θ), that comprises both
transmitter encoder pθ(x|s) and communication channel p(y|x), and
is parametrized by parameters θ ∈ RNθ×1.

• We note that the role of the RVs changes compared to supervised learn-
ing at the receiver side. When considering the complete transceiver,
now the observation is not the received signal but the input signal
y⇝ s. The target RV changes from the transmit signal to the received
signal, i.e., x⇝ y. Since it is not labeled, it further becomes a latent
representation, and we have an unsupervised learning problem. More-
over, the probabilistic encoder pθ(y|s) is a discriminative model, as it
maps the observation s directly to representation y.

• In communications, we assume the input prior pdf p(s) or samples
from it to be known. Therefore, we model the joint pdf pθ(y, s) =
pθ(y|s) · p(s) between observation RV s and its representations y.

Classic InfoMax: Our typical aim for communications is to optimize or
learn the encoder to maximize throughput, i.e., to maximize the Shannon
Mutual Information (MI) I (s; y) w.r.t. the probabilistic encoder pθ(y|s) or
its parameters θ. In other words, we want to find a received representation
y ∼ pθ(y|s) in an unsupervised manner that retains a significant amount of
information about the input s:

p∗
θ(y|s) = arg max

pθ(y|s)
I (s; y) (2.44)

θ∗ = arg max
θ

Iθ (s; y) (2.45)

= arg max
θ

Es,y∼pθ(s,y)

[︃
ln pθ(s,y)
p(s)pθ(y)

]︃
(2.46)

= arg max
θ

H (p(s)) − Hθ (s|y) (2.47)
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θ∗ = arg max
θ

H (p(s)) − H (pθ(s,y), pθ(s|y)) (2.48)

= arg max
θ

Es,y∼pθ(s,y)[ln pθ(s|y)] . (2.49)

In the ML domain, this problem is known as the InfoMax principle [Sim18a].
We note that it does not only fit well as a design criterion for unsupervised
learning of discriminative models, but naturally also as a general design
criterion for the design of communication systems. This brings us to a crucial
viewpoint of this thesis: Learning can be defined in communication
systems as the optimization process aiming to maximize the infor-
mation contained in the received signal about the signal of interest
to be transmitted.

Note independence from θ in H (p(s)) and dependence in pθ(s|y) ∼
pθ(y|s) · p(s). Notably, the form of pθ(y|s) has to be constrained implicitly
to avoid learning a trivial identity mapping s = y. Since the communication
channel p(y|x) is included in pθ(y|s) and introduces noise, this is usually
true for communications. Additionally, note that pθ(s|y) is the posterior
and thus the optimal decoder given the encoder forward model pθ(y, s).

For an important variation of the InfoMax principle that introduces an
information constraint on the forward model explicitly, i.e., the Information
Bottleneck (IB) problem, we refer the reader to Chapter 4 and [TPB99;
GP20; ZES20; Has22].

InfoMax for Transmitter Encoder: So far, in the classic InfoMax
problem (2.44), we optimized for the probabilistic encoder pθ(y|s), encom-
passing the whole forward model. To directly obtain the transmit encoder
pθ(x|s) for the full communications Markov chain s → x → y, we exploit
the affine transformations

pθ(y|s) =
∑︂

x∈MNx
x

p(y|x) · pθ(x|s) (2.50a)

pθ(y|s) =
∫︂

x∈MNx
x

p(y|x) · pθ(x|s) dx (2.50b)

for discrete and continuous sets MNx
x , respectively. By means of this

affine transformation, we can rewrite (2.44) into the equivalent optimization
problem w.r.t. the transmitter encoder pθ(x|s) that we aim to optimize:

p∗
θ(x|s) = arg max

pθ(x|s)
I (s; y) . (2.51)

All other optimization problems from (2.45) to (2.49) are also valid in this
case, since the parametrization of Iθ (s; y) w.r.t. θ is unchanged.
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Convexity Analysis: The InfoMax problem (2.44) is convex with regard
to the encoder functional pθ(y|s) for fixed p(s) [CT06]. This holds for both
discrete and continuous RVs s and y, as the expectation operator in terms
of sums and integrals is an affine mapping that is composed with a convex
function which preserves convexity [BV04, Sec. 3.2.2.]. However, the MI
Iθ (s; y) is not necessarily convex with regard to the encoder parameters θ.
For example, it is non-convex if the encoder function is non-convex with
regard to its parameters being typically the case with DNN encoders.

Since the affine transformations in (2.50) preserve convexity, the InfoMax
problem w.r.t. the encoder (2.51) is still convex in pθ(x|s) for fixed p(s).
Once the global maximum p∗

θ(x|s) is found the corresponding maximum
p∗
θ(y|s) of (2.44) can be calculated by (2.50).

Upper Bound on the InfoMax Problem: It remains the question of
how large the MI I (s; y) can be at maximum. Through the information
processing inequality [CT06], we know:

Iθ (s; y) ≤ min {Iθ (s; x) , Iθ (x; y)} . (2.52)

In case of negligible encoder compression Iθ (s; x) > Iθ (x; y), the capacity
is the upper bound on the achievable information rate:

Iθ (s; y) ≤ Iθ (x; y) ≤ max
p(x); E[|xn|2]≤1

Iθ (x; y) = C (2.53)

for n = {1, . . . , Nx}. For a more detailed analysis on the bounds in the
context of semantic communication, we refer to Sec. 4.5.5.

Moreover, the MI in (2.44) can be related to the error probability p(s ̸= ŝ)
of inferring s given the representation y by Fano’s inequality (2.29) using
Hθ (s|y) = H (p(s)) − Iθ (s; y) [Sim18a].

2.6.1 Mutual Information Lower Bound
If calculation of the posterior pθ(s|y) in (2.49) is intractable, we are able to
replace it by a variational distribution qφ(s|y) = q(s|y,φ). This approach
yields a lower bound on the MI, referred to as the MI Lower BOund (MILBO):

Iθ (s; y) = H (p(s)) − Hθ (s|y) (2.54)
= H (p(s)) + Es,y∼pθ(s,y)[ln pθ(s|y)] (2.55)
≥ H (p(s)) + Es,y∼pθ(s,y)[ln qφ(s|y)] , (2.56)

where the last step follows from non-negativity (2.6) of the KL divergence
Es,y∼pθ(s,y)[ln pθ(s|y)/qφ(s|y)] ≥ 0. The MILBO problem (2.56) can be
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solved using a Majorization Minimization (MM) approach, a class of al-
gorithms to which the EM algorithm from ML belongs as a specific in-
stance [Sim18a]. Alternatively, optimization w.r.t. both θ and φ can now
be done directly w.r.t. this lower bound:

arg max
θ,φ

H (p(s)) + Es,y∼pθ(s,y)[ln qφ(s|y)] (2.57)

=arg max
θ,φ

Es,y∼pθ(s,y)[ln qφ(s|y)] (2.58)

=arg min
θ,φ

− Es,y∼pθ(s,y)[ln qφ(s|y)] . (2.59)

This is known as the variational InfoMax problem [Sim22]. Reformulation
from (2.56) via (2.59) to

− Es,y∼pθ(s,y)[ln qφ(s|y)] =H (pθ(s,y), qφ(s|y)) (2.60a)
= Ey∼p(y)

[︁
Es∼pθ(s|y)[− ln qφ(s|y)]

]︁
(2.60b)

= Ey∼p(y)[H (pθ(s|y), qφ(s|y))] (2.60c)
=LCE

θ,φ (2.60d)
reveals that maximization of the MILBO is equivalent to minimization of
the cross-entropy LCE

θ,φ with amortization across y from (2.20). The only
difference between (2.20) and (2.60) is that now also encoder optimization
parameters θ are included. We conclude that approaches that rely on the
minimization of the amortized cross-entropy LCE

θ,φ in (2.60) approximately
maximize the MI. One example where this optimization criterion is usually
implemented is the popular AutoEncoder (AE) approach that consists of
an encoder pθ(x|s) and a decoder qφ(s|y), both typically parametrized by a
DNN and optimized as one entity [OH17; BBD23].

Further rewriting the amortized cross-entropy — as shown in [SAH19;
CAD+20] or will be shown in Sec. 4.5.3 for the case of semantic communica-
tion [BBD23] — reveals that it includes a new decoder optimization term in
addition to the MI:

LCE
θ,φ = Ey∼p(y)

[︁
Es∼pθ(s|y)[− ln qφ(s|y)]

]︁

= H (p(s)) − Iθ (s; y)⏞ ⏟⏟ ⏞
encoder objective

+ Ey∼p(y)[DKL (pθ(s|y) ∥ qφ(s|y))]
⏞ ⏟⏟ ⏞

decoder objective

.

(2.61)
This means, optimization of the MILBO balances maximization of
the MI Iθ (s; y) w.r.t. θ and minimization of the KL divergence
DKL (pθ(s|y) ∥ qφ(s|y)) w.r.t. both θ and φ. The latter criterion can be
seen as a regularization term that favors encoders with high MI for which
decoders can be learned that are close to the true posterior.
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Examples: Lastly, for illustration, we show what (2.60) looks like for
the example of a Gaussian variational posterior qφ(s|y) = N (µφ(y), σ2 · I)
with mean parametrized by a function µφ(y), e.g., a DNN, conditioned on
observation y and with parameters φ:

LCE
θ,φ = Es,y∼pθ(s,y)

[︃
1

2σ2 (s − µφ(y))2 + 1
2 ln 2πσ2

]︃
. (2.62)

This result shows that, if the noise variance σ2 is not parametrized by
φ, then minimizing the amortized cross-entropy between true posterior
p(s|y) and approximating Gaussian variational posterior qφ(s|y) is equal
to minimization of the MSE loss between true signal s and its prediction
µφ(y). With a discrete categorical pmf

qφ(s|y) =
M∏︂

k=1
qφ(s = mk|y)[s=mk] with

M∑︂

k=1
qφ(s = mk|y) = 1 (2.63)

as described in (3.32) in Sec. 3.4.2 with M possible values mk and [s = mk]
being the Iverson bracket, we recover the cross-entropy loss oftentimes used
in classification problems in ML:

LCE
θ,φ = Es,y∼pθ(s,y)

[︄
−

M∑︂

k=1
[s = mk] · ln qφ(s = mk|y)

]︄
(2.64)

≈ − 1
N

N∑︂

i=1
ln qφ(s = si|y = yi) . (2.65)

Monte Carlo Optimization: We note that computation of the MILBO
leads to some problems: If calculating the expected value in (2.60) cannot
be solved analytically or is computationally intractable, we can use MC
sampling techniques as for example in (2.65). For Stochastic Gradient
Descent (SGD)-based optimization (see Sec. 2.7.3), the gradient w.r.t. φ can
then be computed easily. Calculation of the gradient w.r.t. θ turns out to
be more problematic since we sample w.r.t. the pdf pθ(y|s) dependent on θ.
Solution techniques to overcome this problem include the reparametrization
trick that leads to the AE approach, and Stochastic Policy Gradient (SPG).
Both are described and exploited in Chapter 4 and Chapter 5, specifically
Sec. 4.5.6/Sec. 5.4.1 and Sec. 5.4.2, respectively.
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2.6.2 Relation between M-Projection in Supervised
Learning and InfoMax Principle

As an important remark, we arrive at a special case of the InfoMax princi-
ple if we fix the encoder with pθ(y|s) = p(y|s) and hence the transmitter.
Then, only the receiver approximate posterior qφ(s|y) needs to be opti-
mized in (2.59). Comparing cross-entropies (2.20) and (2.60) for this case,
maximization of the MILBO is equivalent to a supervised learning problem
and amortized minimization of the KL divergence (2.19) between true and
approximate posterior, i.e., the M-projection (see Sec. 2.3.3, Sec. 2.4.2, and
Chapter 3).

This means the M-projection is well-justified from a theoretical perspec-
tive for communications since it maximizes a lower bound on the mutual
information between transmitted data and received signal. We recall from
Sec. 2.4.3 that we learn approximations of the IO posteriors for detection
that minimize the SER using the M-projection with a MFVI assumption, as
outlined for MIMO detection in Sec. 2.4.4.

Fixing the transmitter can have several benefits: In practice, we avoid the
Reinforce gradient (see Chapter 5), and especially we do not need any (ideal)
connection between transmitter and receiver for optimization like the raw AE
approach. Furthermore, even today in 5G, we can apply a ML receiver design
to standardized systems with fixed transmitter capabilities to possibly achieve
performance gains. We will investigate a ML-based receiver design given
a fixed transmitter in Chapter 3, Appendix B.4, and [BBD21], [BSW+23],
respectively. Finally, we note that the SotA transmitters aim for digital bit-
perfect transmission, which may be unnecessary from a semantic perspective
and could lead to a waste of resources. Hence, it is also worth considering the
adaptation of the transmitter to achieve a more efficient use of bandwidth.
We will elaborate on this point in Chapter 4.

2.6.3 Comparison to Generative Models and ELBO
To conclude this section, we now compare discriminative and directed gener-
ative modeling in unsupervised learning, since the respective approximative
optimization criteria of maximizing MILBO and Evidence Lower BOund
(ELBO) are important concepts in ML. Note that “Learning a “useful”
representation of data in an unsupervised way is one of the “holy grails” of
current ML research” [APF+18]. First, we transfer typical communications
modeling assumptions to generative modeling to demonstrate how it can be
used in communications:

• Using a directed generative model pθ(s,y) = pθ(s|y) · pθ(y)
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parametrized by θ means that we assume that a latent representation
y generates the observation s through forward model pθ(s|y).

• Since in communications this observation s is our input signal, applying
generative modeling with the assumption on the role of the variables
from the InfoMax scenario is not useful.

• If we switch the roles of observation s ⇝ y and latent represen-
tation y ⇝ s, we arrive at a scenario where we aim to learn
which mechanism, e.g., including transmitter and channel, gener-
ated our observations y at the receiver. Then, the generative model
pθ(s,y) = pθ(y|s) · pθ(s) consists of the forward model pθ(y|s) — in-
cluding channel and transmitter — and the prior on the input signal
pθ(s).

• With x = s, we split between channel pθ(y|x) and prior on the transmit
symbols pθ(x). This example resembles blind channel equalization.

To learn generative models, typically the KL divergence between the
true data/observation p(y) and its approximative distribution pθ(y) is
minimized [Bis06; Sim18a]:

θ∗ = arg min
θ

DKL (p(y) ∥ pθ(y)) (2.66)

= arg min
θ

Ey∼p(y)[− ln pθ(y)] − Ey∼p(y)[− ln p(y)] (2.67)

= arg min
θ

H (p(y), pθ(y)) . (2.68)

The problem (2.66) is also known as the M-projection of the data distribution
p(y) into the model pθ(y). Since the KL divergence in (2.66) converges
to infinity when pθ(y) approaches zero, the M-projection tends to overes-
timate the support and can provide blurry estimates. Alternatively to the
M-projection DKL (p(y) ∥ pθ(y)) also used in data-driven supervised learn-
ing, we can use other f -divergences Df (p(y) ∥ pθ(y)) such as the reverse
KL divergence DKL (pθ(y) ∥ p(y)) (I-projection) or GANs to alleviate this
problem [Sim18a].

In fact, compared to the InfoMax principle (2.44) used for discriminative
model learning, (2.66) and other f -divergences do not include any measure of
the quality of the latent representation variable s and thus do not necessarily
lead to good representations and models pθ(s,y), as shown in [APF+18].

To optimize (2.66), marginalization of the generative model pθ(s,y) is
required to compute the evidence pθ(y) which may be computationally
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intractable. To avoid marginalization, we can introduce a variational ap-
proximation qφ(s|y) in

ln pθ(y) = ln
∑︂

s∈MNs×1
s

pθ(s,y) (2.69)

= ln
∑︂

s∈MNs×1
s

qφ(s|y) · pθ(s,y)
qφ(s|y) (2.70)

≥
∑︂

s∈MNs×1
s

qφ(s|y) · ln
(︃
pθ(s,y)
qφ(s|y)

)︃
(2.71)

= −DKL (qφ(s|y) ∥ pθ(s,y)) (2.72)
= − Es∼qφ(s|y)[− ln pθ(y|s)] −DKL (qφ(s|y) ∥ pθ(s)) (2.73)
= ln pθ(y) −DKL (qφ(s|y) ∥ pθ(s|y)) . (2.74)

to arrive at the Evidence Lower BOund (ELBO) in (2.72) via Jensen’s
inequality in (2.71). The surrogate objective function of the amortized
minimization problem in (2.66) now reads:

DKL (p(y) ∥ pθ(y)) ≤ Ey∼p(y)[DKL (qφ(s|y) ∥ pθ(s,y))] = −LELBO
θ,φ .

(2.75)

One typical approach to maximize LELBO
θ,φ is the Expectation Maximization

(EM) algorithm where first the variational posterior qφ(s|y) and then the
model pθ(s,y) is optimized [Bis06; Sim18a]. As for the MILBO, we can also
optimize w.r.t. both θ and φ and use MC approximations for SGD-based
optimization. This leads to the same problem already observed for the
MILBO that we need to compute the gradient of the cross-entropy term
in (2.73) w.r.t. parameters φ that parametrize the pdf qφ(s|y) we sample
from.

Variational AutoEncoder (VAE): We can solve this problem in (2.73)
by means of the reparametrization trick. This approach is known as the
Variational AutoEncoder (VAE) consisting of encoder qφ(s|y) and decoder
pθ(y|s) [Sim18a; BB23]. The VAE is applicable if the variational regulariza-
tion term DKL (qφ(s|y) ∥ pθ(s)) in (2.73) can be computed and differentiated
w.r.t. φ. This reparametrization requirement restricts the form of the pdfs
qφ(s|y) and pθ(s) even if expressive DNNs, e.g., deep DNNs that have a high
capacity to model complex functions and capture intricate patterns in data,
are used for parametrization. For example, with Gaussian pdf assumptions
on qφ(s|y) and pθ(s) [Sim18a], the performance of this unsupervised learning
approach can be affected.
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Example – Blind Channel Equalization: In the example of a communi-
cation system, unsupervised learning of a generative model could mean that
we learn transmitter, channel and receiver by pθ(s), pθ(y|s), and qφ(s|y),
respectively. If we assume the transmitter technology, e.g., modulation, to
be known without knowledge of the exact transmit symbols, this is known
as blind channel equalization. This task was tackled in [CB20] by means
of the VAE. Since the authors assume a typical wireless communication
channel, i.e., linear Gaussian channel model and a Bernoulli prior, both
being from the exponential family, analytical computations of the expected
values in the ELBO are possible. Otherwise, for example, application of
the Gumbel-softmax trick (see Chapter 3) becomes necessary due to the
discrete nature of the latent RVs s. The authors demonstrate significant and
consistent improvements in the SER compared to SotA approaches while
being computational efficient.

Relation between I-Projection in Supervised Learning and ELBO:
If we assume the generative model pdf in (2.72) to be known pθ(y, s) = p(y, s),
we arrive at a supervised learning problem. Then, maximization of the
ELBO (2.72) and the I-projection (2.18) from Sec. 2.4.1 coincide. Thus, the
I-projection has its theoretical justification in minimizing an upper bound on
the KL divergence between true observation pdf and its approximation. This
means we learn representations s that explain the observed data well, but
that do not necessarily contain much information about the observation y.
This can lead to bad detection performance: We recall that the performance
of the I-projection using a MFVI assumption in the MIMO detection example
from Sec. 2.4.4 is inferior to that of the M-projection. The purpose of the
I-projection is to make inference computationally tractable and efficient.

2.7 Probabilistic Models for Learning
In this section, we elaborate on the most important learning models used in
this thesis.

2.7.1 Exponential Family Models
As already mentioned in Sec. 2.4.1, variational posteriors or more generally
pdfs qφ(x) = q(x|φ) from the exponential family exhibit many desirable
mathematical properties [Sim18a]. These pdfs are log-linear and character-
ized by a set of sufficient statistics — functions of the data that contain
all information relevant for determination of the pdfs’ natural parameters
φ = φnat [Bis06; Sim18a]. Their structure gives rise to three key properties:
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1. The feasible natural parameters φnat are from a convex set.

2. The mapping between natural parameters φnat and mean parameters —
which are defined as the expectation of the vector of sufficient statistics
and can be used as an alternative parametrization — is invertible.

3. The log-likelihood ln q(x|φnat) is a concave function of the natural
parameters φnat. Thus, minimizing the cross-entropy for a member of
the exponential family corresponds to a convex optimization problem.

These properties make the exponential family pdfs well-suited for tractable
computation in, e.g., message passing or gradient descent-based optimization.
For example, all models in the exponential family admit conjugate priors,
which ease posterior computation in Bayesian inference (see Sec. 2.5.4).
The exponential family includes Gaussian, Laplace, Gamma, Beta and
Dirichlet pdfs, as well as Bernoulli, Categorical, Multinomial and Poisson
pmfs. Furthermore, exponential family models have a strong theoretical
justification being solutions of the maximum-entropy problem: These models
retain the maximum uncertainty about the RVs given known constraints
on the RVs’ moments, i.e., they make the fewest assumptions about the
data which improves generalization (see Sec. 2.5.5). For a deeper and
mathematical description of the exponential family, see [Bis06; Sim18a].

One popular extension of the exponential family to conditional pdfs
qφ(x|y) or qφ(s|y) is the Generalized Linear Model (GLM). Here, the natural
parameters φnat are a linear function φnat = W ·ϕ(y) of a vector of features
ϕ(y) of the inputs y with weights W such that q(x|φnat = Wϕ(y)) =
q(x|y,W) = qφ(x|y) with φ = {W}. Moving beyond GLMs with, e.g.,
DNNs, enables to also learn the input features ϕ(y) themselves [Sim18a].

2.7.2 Artificial Neural Networks
At the core of almost all recent ML breakthroughs such as Chat Generative
Pre-Trained Transformer (ChatGPT) [VSP+17] and AlphaGo [SHM+16] lie
artificial Neural Networks (NNs) inspired by the working principle of the
human brain. One of the reasons is that, compared to GLMs fixed basis
functions ϕ(y), NNs enable arbitrarily accurate approximations of non-linear
functions according to the universal approximation theorem [HSW89; Bis06;
OH17]. The training effort is higher, as the basis functions, i.e., features
ϕ(y), of the model are not predefined, but can be learned.

Model: The functionality of an artificial neuron is based on a linear
combination of all inputs, which are mapped to one output via a non-linear
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Figure 2.3: DNN with NL = 2 two layers of width N
(1)
h = 4 and N

(2)
h = 3. In

this example, the final softmax layer computes the class probabilities
of the variational posterior pmf qφ(x|y) based on observation y.

activation function ρ (·) such as linear, Rectified Linear Unit (ReLU), sigmoid,
softmax, and tanh. For a short summary of these activation functions, see
Appendix C. The performance of the entire NN is determined by the number
of neurons in parallel (layer width) and in series (depth) and the choice of
activation functions. The typical multi-layer structure with depth NL and
(hidden) layer width N

(l)
h of the l-th layer is shown in Fig. 2.3. A NN with

high NL is considered as a Deep Neural Network (DNN) and able to learn
abstract features present in the data [Sim18a].

In total, the DNN consists of multiple dense, fully-connected layers with
parameters, i.e., additive biases bl and weights Wl:

v0 = y (2.76a)
vl = ρl (Wl · vl−1 + bl) with l = 1, . . . , NL − 1 (2.76b)

vNL = ρNL (WNL · vNL−1 + bNL) . (2.76c)

The parameters φ have the following dimensions:

φ =
{︁

W1 ∈ RN
(1)
h ×Ny ,W2 ∈ RN

(2)
h ×N(1)

h , . . . ,WNL ∈ RN
(NL)
h ×N(NL−1)

h ,

b1 ∈ RN
(1)
h ×1,b2 ∈ RN

(2)
h ×1, . . . ,bNL ∈ RN

(NL)
h ×1}︁ . (2.77)

A promising aspect for the application of DNNs in communication systems
is that the complexity of the resulting algorithms can be analyzed more easily
due to the regular structure (2.76) of the DNNs. In addition, the requirement
of computational resources and the latency can be easily determined or even
specified or taken into account in the optimization.
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Reparametrizing Variational Distributions by DNNs: Note that if
the final layer of a DNN is a softmax activation ρNL(·) = σ (·), it outputs
values in the interval [0, 1] summing up to 1: This means the DNN represents
a valid conditional categorical pmf q(x|φnat) ≜ σ (φnat) = vNL ∈ [0, 1]M×1

with M =
⃓⃓
MNx

x

⃓⃓
classes, whose natural parameters are a linear function

φnat = WNL · vNL−1 + bNL of preceding layer outputs and input y. Each
k-th entry in vNL gives the respective probability qφ(x = mk|y) of class
mk for MNx

x = {mk}Mk=1. We can use this DNN with final softmax layer
as a discriminative model or variational posterior qφ(x|y) with parameters
φ from (2.77) for classification. Other members of the exponential family
can also be parametrized by DNNs. For example, the mean parameters of a
Gaussian qφ(x|y) can be computed by a DNN, i.e., the mean and variance
by {µ, σ2} = vNL , as typical in VAEs.

DNNs and Overfitting: Building on the discussion in Sec. 2.5.5, DNNs
particularly are prone to overfitting since DNNs are large-capacity models
with millions or billions of parameters and many layers that can approximate
arbitrarily well.

However, when the model class capacity exceeds the so-called interpolation
point, where the DNN is effectively able to memorize the entire training set,
the generalization error decreases again. This phenomenon — subject of
current research — is called double descent and one of the reasons for the
success of Large Language Models (LLMs) [BB23]. The current notion is
that in a larger model space there may be more local parameter optima that
generalize well such that a suboptimal training algorithm is able to find one
of those. As a result, the general wisdom in the deep learning community
is that large-capacity DNNs combined with suboptimal training algorithms
generalize better, especially with limited data. Furthermore, surprisingly,
performance can decrease if the dataset size increases, as a larger model is
required to reach the interpolation point.

Since low-complexity, low-power, and low-latency components are crucial
for efficient communication system design, we expect low-capacity DNNs to
be of greater interest. In this regime — which is the focus of this thesis —
the conventional notions of the bias-variance trade-off become particularly
important to mitigate overfitting. Moreover, if a well-defined communications
model is available, virtually unlimited training data can be generated, enabling
high generalization performance.

Incorporating Domain Knowledge and Structural Priors: Regular-
ization of the form of the DNN model qφ(x|y), e.g., by incorporating expert
knowledge into the DNN architecture, or its parameters φ, e.g., using the
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MAP criterion from Sec. 2.5.3, constrains the hypothesis space of solutions.
Therefore, it can help mitigate overfitting in case of small datasets and
improve performance more generally. Additionally, it can reduce the number
of parameters required to achieve a desired performance level.

Pushing the concept to its limits, the idea of deep unfolding leverages
known iterative model-based algorithms such as AMP or Gradient Descent
to create a DNN model: Trainable weights are added to each iteration of
the algorithm and the number of iterations is fixed [BS19; MLE21]. We
present unfolding of our own algorithm Concrete MAP Detection Network
(CMDNet) in Chapter 3.

On an abstract level, domain knowledge can also be introduced to generic
architectures: For example, convolutional layers are used in pattern recogni-
tion because these are robust to translation, rotation, scale and luminance
variance of objects in the image [KSH12]. A DNN incorporating these layers
is known as a convolutional DNN and has reduced complexity as convolution
operators reduce the number of connections between the layers. This results
in filters that are modeled on the visual cortex in animals.

2.7.3 DNN Optimization: Stochastic Gradient Descent
Typically, with the given DNN model and weights, the central optimiza-
tion/learning criterion of this chapter, i.e., the minimization of cross-
entropy (2.10) and (2.59), cannot be evaluated and solved analytically w.r.t.
the weights. Therefore, approximate inference techniques including VI, MC
samples, and amortized inference are exploited. By these means, we can
derive common defined loss functions and the use of datasets describing the
usual viewpoint on DNN training.

Since DNNs are non-linear functions due to the inherent non-linear acti-
vation functions ρ (·), methods based on gradient descent are used for the
optimization of, e.g., the empirical cross-entropy, i.e,

φ∗ ≈ arg min
φ

− 1
Ntrain

Ntrain∑︂

i=1
ln qφ(xi|yi) . (2.78)

Calculating the solution of (2.78) becomes computationally intractable for
large datasets D = {(xi, yi)}

Ntrain
i=1 .

Stochastic Gradient Descent: To overcome this problem, the most
basic ML optimizer Stochastic Gradient Descent (SGD) is usually used for
DNN training. The idea of SGD is to split the dataset into a subset, i.e.,
a mini-batch DBatch, of samples from the training set and to evaluate the
gradient descent step for each mini-batch. The procedure is as follows:
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1. Initialize parameters φ(0) and set a learning rate schedule ϵ(j).

2. Split training set D into mini-batches DBatch according to a predeter-
mined or random order.

3. Parameters update with gradient descent for each mini-batch:

φ(j+1) = φ(j) − ϵ(j)

|DBatch|
∑︂

DBatch

∂ ln qφ(xi|yi)
∂φ

⃓⃓
⃓⃓
φ=φ(j)

. (2.79)

In addition to the DNN model, the optimization parameters batch size
|DBatch| and learning rate ϵ(j) can be considered as hyperparameters to be
optimized via validation [Sim18a]. If the learning rate schedule fulfills the
Robbins-Monro conditions, e.g., ϵ(j) = 1/j, then SGD is known to converge
to the global optimum for strictly convex functions and to stationary points
for non-convex functions typical for DNNs [Sim18a].

In practice, choosing a large batch size |DBatch| decreases the variance of
the gradient estimate. However, a small batch size improves convergence
speed if the current solution is far from the optimum and is known to
improve generalization performance avoiding “sharp” minima of the objective
function (2.78) [Sim18a]. An increasing batch size schedule suggests itself.

Furthermore, the gradients for DNN training are calculated by the back-
propagation algorithm. It consists of the following steps:

1. The forward pass calculates ln qφ(xi|yi) and all intermediate layer
responses for all samples.

2. The backward pass requires reiterated use of the chain rule of differen-
tiation for all the weights in each layer for each training sample.

We refer the reader to [Bis06; Sim18a] for a more detailed description and
other variations of SGD such as Adaptive Moment Estimation (Adam).

In practice, frameworks such as TensorFlow [AAB+15], Py-
Torch [PGM+19] and Keras [Cho+15] are used to create computation graphs
and perform automatic differentiation, including optimized execution on
Graphics Processing Units (GPUs). Exploiting the parallel structure of DNN
optimization by parallel execution of training steps on GPUs enables fast
training and is one of the main drivers for recent advancements in ML.

DNN Parameter Initialization: When optimization problems are solved
iteratively, as in the case of SGD, an initial weight starting point φ(0) is
required, which can heavily influence the training performance and can be
seen as another hyperparameter instance. For l = 1, . . . , NL, typical default
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weights Wl ∈ RN
(l+1)
h ×N(l)

h from (2.76) are sampled according to the Glorot
Uniform Initialization from [GB10]

w(l)
nm ∼ U

⎛
⎝−

√
6√︂

N
(l+1)
h +N

(l)
h

,

√
6√︂

N
(l+1)
h +N

(l)
h

⎞
⎠ (2.80)

and default biases are bl = 0. This initialization is known to speed up
training convergence.

To regularize the weights during training, we can introduce a non-uniform
prior distribution in (2.35) w.r.t. the weights to define a MAP optimization
problem (2.42) and optimize q(x,φ|y), as outlined in Sec. 2.5.3. Then,
for example, by assuming a Laplace distribution as the prior q(φ), we can
encourage solutions for q(x|y,φ) with sparse weights [Sim18a].

2.8 Chapter Summary
In this chapter, we summarized the fundamentals of ML crucial for its
application to communications in this thesis:

• We introduced the most important measures and taxonomy.

• Our information-theoretic view closely connects ML concepts and com-
munications design. We introduce ML techniques very communications-
oriented from a unique view with a unique notation.

• Most notably, we reflect on the approaches used in this thesis in the
more general context of ML theory — illuminating their background
and interconnections within the web of ML concepts — thereby moti-
vating both their choice and possible alternatives.

• We provide a learning definition for both receiver inference and
transceiver design from information theory instead of common ML
practices. Most notably, we propose the InfoMax principle for commu-
nications design.

• We derive the MaxL principle — a common optimization criterion in
communications — as a special case of the KL divergence minimization
between true and approximating pdf and the InfoMax principle.

• Since the optimization problems are difficult to solve in practice, we
introduce useful approximate inference techniques to overcome these
difficulties such as amortized VI and MC methods.
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• We derive the MFVI solution for a MIMO system and provide numerical
results revealing the suboptimality of the I-projection in VI. In contrast,
the optima of the M-projection are the IO detectors and hence well-
justified from a theoretical perspective.

• We show that overfitting is a result of a MC approximation with too
few samples deteriorating generalization performance. Furthermore,
we conclude that the recent research finding of double descent — chal-
lenging classical intuition by showing that large-capacity DNN models
can generalize well despite overparametrization — is not relevant for
low-complexity wireless communications design.

• We explain one of the most powerful probabilistic models, i.e., DNNs,
requiring the use of SGD variants for solving the non-convex optimiza-
tion problem.
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3.1 Abstract
Following the great success of Machine Learning (ML), especially Deep Neural
Networks (DNNs), in many research domains in the 2010s, several ML-based
approaches were proposed for detection in large inverse linear problems, e.g.,
massive MIMO systems. The main motivation behind is that the complexity
of Maximum A Posteriori (MAP) detection grows exponentially with system
dimensions. Instead of using DNNs, essentially being a black-box, we take a
slightly different approach and introduce a probabilistic continuous relaxation
of discrete variables to MAP detection. Enabling close approximation
and continuous optimization, we derive an iterative detection algorithm:
Concrete MAP Detection (CMD). Furthermore, extending CMD by the
idea of deep unfolding into CMDNet, we allow for (online) optimization
of a small number of parameters to different working points while limiting
complexity. In contrast to recent DNN-based approaches, we select the
optimization criterion and output of CMDNet based on information theory
and are thus able to learn approximate probabilities of the individual optimal
detector. This is crucial for soft decoding in today’s communication systems.
Numerical simulation results in MIMO systems reveal CMDNet to feature
a promising accuracy complexity trade-off compared to state of the art.
Notably, we demonstrate CMDNet’s soft outputs to be reliable for decoders.

Index Terms
Maximum A Posteriori (MAP), individual optimal, massive MIMO, concrete
distribution, Gumbel-softmax, machine learning, neural networks.

3.2 Introduction
Communications is a long-standing engineering discipline whose theoretical
foundation was laid by Claude Shannon with his landmark paper “A Mathe-
matical Theory of Communication” in 1948 [1]. Since then, the theory has
evolved into an own field known as information theory today and found its
way into many other research areas where data or information is processed
including artificial intelligence and especially its subdomain Machine Learn-
ing (ML). Information theory relies heavily on description with probabilistic
models playing a significant role for design of new generations of cellular
communication systems from 2–6G with respective increases in data rate.
Probabilistic models have shown to be advantageous also in the ML research
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domain. Accordingly, both fields, communications and ML, have touched
repeatedly in the past (see, e.g, [2]–[4]).

In the early 2010s, a special class of these models gave rise to several
breakthroughs in data-driven ML research: Deep Neural Networks (DNNs).
Inspired by the brain, several layers of artificial neurons are stacked on top
of each other to create an expressive feed forward DNN able to approximate
arbitrarily well [5] and thus to learn higher levels of abstraction, i.e., features,
present in data [6]. This is of crucial importance for tasks where there are
no well-established models but data to be collected. Previously considered
intractable to optimize, dedicated hardware and software, i.e., Graphics
Processing Units (GPUs) and automatic differentiation frameworks [7],
innovation to DNN models [8], [9] and advancements in training [8] have
made it possible to build algorithms that equal or even surpass human
performance in specific tasks such as pattern recognition [10] and playing
games [11]. The impact included all ML subdomains, e.g., classification [9],
[10] in supervised learning, generative modeling in unsupervised learning [12]
and Q-learning in reinforcement learning [11].

3.2.1 ML in Communications
The great success of DNNs in many domains has stimulated large amount of
work in communications just in recent years [6]. Especially in problems with
a model deficit, e.g., detection in molecular and fiber-optical channels [13],
[14], or without any known analytical solution, e.g., finding codes for AWGN
channels with feedback [15], DNNs have already proven to allow for promising
application. Notably, the authors of the early work [16] demonstrate a
complete communication system design by interpreting transmitter, channel
and receiver as an autoencoder which is trained end-to-end similar to one
DNN. The resulting encodings are shown to reach the Bit Error Rate (BER)
performance of handcrafted systems in a simple AWGN scenario. A model-
free approach based on reinforcement learning is proposed in [17]. Using
advances in unsupervised learning, also blind channel equalization can be
improved [18].

In contrast to typical ML research areas, a model deficit does not apply
to wireless communications. The models, e.g., AWGN, describe reality well
and enable development of optimized algorithms. However, those algorithms
may be too complex to be implemented. This algorithm deficit applies to
the core problem typical for communications: classification in large inverse
problems. Therefore, it is crucial to find an approximate solution with an
excellent trade-off between detection accuracy and complexity.
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3.2.2 Related Work
A prominent example for large inverse problems under current deep investi-
gation and a key enabler for better spectral efficiency in 5G/6G are massive
Multiple Input Multiple Output (MIMO) systems [19]. In an uplink scenario,
a Base Station (BS) is equipped with a very large number of antennas
(around 64-256) and simultaneously serves multiple single-antenna User
Equipments (UEs) on the same time-frequency resource. As a first step
in receiver design, different tasks such as channel equalization/estimation
and decoding are typically split to lower complexity. But still, an algorithm
deficit applies to both MIMO detection and decoding of large block-length
codes, e.g., LDPC and Polar codes, since Maximum A Posteriori (MAP)
detection has high computational complexity growing exponentially with
system or code dimensions. Even its efficient implementation, the Sphere
Detector (SD), remains too complex in such a scenario [20].

Hence, in communications history, many suboptimal solutions have been
proposed to overcome the complexity bottleneck of the optimal detectors.
One key approach is to relax the discrete Random Variables (RVs) to be
continuous: Remarkable examples include Matched Filter (MF), zero forcing
and MMSE equalization. But linear equalization with subsequent detection
leads to a strong performance degradation compared to SD in symmetric
systems.

A heuristic based on the latter is the V-Blast algorithm which first equal-
izes and then detects one layer with largest Signal-to-Noise Ratio (SNR)
successively to reduce interference iteratively. A more efficient and sophisti-
cated implementation, MMSE Ordered Successive Interference Cancellation
(MOSIC), is based on a sorted QR Decomposition of a MMSE extended sys-
tem matrix with post sorting and offers a good trade-off between complexity
and accuracy [21].

Pursuing another philosophy of mathematical optimization, the SemiDefi-
nite Relaxation (SDR) technique [22] treats MIMO detection as a non-convex
homogeneous quadratically constrained quadratic problem and relaxes it
to be convex by dropping the only non-convex requirement. Proving to be
a close approximation, SDR is more complex than MOSIC and solved by
interior point methods from convex optimization.

Furthermore, also probabilistic model-based ML techniques were intro-
duced to improve the trade-off and to integrate detection seamlessly with
decoding: Mean-Field Variational Inference (MFVI) provides a theoretical
derivation of soft Successive Interference Cancellation (SIC) and the Bethe
approach lays the foundation for loopy belief propagation [23]. Simplifying
the latter, Approximate Message Passing (AMP) is derived known to be
optimal for large system dimensions in i.i.d. Gaussian channels and compu-
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tational cheap [24]. As a further benefit, soft outputs are computed, today a
strict requirement to account for subsequent soft decoding. But in practice,
the performance of probabilistic approximations like MFVI and AMP suffers
if the approximating conditions are not met, i.e., from the fully-connected
graph structure and finite dimensions in MIMO systems, respectively.

More recent work considers DNNs for application in MIMO systems and
focus on the idea of deep unfolding [25], [26]. In deep unfolding, the number
of iterations of a model-based iterative algorithm is fixed and its parameters
untied. Further, it is enriched with additional weights and non-linearities
to create a computational efficient DNN being optimized for performance
improvements in MIMO detection [27], [28], belief propagation decoding [29]–
[31] and MMSE channel estimation [32]. The former approach DetNet, a
generic DNN model with a large number of trainable parameters based
on an unfolded projected gradient descent, proves DNNs to allow for a
promising trade-off between accuracy and complexity. In [33], unfolding
of an extension of AMP to unitarily invariant channels, the Orthogonal
Approximate Message Passing (OAMP), into OAMPNet is proposed adding
only 2 trainable parameters per layer. Offering promising performance, the
complexity bottleneck of one matrix inversion per iteration makes this model-
driven approach rather unattractive compared to DetNet. Another DNN-like
network MMNet is inspired by iterative soft thresholding algorithms and
AMP [34]: Striking the balance between expressiveness and complexity, and
exploiting spectral and temporal locality, MMNet can be trained online for
any realistic channel realization if coherence time is large enough. Since
online training is in general wasteful, an efficient implementation non-trivial
and requires particularly deep analysis, we focus in this work on offline
learning. One major drawback of the latter approaches is that they focus on
MIMO detection and do not provide soft outputs.

3.2.3 Main Contributions
The main contributions of this article are manifold: Inspired by recent ML
research, we first introduce a CONtinuous relaxation of the probability mass
function (pmf) of the disCRETE RVs by a probability density function (pdf)
from [35], [36] to the MAP detection problem. The proposed CONCRETE
relaxation offers many favorable properties: On the one hand, the pdf of
continuous RVs converges to the exact pmf in the parameter limit. On the
other hand, we notice good algorithmic properties like avoiding marginal-
ization and allowing for differentiation instead. By this means, we replace
exhaustive search by computationally cheaper continuous optimization to
approximately solve the MAP problem in any probabilistic non-linear model.
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We name our approach Concrete MAP Detection (CMD).
Second, following the idea of Deep Unfolding, we unfold the gradient

descent algorithm into a DNN-like model CMDNet with a fixed number
of iterations to allow for parameter optimization and to further improve
detection accuracy while limiting complexity. By this means, we are able
to combine the advantages of DNNs and model-based approaches. As the
number of parameters is small, we are able to dynamically adapt them to
easily adjust CMDNet to different working points. Further, the resulting
structure potentially allows for fast online training of CMDNet.

Thirdly, we derive the optimization criterion from an information theoretic
perspective and are hence able to provide probabilities of detection, i.e.,
reliable soft outputs. We show that optimization is then equivalent to
learning an approximation of the Individual Optimal (IO) detector. This
allows us to account for subsequent decoding, e.g., in MIMO systems, in
contrast to literature [28], [34].

Finally, we provide numerical simulation results for use of CMD and
CMDNet in MIMO systems including a variety of simulation setups, e.g.,
correlated channels, revealing CMDNet to be a generic and promising ap-
proach competitive to State of the Art (SotA). Notably, we show superiority
to other recently proposed ML-based approaches and demonstrate with simu-
lations in coded systems CMDNet’s soft outputs to be reliable for decoders as
opposed to [28]. Furthermore, by estimating the computational complexity,
we prove CMD to feature a promising trade-off between detection accuracy
and complexity. Notably, only the matched filter has lower complexity.

In the following, we first introduce the concrete relaxation to MAP de-
tection in Section 3.3 using the example of an inverse linear problem. In
Section 3.4, we follow a different route and explain how to learn the poste-
rior, i.e., replacing it by some tractable approximation. To yield a suitable
model for this approximation, we propose to unfold CMD into CMDNet
which we are then able to train by variants of Stochastic Gradient Descent
(SGD). Finally, in Section 3.5 and 3.6, we provide numerical results of the
bit error performance in comparison to other SotA approaches using the
example of uncoded and coded MIMO systems and summarize the main
results, respectively.

3.3 Concrete Relaxation of MAP problem

3.3.1 System Model and Problem Statement
To motivate the concrete relaxation, we consider a probabilistic and (possibly)
non-linear observation model described by a continuous and differentiable
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pdf p(y|x). Based on this model, the task is to classify/detect the discrete
multivariate RV x, i.e., x = {xn}NT

n=1 whose i.i.d. elements are from a set M,
given the observation y ∈ CNR×1.

To illustrate our findings with an example typically encountered in commu-
nications, we focus on a linear complex-valued observation model, e.g., MIMO
system, although the following derivations hold without loss of generality
for general p(y|x). We first exclude coding from our model:

y = Hx + n (3.1a)

with p(y|x,H, σ2
n) = 1

πNRσ2NRn
e

− 1
σ2

n
(y−Hx)H(y−Hx)

. (3.1b)

There, a linear channel H ∈ CNR×NT with statistic p(H), e.g., such that taps
hmn ∼ NC(0, 1/NR) are i.i.d. Gaussian distributed, introduces correlation
between the elements xn with E[|xn|2] = 1 from typical modulation sets
M, e.g., BPSK, 8-PSK or 16-QAM. Then, Gaussian noise n ∼ NC(0, σ2

nINR)
with variance σ2

n distributed according to p(σ2
n) interferes. The matrix

INR denotes the identity matrix of dimension NR ×NR. For the following
derivations, note that we are able to replace y by one total observation ỹ
including RVs H and σ2

n without loss of generality since x, H and σ2
n are

statistically independent:

p(ỹ|x) = p(y,H, σ2
n|x) = p(y|x,H, σ2

n) · p(H) · p(σ2
n) . (3.2)

In this detection problem, there exist two optimal detectors from a proba-
bilistic Bayesian viewpoint: First, we have the likelihood function p(y|x) but
would like to infer the most likely transmit signal x based on an a-posteriori
pdf p(x|y). Using Bayes rule, we are able to reform the MAP problem w.r.t.
the known likelihood into

x̂ = arg max
x∈MNT×1

p(x|y) (3.3a)

= arg max
x∈MNT×1

p(y|x) · p(x) (3.3b)

= arg min
x∈MNT×1

− ln p(y|x) − ln p(x) (3.3c)

where p(x) is the known a-priori pdf. Since the RV is discrete, i.e., xn ∈ M,
an exhaustive search over all element combinations is required to solve
the MAP problem becoming computationally intractable for large system
dimensions. Note that the Sphere Detector (SD) provides an efficient im-
plementation [20]. Second, we notice that the MAP detector only delivers
the most likely received vector x. Hence, it minimizes frame error rate and
provides hard decisions.
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In coded systems with soft decoders usually employed today, delivering soft
information is a strict requirement. The Individual Optimal (IO) detector
delivers such soft output as probabilities and is optimal in terms of minimizing
the Symbol Error Rate (SER) per individual symbol without coding. It is
obtained by evaluating the marginal posterior distribution w.r.t. every single
xn:

x̂n = arg max
xn∈M

p(xn|y) = arg max
xn∈M

∑︁
x\xn

p(y|x) · p(x)

∑︁
xn

∑︁
x\xn

p(y|x) · p(x)
. (3.4)

However, it has higher complexity due to required marginalization w.r.t. x.
Since the MAP detector performance coincides with the IO detector in the
high SNR regime and is of lower complexity, we restrict to the MAP detector
as a benchmark in simulations without coding.

3.3.2 Concrete Distribution
We now focus on the following question to improve the performance complex-
ity trade-off: How to model the prior information p(x) accurately by some
approximation p(x̃)? In [37], we proposed to use ML tricks from [35], [36] to
achieve this and to make inference computationally tractable. The idea was
recently discovered in the ML community in the context of unsupervised
learning of generative models [35], [36]. There, marginalization to compute
the objective function, the evidence, becomes intractable. Therefore, the
Evidence is replaced by its Evidence Lower BOund (ELBO) by means of
an auxiliary posterior function. But optimizing w.r.t. the ELBO results
in high variance of the gradient estimators. For variance reduction, the so
called reparametrization trick is used and leads to an optimization structure
similar to an autoencoder known as the variational autoencoder [23]. There,
the stochastic node is reparametrized by a continuous RV, e.g., a Gaussian,
and its parameters, e.g., mean and variance. In contrast to continuous RVs,
reparametrization of discrete RVs is not possible. Hence, a CONtinuous
relaxation of disCRETE RVs, the CONCRETE distribution, was proposed
in [35], [36] independently.

To explain the introduction of this relaxation to MAP detection, let us
assume that we have the discrete binary RV x ∈ M with M = {−1,+1}.
Further, we define the discrete RV z as a one-hot vector where all elements are
zero except for one element, i.e., z ∈ {0, 1}2×1 with two possible realizations
z1 = [1, 0]T , z2 = [0, 1]T . In addition, we describe the values of M by the
representing vector m = [−1, 1]T . That way, we can write x = zTm, e.g.,



3.3 Concrete Relaxation of MAP problem 69

x = [1, 0] · [−1, 1]T = −1. Now, the one-hot vector z ∈ {0, 1}M×1 represents
a categorical RV with M = |M| classes. Connecting Monte Carlo methods to
optimization [35], the Gumbel-Max trick states that we are able to generate
samples, i.e., classes, of such a categorical RV or pmf p(x) by sampling an
index i∗ from M continuous i.i.d. Gumbel RVs gi known from extreme value
theory:

i∗ = arg max
i=1,...,M

ln p(x = mi) + gi . (3.5)

Defining the function one-hot(i∗) which sets the i∗-th element in the one-
hot vector zi∗ = 1 and zl ̸=i∗ = 0, the Gumbel-Max trick hence allows
sampling one-hot vectors z. Thus, we are able to reparametrize z through a
continuous multivariate Gumbel RV g ∈ RM×1 and a vector α ∈ [0, 1]M×1

of class probabilities p(x = mk) with
∑︁M
k=1 αk = 1:

z = one-hot
(︃

arg max
i=1,...,M

[ln(α) + g]
)︃
. (3.6)

Note that (3.6) and equally x are still discrete RVs, i.e., p(z) ≜ p(x), but
represented in probabilistic sense by continuous RVs g. To arrive at a
continuous RV, we now replace the one-hot and arg max computation in (3.6)
by the softmax function [35], [36]:

z̃ = στ (g) = e(ln(α)+g)/τ
∑︁M
i=1 e

(ln(αi)+gi)/τ
. (3.7)

The resulting RV z̃ ∈ [0, 1]M×1 is the so-called concrete or Gumbel-Softmax
RV and now continuous, e.g., z̃ = [0.2, 0.8]T . It is controlled by a parameter,
the softmax temperature τ . The distribution of z̃ in (3.7) was found to have
a closed form density in [35], [36] which gives the definition of the concrete
distribution:

p(z̃|α, τ) = (M − 1)! τM−1
M∏︂

k=1

(︄
αkz̃

−τ−1
k∑︁M

i=1 αiz̃
−τ
i

)︄
. (3.8)

With z̃, we are finally able to relax the discrete RV x into a continuous RV
x̃ by defining x̃ = z̃Tm. Now, our derivation of the relaxation is complete.
In Fig. 3.1, we illustrate the distribution p(x̃) for the special case M = 2
of binary RVs in comparison to the original categorical pmf p(x), i.e., a
Bernoulli pmf. It has the following properties [35]: First, we are able to
reparametrize the concrete RV z̃ and hence the RV x̃ by Gumbel variables
g, a direct result from the initial idea (3.7). Moreover, the smaller τ , the
more z̃ approaches a categorical RV and the approximation becomes more
accurate. Thus, the statistics of x and x̃ remain the same for τ → 0.
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3.3.3 Reparametrization
In [37], our idea is to use the concrete distribution in order to relax the MAP
problem (3.3c) to

x̂ = arg min
x̃∈[min(M),max(M)]NT×1

− ln p(y|x̃) − ln p(x̃) . (3.9)

Note that the original MAP problem is included or recovered in the zero
temperature limit τ → 0. Moreover, the objective function in (3.9) may
be non-convex as illustrated in Fig. 3.2 for M = 2. The conditional pdf
p(y|x̃) is log-concave and the prior concrete pdf p(x̃) log-convex for τ ≤
(M − 1)−1 [35], so the negative log joint distribution p(y, x̃) forms a non-
convex objective function (3.9). The reparametrization of z̃ by g helps to
rewrite (3.9) by expressing each x̃n in x̃ with (3.7) by the RV gn, n =
1, . . . , NT, of i.i.d. Gumbel RVs gkn:

x̃(G) =

⎡
⎢⎢⎢⎣

x̃1
...

x̃NT

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

z̃T1
...

z̃TNT

⎤
⎥⎥⎥⎦m =

⎡
⎢⎢⎢⎣

στ (g1)T
...

στ (gNT)T

⎤
⎥⎥⎥⎦m (3.10)

with G =
[︂
g1 · · · gNT

]︂
∈ RM×NT . (3.11)

By doing so, we will obtain an unconstrained optimization problem w.r.t.
matrix G. Now, we reformulate the relaxed MAP problem (3.9): This
means, we replace the likelihood p(y|x̃) by p(y|G) and introduce the Gumbel
distribution p(gkn) = exp (−gkn − exp (−gkn)) as the new prior distribution:

Ĝ = arg min
G∈RM×NT

− ln p(y|G) − ln p(G) (3.12a)

= arg min
G∈RM×NT

− ln p(y|G) −
NT∑︂

n=1

M∑︂

k=1
ln p(gkn) (3.12b)

= arg min
G∈RM×NT

− ln p(y|G) + 1TG1 + 1T e−G1⏞ ⏟⏟ ⏞
L(G,τ)

. (3.12c)

However, due to the softmax and exponential terms in L(G, τ), (3.12c)
has no analytical solution. Furthermore, L(G, τ) may be non-convex: For
real-valued model (3.1) with NT = 1, H = 1 and M = 2, the first term is a
vertically shifted, squared and scaled two-dimensional non-convex sigmoid
function w.r.t. g1 and g2. The operations applied to the sigmoid do not
change non-convexity. Also, the sum of this non-convex term and convex
functions, i.e., linear and exponential functions, remains non-convex.
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Figure 3.1: The concrete pdf p(x̃|α, τ) shown for different parameter sets and
M = 2. It relaxes the Bernoulli pmf p(x|α) into the interior. No-
tably, for τ ≤ (M − 1)−1, it is log-convex and log-concave otherwise.
Symmetry results if α1 = . . . = αM .
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Figure 3.2: Exemplary plot of the concrete binary MAP cost function (green)
for model (3.1) (with NT = 1, H = 1, y = 0.4, σ2

n = 4, α1 = 0.5,
α2 = 0.5 and τ = 0.1) and the contribution of conditional (black)
and prior pdf (red) to it. The original binary MAP cost function
(blue) is shown for comparison.
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3.3.4 Gradient Descent Optimization
One common strategy for solving the non-linear and non-analytical prob-
lem (3.12c) is to use a variant of gradient descent based approaches. Since
we aim to reduce complexity, we choose the most basic form the steepest
descent. The minimum is approached iteratively by taking gradient descent
steps until the necessary condition

∂L(G, τ)
∂G = 0 (3.13)

is fulfilled. We point out that convergence to the global solution depends
heavily on the starting point initialization since the objective function may
be non-convex. A reasonable choice of starting point value is x̃(0) = E[x] =
αT · m, i.e., the expected value of the true discrete RV x. We achieve this
by setting G(0) = 0 and τ = 1. After some tensor/matrix calculus and by
noting that every x̃n only depends on one gn, the gradient descent step
for (3.12c) in iteration j is:

G(j+1) =G(j) − δ(j) · ∂L(G, τ)
∂G

⃓⃓
⃓⃓
G=G(j)

(3.14a)

∂L(G, τ)
∂G = −

[︂
∂x̃1(g1)
∂g1

· · · ∂x̃NT (gNT )
∂gNT

]︂

· diag
{︃
∂ ln p(y|G)

∂x̃

}︃
+ 1 − e−G (3.14b)

∂x̃n(gn)
∂gn

= 1
τ (j) · [diag {στ (gn)} · m − στ (gn) · x̃n(gn)] . (3.14c)

The operator diag {a} creates a diagonal matrix with the vector a on its
main diagonal. The step-size δ(j) can be chosen adaptively in every iteration
j just as the parameter τ (j). For example, we can follow a heuristic schedule
like in simulated annealing: We start with a large τ (j) and decrease until
we approach the true prior pdf for τ (j) → 0. Finally, after the last iteration
Nit, we get as a result the continuous estimate G(Nit). For approximate
detection of x in (3.3c), the estimate has to be transformed back to the
discrete domain by quantizing x̃ onto the discrete set M:

x̂ = arg min
x∈MNT×1

⃦⃦
⃦x − x̃

(︂
G(Nit)

)︂⃦⃦
⃦

2
. (3.15)

In the following, we name this detection approach Concrete MAP Detection
(CMD). It is generic and applicable in any differentiable probabilistic non-
linear model. For our guiding example of a linear Gaussian model (3.1), we
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are able to give the explicit expression of

∂ ln p(y|G)
∂x̃ = − 2

σ2
n

·
[︁
HHHx̃(G) − HHy

]︁
(3.16)

in (3.14b). This means that further only element-wise non-linearities and
matrix vector multiplications are present in this example. As a final remark,
we note that our implementation of Section 3.5 relies on scaling of the
objective function by the noise variance parameter, i.e., σ2

n·L(G, τ). Although
scaling does not change the optimization problem, we observed that this
slightly modified version of (3.14) is numerically more stable.

3.3.5 Special Case: Binary Random Variables
Noting that the softmax function (3.7) is normalized, we are able to eliminate
one degree of freedom in matrix G ∈ RM×NT along dimension M . For the
special case of binary RVs or M = 2 classes, this means that the matrix G
can be reduced to a vector s ∈ RNT×1 of logistic RVs to derive a different
algorithm of low complexity. Here, we only briefly summarize the result of
binary CMD in a real-valued system model and refer the reader to [37] for
the complete derivation:

s(j+1) = s(j) − δ(j) · ∂L(s, τ)
∂s

⃓⃓
⃓⃓
s=s(j)

(3.17a)

∂L(s, τ)
∂s = −∂x̃(s)

∂s · ∂ ln p(y|s)
∂x̃ + tanh

(︂ s
2

)︂
(3.17b)

(3.1)= 1
σ2

n
· ∂x̃(s)

∂s ·
[︁
HTHx̃(s) − HTy

]︁
+ tanh

(︂ s
2

)︂
(3.17c)

∂x̃(s)
∂s = 1

2τ (j) · diag
{︁

1 − x̃2(s)
}︁

(3.17d)

x̃(s) = tanh
(︃

ln (1/α− 1) + s
2τ (j)

)︃
. (3.17e)

The final step consists again of quantization — in this case it simplifies to
the sign function: x̂ = sign(x̃(s(Nit))).

3.4 Learning to Relax
Although being simple and computational efficient, using a gradient descent
approach like (3.14) and (3.17) leads to several inconveniences. Regarding
theoretical properties, a major drawback becomes apparent: Convergence
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of the gradient descent steps to an optimum is slow since consecutive gra-
dients are perpendicular. Also, practical questions arise: How to choose
the parameters τ (j) and δ(j) and the number of iterations Nit for a good
complexity–performance trade-off? And how are we able to deliver soft
information, e.g., probabilities, to a soft decoder which is standard in today’s
communication systems?

Our idea is to improve CMD by learning and in particular the idea of
deep unfolding to address these questions. This means we have to deal with

A. how learning is defined

B. the application of deep unfolding to CMD.

3.4.1 Basic Problem of Learning
To introduce our notation of learning, we revisit our basic task of MAP
detection. Ideally, we would like to infer the most likely transmit signal x
based on an a-posteriori pdf p(x|y). But as pointed out earlier, evaluation
of p(x|y) has intractable complexity. For this reason, we propose to relax
the MAP problem and CMD, respectively.

Another idea to tackle this problem is to approximate this pdf p(x|y) by
another computationally tractable pdf q(x|y), e.g., by calculation of q(x|y)
using few samples/observations x, and to use this pdf for inference. Note
that this approach includes cases where we do not know the pdf p(x|y)
completely. The quality of the approximation can be quantified by the
information theoretic measure of Kullback–Leibler (KL) divergence:

DKL (p ∥ q) =
∑︂

x∈MNT×1

p(x|y) ln p(x|y)
q(x|y) (3.18)

= Ex∼p(x|y)

[︃
ln p(x|y)
q(x|y)

]︃
. (3.19)

Just as the Mean Square Error (MSE), the measure of KL divergence can
be used to define an optimization problem targeting at a tight q(x|y) as a
solution. This brings me to a crucial viewpoint of this article: Learning
is defined to be the optimization process aiming to derive a good
approximation q(x|y) of p(x|y), i.e.,

q∗(x|y) = arg min
q

DKL (p ∥ q) . (3.20)

This kind of problem is also referred to as Variational Inference (VI). We
can rewrite the KL divergence into a sum of cross-entropy H (p, q) and
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entropy H (p):

DKL (p ∥ q) = Ex∼p(x|y)[− ln q(x|y)] − Ex∼p(x|y)[− ln p(x|y)] (3.21)
= H (p, q) − H (p) . (3.22)

Since we defined the basic learning problem (3.20) w.r.t. approximation q, we
can neglect the entropy term H (p) independent of q and use cross-entropy
as the learning criterion. If we further restrict q to a model q(x|y,θ) with
parameters θ, the optimization problem now reads:

θ∗ = arg min
θ

H (p, q) . (3.23)

We note that problem (3.23) is solved separately for each y and thus pa-
rameters θ need to be continuously updated in an online learning procedure.
Since this procedure is not computationally efficient, we follow an offline
learning strategy known as Amortized Inference [23] and define one inference
distribution q(x|y,θ) for any value y:

θ∗ = arg min
θ

Ey∼p(y)[H (p(x|y), q(x|y,θ))] (3.24)

= arg min
θ

Ey∼p(y)
[︁
Ex∼p(x|y)[− ln q(x|y,θ)]

]︁
(3.25)

≈ arg min
θ

− 1
N

N∑︂

i=1
ln q(xi|yi,θ) , N → ∞ . (3.26)

Rewriting the optimization criterion of (3.24) into

Eỹ∼p(ỹ)
[︁
Ex∼p(x|ỹ)[− ln q(x|ỹ,θ)]

]︁
(3.27)

= Eσ2
n∼p(σ2

n)
[︁
EH∼p(H)

[︁
Ey∼p(y|H,σ2

n)
[︁
Ex∼p(x|ỹ)[− ln q(x|ỹ,θ)]

]︁]︁]︁

for our guiding example (3.1), we note that we are able to amortize across all
observations ỹ from (3.2) and hence to obviate the need for online training
also for each channel H and noise variance σ2

n at the potential cost of
accuracy.

The final result (3.26) equals the maximum likelihood problem in super-
vised learning. We make use of it in the following since it allows for numerical
optimization based on N data points {xi,yi}. Furthermore, it proves to be
a Monte Carlo approximation of (3.24) and is hence well motivated from
information theory [23].

3.4.2 Idea of Unfolding and Application to CMD
Learning gives us the ability to obtain a tractable approximation q(x|y,θ).
But it remains one question: How to choose a suitable functional form of



76 3 Pub. 1 – CMDNet: Learning a Probabilistic Relaxation of Discrete Variables

q(x|y,θ) of low complexity and for good performance? We follow the idea
of deep unfolding from [25], [26] and apply it to our model-based approach
CMD with parameters θ =

{︁
τ (0), . . . , τ (Nit), δ(0), . . . , δ(Nit−1)}︁ ∈ R(2Nit+1)×1

able to relax tightly. Thereby, we combine strengths of DNNs and the
latter: DNNs are known to be universal approximators [5] and their fixed
structure of parallel computations layer per layer allows to define a good
performance complexity trade off at run time. But if the model is dynamic
and changes, e.g., the channel or noise over time, reiterated optimization
of (3.23), i.e., possibly wasteful online training, is required and the benefit
disappears. Fortunately, we know our model (3.1), a MIMO channel, well
and are able to use generative model-based approaches which mostly rely
on a suitable approximation of (3.20) for computational tractability. For
example, MFVI and AMP belong to this algorithm family. By model-based
DNN design, we introduce varying model parameters like channel or noise
explicitly and in a more sophisticated way into the DNN design and thus
make efficient offline learning from (3.26) at only a small cost of accuracy
possible. Indeed, training of a DNN for our guiding example (3.1) simply
fed with inputs y and H, reshaped as a vector, does not converge/lead to
satisfactory results if trained offline [28].

This means we unfold the iterations (3.14) of CMD into a DNN by untying
the parameters τ (j) and δ(j). Furthermore, we fix the complexity by setting
the number of iterations Nit. The resulting graph illustrated in Fig. 3.3
for binary CMD and (3.1) has a DNN-like structure which should be able
to generalize and approximate well at the same time. Owing to the skip
connection from s(j) to s(j+1) on the right-hand side, the structure resembles
a Residual Network (ResNet) layer which is SotA in image processing [9].
It is a result of the gradient descent approach which allows interpreting
optimization of ResNets as learning gradient descent steps. The reason for
the success of ResNet lies in the skip connection: The training error is able to
backpropagate through it to early layers which allows for fast adaptation of
early weights and hence fast training of DNNs. This makes CMD especially
suitable for online training proposed in [34] and allows for refinement in
application.

As before, we have to define a final layer which is now also used for
optimization. Usually, its output is chosen to be a continuous estimate of
x and optimized w.r.t. the MSE criterion, see [28], [34]. This viewpoint
relaxes the estimate x̂ into RNT×1 and assumes a Gaussian distribution
for errors at the output. In our case, the output would correspond to
x̃(G(Nit)) from (3.15). But this is in contrast to our information theoretic
viewpoint on learning which states that we want to approximate an output
of the true pmf p(x|y). Like in MFVI, we assume a factorization of the
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Figure 3.3: One layer of the unfolded binary CMD algorithm CMDNet when
applied to MIMO systems. In red: trainable parameters.

approximating posterior to make it computationally tractable and derive
our learning criterion:

H (p, q) = −
∑︂

x∈MNT

p(x|y) · ln q(x|y,θ) (3.28)

MFVI= −
∑︂

x∈MNT

p(x|y) · ln
NT∏︂

n=1
qn(xn|y,θ) (3.29)

= −
∑︂

n

∑︂

xn∈M

∑︂

x\xn∈MNT−1

p(x|y) · ln qn(xn|y,θ)
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H (p, q) = −
∑︂

n

∑︂

xn∈M
p(xn|y) · ln qn(xn|y,θ) (3.30)

=
NT∑︂

n=1
H (p(xn|y), qn(xn|y,θ)) . (3.31)

This interesting result shows that assuming MFVI factorization leads to an
optimization criterion w.r.t. the soft output p(xn|y) of the IO detector (3.4).
This soft output is required for subsequent decoding and thus exactly what
we need.

The last step of our idea consists of inserting our unfolded CMD structure
into qn(xn|y,θ). Hence, we propose to use a softmax function for the last
layer being a typical choice for classification in discriminative probabilistic
models. Fortunately, CMD already includes this softmax function as part of
its structure, so we rewrite

qn(xn|y,θ) =
M∏︂

k=1
qn,k(xn|y,θ)(xn=mk) =

M∏︂

k=1
z̃

(xn=mk)
n,k (3.32)

with z̃n = στ(Nit)(g(Nit)
n ) from the last iteration Nit of (3.14). To summarize,

we optimize the parameter set θ of our approximating pdf q(x|y,θ) based
on CMD:

θ∗ = arg min
θ

Ey∼p(y)[H (p(x|y), q(x|y,θ))] (3.33)

≈ arg min
θ

− 1
N

N∑︂

i=1

NT∑︂

n=1

⎡
⎢⎢⎢⎣

xi,n = m1
...

xi,n = mM

⎤
⎥⎥⎥⎦

T

ln
(︂
στ(Nit)(g(Nit)

n )
)︂
. (3.34)

As a side effect, we also learn to relax with CMD by τ (j). We call this
approach based on unfolding of CMD CMDNet. The optimization prob-
lem (3.34) can be efficiently solved by variants of SGD. Thanks to having a
model, we are able to create infinite training and test data for reasonable
approximation of (3.33) by (3.34) in every iteration of SGD. We notice that
this is in contrast to classic data sets from the machine learning community.
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Table 3.1: Simulation Scenarios

Scenario Sys. Dim. Mod. Corr. Coding

Large MIMO 32 × 32 QPSK no no
MIMO 8 × 8 QPSK no no
Multi-class 32 × 32 16-QAM no no
Massive MIMO One-Ring 64 × 32 QPSK 20◦ no
Soft Output 32 × 32 QPSK no LDPC

3.5 Numerical Results

3.5.1 Implementation Details / Settings

In order to evaluate the performance of the proposed approaches CMD
and CMDNet, we present numerical simulation results of application in
our guiding example for different MIMO systems with NT transmit and
NR receive antennas given in Tab. 3.1. We assume an uplink scenario
with multiple UEs, each transmitting one symbol xn with equal a-priori
probabilities α1 = . . . = αM to one BS. As an example, we assume the
number of iterations or layers to be Nit = NL = 2NT. For numerical
optimization of the parameters δ(j) and τ (j) of CMDNet according to (3.34),
we employ the TensorFlow framework in Python [7]. Here, we use Adaptive
Moment Estimation (Adam) as a popular variant of SGD with a default
batch size of Nb = 500 and Ne = 105 training iterations. Although providing
fast convergence and requiring little hyperparameter tuning, it is known to
generalize poorly [38]. Since we are able to generate a sufficient amount
of training data, i.e., N = Nb · Ne = 5 · 107 to fulfill (3.33) by (3.34)
approximately, we make sure that generalization to unseen data points
is possible. As TensorFlow does not natively support computation with
complex numbers, we transform the complex-valued system model (3.1) into
its real-valued equivalent to allow for training and comparison to DNN-
based approaches. This means, we restrict to QAM constellations with
Gray encoding so that we have x ∈ M2NT×1. As a training default, we
choose the noise variance statistics p(σ2

n) such that Eb/N0 = 10 log10(1/σ2
n)−

10 log10(log2(M)) is uniformly distributed between [4, 27] dB. We set the
default parameter starting point to θ0 with constant δ(j)

0 = 1 and heuristically
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Table 3.2: Selected detection algorithms

Abbreviation Complexity Literature

MAP/SD O(MγNT), γ ∈ (0, 1] [20]
SDR O(max(NR, NT)3

N
1/2
T

log(1/ϵ))
[22]

OAMPNet O(NLN
3
T) [33]

MMSE/MOSIC O(N3
T) [21], [34]

DetNet O(NL(NTNR +N2
TM)) [27], [28]

MMNet (iid) O(NLNT(NT +NR +M)) [34]
AMP O(NitNT(NR +M)) [24]
CMD/CMDNet O(NLNT(NR +M)) [37]
MF O(NTNR)

motivated and linear decreasing

τ
(j)
0 = τmax − (τmax − 0.1)/Nit · j (3.35)

with τmax = 1/(M − 1), j ∈ [0, Nit]. With this choice, p(x̃) is always
log-convex and hence reasonably approximating p(x) (see Fig. 3.1). For
training of DNN-based approaches DetNet and MMNet, we used the original
implementations uploaded to GitHub (see [28], [34]) with only minor modifi-
cations to parametrization if beneficial. Consequently, we trained MMNet
with CMDNet training SNR and layer number. Since we focus on offline
derived or trained algorithms which are used for inference at run time, we
used its i.i.d. variant. We always used the soft output version of DetNet
with output normalization to 1 since we noted that performance is close to
or better than the hard decision version. Furthermore, we compare CMD
and CMDNet to several SotA approaches for MIMO detection (see Tab. 3.2)
choosing the number of Monte Carlo runs with data batches of size 10000 so
that always 1000 errors are detected (100 for SD and SDR).

3.5.2 Symmetric MIMO System
First, we test application of CMDNet in a large symmetric 32 × 32 / 64 × 64
MIMO system with i.i.d. Gaussian channel statistics p(H) and QPSK/BPSK
modulation. Fig. 3.4 shows the results in terms of BER as a function of
Eb/N0. Owing to near-optimal performance, the SD is always provided as
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a benchmark in the following. In addition, we give the AWGN curve as a
reference since it shows the maximum accuracy if NT = NR → ∞ [24].

Linear detectors perform bad in this setup: Since the curve of the MF
remains almost constant at BER ≈ 20% and the zero forcing performs even
worse, both are not shown in the following. At least, MMSE equalization
leads to an acceptable BER, but the curve is still separated by a 7 dB gap
at Eb/N0 = 13 dB from SD’s. In contrast, nonlinear SotA detectors like
MOSIC, AMP and SDR technique (see Sec. 3.2 for algorithm details) have
a strikingly better accuracy. Whereas AMP runs into an error floor for high
SNR since then the message statistics are not Gaussian anymore in finite
small-dimensional MIMO systems [24], SDR proves to be a close relaxation
by only dropping the non-convex requirement of rank

(︁
xxT

)︁
= 1 [22].

Notably, our approach CMDNet in its binary version CMDNetbin
from (3.17) performs even better than the latter, comparable to the best
suboptimal approaches in this setup DetNet and OAMPNet. Further,
CMDNetbin does not run into an error floor in the simulated SNR range
like AMP and DetNet. Setting the accuracy in context to complexity (see
Tab. 3.2), this is impressive: Note that our approach is similar in asymptotic
complexity to the light-weight algorithm AMP with O(NLNT(NR + M))
at inference run time after offline training whereas DetNet and OAMPNet
are very complex DNN architectures. In particular, OAMPNet requires one
costly matrix inversion per iteration resulting in high O(NLN

3
T). In Sec. 3.5.7

and Fig. 3.12, we give a more detailed complexity analysis and comparison
illustrating CMD’s promising accuracy complexity trade-off more clearly. In
contrast, the other DNN-based approach MMNetiid with comparable low
complexity fails to beat CMDNetbin and runs into an early error floor. Since
we observed this behavior similar to AMP in all settings and MMNet is
actually designed to perform well with fast online training, we omit further
results. We conjecture that the denoising layers are insufficient expressive in
the interference limited high SNR region with offline training.

Results in a smaller 8 × 8 MIMO system plotted in Fig. 3.5, show that all
soft non-linear approaches except for SDR and MOSIC run into an error floor
at lower SNR. Thus, we conjecture that they share the same suboptimality at
finite system dimensions. They may rely on the statistics of the interference
terms to be Gaussian like AMP which is only approximately true for large
system dimensions. Apart from SDR and MOSIC, CMDNetbin manages
to beat the more expressive and complex DNN models, i.e., DetNet and
OAMPNet, and is close in accuracy to SDR for Eb/N0 < 10 dB.



82 3 Pub. 1 – CMDNet: Learning a Probabilistic Relaxation of Discrete Variables

2 4 6 8 10 12 14 16 1810−6

10−5

10−4

10−3

10−2

10−1

100

Eb/N0 [dB]

B
ER

SD
MMSE
MOSIC
AMP
SDR
DetNet
MMNetiid
OAMPNet
CMDNetbin
AWGN

Figure 3.4: BER curves of several detection methods in a 32 × 32 MIMO system
with QPSK modulation. Effective system dimension is 64 × 64 and
for iterative algorithms Nit = NL = 64.
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Figure 3.5: BER curves of several detection methods in a 8 × 8 MIMO system
with QPSK modulation. Effective system dimension is 16 × 16 and
for iterative algorithms Nit = NL = 16.
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Figure 3.6: Parameters θ of CMDNetbin in a 32 × 32 MIMO system with QPSK
modulation. Effective system dimension is 64 × 64.

3.5.3 Algorithm and Parametrization
To investigate the influence of learning on CMDNetbin and the values of
its parameters θ, we visualize them per layer j in Fig. 3.6 for the 32 × 32
MIMO system considered before. Basically, we cannot observe any pattern
after parameter optimization and interpretation seems very difficult.

Furthermore, we notice from Fig. 3.7 that starting point initialization θ0
has a large impact on the optimum θ105 found by SGD (after Ne = 105

iterations). If we use a starting point θ0,splin with linear decreasing

τ
(j)
0,splin = δ

(j)
0,splin = 1 − (1 − 0.01)/Nit · j (3.36)

for j ∈ [0, Nit], a solution θ105,splin is learned allowing CMDNet to perform
better in the low Eb/N0 region from 6 to 10 dB. Notably, CMDNet even
reaches the performance of the best suboptimal algorithm considered in this
setup OAMPNet. To explain the error floor in the interference limited higher
Eb/N0 region in contrast to CMDNet with default training, we conjecture
that a higher starting and correlating end step size (see Fig. 3.6) allows
CMDNet to leave a local optimum with higher probability and to find a
better one. On the contrary, a small step size enforces convergence to a local
solution. In the noise limited Eb/N0 region, noise removal is crucial and hence
convergence. This means CMDNet can be optimized to different working
points and is sensitive to starting point initialization. The result supports
our view of a promising accuracy complexity trade-off: Since CMDNet only
has a small parameter set, we are able to load the θ dynamically for each
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Figure 3.7: BER curves of CMD and CMDNet with different parametrization
or algorithmic in a 32 × 32 MIMO system with QPSK modulation.
Effective system dimension is 64 × 64. Default number of iterations
or layers is Nit = NL = 64.

Eb/N0 to achieve the performance of the best suboptimal algorithm in all
Eb/N0 regions.

In particular, we are able to further decrease the number of parameters
with negligible performance loss: CMDNet with only NL = 16 layers performs
equally well compared to default CMDNet with NL = 64 at low Eb/N0 and
slightly worse at Eb/N0 = 12 dB by 1 dB.

Without unfolding, heuristics for parameter selection are required similar
to starting point initialization. The detection accuracy of CMD with such
heuristic parameters θ0,splin is quite impressive since the BER curve is close
to that of learned CMDNet with θ105,splin. Therefore, we are able to use
the plain algorithm CMD for detection. We note that this is not true with
default parameters θ0 and that performance can be quite different after
optimization (θ105).

Finally, we compare the accuracy of algorithm CMDNetbin for the special
case of binary RVs from (3.17) with that of the generic multi-class algorithm
CMDNet from (3.14) since both are different. From Fig. 3.7, we observe
that the performance is very similar and conjecture that CMDNet is capable
of achieving the same accuracy if training is parameterized correctly.
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3.5.4 Multi-class Detection
So far, only BPSK modulation and hence two classes have been considered.
To test multi-class detection with M = 4 classes, we show numerical results
in a 32 × 32 MIMO system with 16-QAM modulation being equivalent to a
64 × 64 4-ASK MIMO system after transformation into the equivalent real-
valued problem. Owing to now 3 degrees of freedom in the softmax function
and denser symbol packing, we changed our batch size to Nb = 1500 and
training SNR to higher Eb/N0 ∈ [10, 33], respectively. Setting the default
starting point with τmax = 2/(M − 1) = 2/3 so that the MAP criterion
ln p(x̃,y) becomes convex for a couple of iterations proves to be crucial
for successful training of CMDNet with multiple classes. Without training
parameter tuning, CMDNet performs even worse than the MMSE detector.

Fig. 3.8 shows BER curves in this system. Clearly, we can now observe a
large gap between the BER curve of SD and that of all other suboptimal
approaches. Comparing the latter, OAMPNet is superior over the whole
SNR region. Observing a maximum 2 dB curve shift, we note that CMDNet
is competitive to OAMPNet and SDR at Eb/N0 ∈ [10, 17] and when BER=
[10−2, 10−3] which is a typical working point of decoders whereas being much
less complex. At higher SNR, an error floor follows. Although using a more
expressive DNN model, DetNet now trained for Eb/N0 ∈ [9, 16] fails to beat
CMDNet especially in this region.

3.5.5 Massive MIMO System
Investigation in large symmetric MIMO systems reveals the potential and
shortcomings of the algorithms. Rather in 5G, massive MIMO systems with
NR > NT are employed [19]. Assuming i.i.d. Gaussian channels, we shortly
report the results of a 64 × 32 MIMO system with QPSK modulation: The
BER curves of learning based approaches and SDR almost follow that of SD
and thus suggest that they fit perfectly for application in massive MIMO.

However, in practice, channels are spatially correlated at the receiver
side due to good spatial resolution of BSs’ large arrays compared to the
number of scattering clusters [19]. Hence, the results for i.i.d. Gaussian
channel statistics p(H) are less meaningful as noted in [34]. As a first and
quick attempt towards a realistic channel model which captures its key
characteristics, we test performance in the so-called One-ring model p(H)
assuming a BS equipped with a uniform linear antenna array [19], [28]. We
parameterize the correlation matrices of every column in H with reasonable
values: Assuming an urban cellular network, we set the angular spread to
20◦ and sample the nominal angle uniformly from [−60◦, 60◦], i.e., 120◦ cell
sector. Further, we place the antennas at half a wavelength distance.
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Figure 3.8: BER curves of several detection methods in a 32 × 32 MIMO system
with 16-QAM modulation. Effective system has dimension 64 × 64
and 4-ASK modulation and for iterative algorithms Nit = NL = 64.
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Figure 3.9: BER curves of several detection methods in a correlated 64 × 32
MIMO system with QPSK modulation. The correlation matrices
were generated according to a One-Ring model with 20◦ angular
spread and 120◦ cell sector. Effective system dimension is 128 × 64
and for iterative algorithms Nit = NL = 64.
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From Fig. 3.9, it becomes evident that the performance loss of learning
based approaches compared to SD in such a One-Ring model of dimension
64 × 32 is similar to the symmetric setting 32 × 32 in Fig. 3.4. Surprisingly,
MOSIC and SDR now prove to be comparable whereas the BER of AMP
degrades since the i.i.d. Gaussian channel assumption is not fulfilled anymore.
Again, CMDNet outperforms other learning-based approaches DetNet and
OAMPNet and performs very close to the best suboptimal algorithm SDR
whereas being much less complex (see Tab. 3.2 and Fig. 3.12).

Considering the low complexity, we finally conclude that CMDNet performs
surprisingly well in all previous settings. Hence, it proves to be a generic
and hence promising detection approach.

3.5.6 Soft Output (Coded MIMO System)
After investigation of detection performance in uncoded systems, we turn to
an interleaved and horizontally coded 32 × 32 MIMO system with Rayleigh
block fading reflecting our uplink model. We aim to verify whether not only
hard decisions but also soft outputs generated by CMDNet and the soft
output version of DetNet have high quality. This is especially important
in practice since coding is an essential component besides equalization in
today’s communication systems. Therefore, we use a 128 × 64 LDPC code
with rate RC = 1/2 from [39] and at receiver side a belief propagation
decoder with 10 iterations. The results in terms of Coded Frame Error
Rate (CFER) as a function of Eb/N0/RC are shown in Fig. 3.10. Owing to
overwhelming computational complexity, we refrained from using the MAP
solution with coding as a benchmark and instead show uncoded CMDNet
and SD curves for reference. Strikingly, CMDNet with coding beats the
latter and allows for a coding gain. In contrast, AMP with coding runs into
an error floor after 9 dB: The output statistics become unreliable for high
SNR in finite dimensional systems [24]. Surprisingly, although being one
of the best detection methods in the uncoded setting, DetNet with coding
performs close to MMSE equalization with soft outputs and thus worse
than expected. Actually, the soft output version of DetNet should deliver
accurate probabilities or Log-Likelihood Ratios (LLRs) according to [28]
after optimization.

Indeed, we visualize with an exemplary histogram of LLRs that this is
not the case. In Fig. 3.11, we show the relative frequencies of LLRs of one
symbol xn in one random channel realization H for Eb/N0 = 10 dB. First,
we note the histograms for xn = −1 and xn = 1 to be symmetric meaning
that both algorithms fulfill a basic quality criterion. Furthermore, it can
be clearly seen that DetNet mostly provides hard decisions with ≈ 97%
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LLRs being −∞ and ∞, respectively. Only a few values are close to 0.
In contrast, CMDNet provides meaningful soft information resembling a
mixture of Gaussians as expected from literature [40] ranging from −30 to
30. These results strongly indicate that the difference of soft output quality
originates from different underlying optimization strategies: As pointed
out in Section 3.4.2, CMDNet relies on minimization of KL divergence
between IO a-posteriori and approximating softmax pmf whereas the one-hot
representation in DetNet is optimized w.r.t. MSE. We conclude that our
approach yields a better optimization strategy.

3.5.7 Complexity Analysis
Since complexity is the main driver for development of suboptimal algo-
rithms like CMD instead of relying on MAP detection, we complete our
numerical study by relating detection accuracy to results on the computa-
tional complexity given in Tab. 3.2. With regard to CMD and CMDNet
applied in our guiding example (3.1), the iterative asymptotic complexity of
O(NT(2NR +4M)) or O(2NTNR) for binary RVs is dominated by the matrix
vector multiplications in HTHx̃, i.e., CMD scales linearly with the input
and output dimension as well as the number of classes. Clearly, CMD and
CMDNet have very low complexity comparable to AMP and MMNet but
with remarkable higher detection rate (see, e.g., Fig. 3.4). In most analyzed
scenarios, the accuracy is even higher than DetNet’s as well as OAMPNet’s
and on par with SDR’s.

Besides qualitative O(·) analysis, we capture complexity quantitatively by
counting the number of Multiplicative OPerations (MOPs) for one iteration
and channel realization being the most common and costly floating point
operations. In Fig. 3.12, we show the respective bar chart assuming a
realistic low-complexity implementation in a 32 × 32 with QPSK (M = 2)
and NL = 16 and worst-case complexity implementation with 16-QAM
modulation (M = 4) and NL = 64, respectively. For BPSK and the lower
bar of MMSE equalization, we assumed Gaussian elimination to solve the
linear equation system and, for higher order QAM and the higher bar, LU
decomposition. We estimate the upper bound on SDR MOP count by
unadapted O(max(NR, NT)4

N
1/2
T log(1/ϵ)) and the lower bound on MOPs

to account for half of the FLOPS from [28] with inaccurate ϵ = 0.1. The
expected number of visiting nodes O(MγNT) of the SD is SNR dependent
with γ ∈ (0, 1] and was extracted from [20] for Eb/N0 = 10 dB.

Apparently, only the very basic MF beats CMD and CMDNet in complexity
at considerably worse detection accuracy. Approaches with comparable
accuracy like DetNet, OAMPNet and SDR are 10-100 times more complex
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w.r.t. MOPs. We conclude that CMDNet offers an excellent accuracy
complexity trade-off and note that AMP, MMNet, DetNet and CMDNet
further come with the benefit of already delivering soft outputs.

As a final remark, note that complexity analysis depends on the assump-
tions made: If we, e.g., assume long channel coherence time intervals, MMSE
and MOSIC are able to reuse its computations with only one matrix vec-
tor multiplication remaining for any further detection inside the interval
effectively decreasing complexity. For the same reason, online learning ap-
proaches do not require further training inside the interval and could be
feasible. Comparing training cost of all unfolding algorithms in Tab. 3.3,
we note that Nb and Ne lie in the same range. Hence, the forward pass of
backpropagation in SGD and respectively run time complexity from Fig. 3.12
as well as the number of parameters |θ| to be optimized dominate training
complexity. OAMPNet fails in the former and DetNet in the latter category
with |θ| ∈ [105, 107] assuming NL = {16, 64} and {QPSK, 16-QAM}. In
contrast, CMDNet with low runtime complexity and only |θ| = {33, 129}
may be a promising online training approach similar to MMNet [34].

3.6 Conclusion
In this article, we introduced the so-called continuous relaxation of discrete
RVs to the MAP detection problem. Allowing to replace exhaustive search
by continuous optimization, we defined our classification approach Concrete
MAP Detection (CMD), e.g., based on gradient descent. By unfolding CMD
into a DNN CMDNet, we further were able to optimize its low number of
parameters and hence to improve detection accuracy while limiting it to low
complexity. As a side effect, the resulting structure has the potential to allow
for fast online training. Using the example of MIMO detection, simulations
reveal CMDNet to be a generic detection method competitive to SotA
outperforming it in terms of complexity and other recently proposed ML-
based approaches DetNet and MMNet in every considered scenario. Notably,
we selected an optimization criterion grounded in information theory, i.e.,
cross-entropy, and showed that it aims at learning an approximation of
the individual optimal detector. By simulations in coded systems, we
demonstrated its ability to provide reliable soft outputs as opposed to [28],
being a requirement for soft decoding, a crucial component in today’s
communication systems.

All these findings prove CMDNet to be a promising detection approach for
application in future massive MIMO systems. Further research is required
to evaluate its potential for fast online learning and to demonstrate its
applicability to non-linear scenarios of other research domains.
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Table 3.3: Training complexity

Algorithm ≈ Nb ≈ Ne |θ|

DetNet 2000 105 NL[({2, 4}M + {6, 20})N2
T

{QPSK, 16-QAM} -5000 +(M + {3, 6})NT + 2]
OAMPNet 1000 104-105 2NL

MMNet {iid, full} 500 104-105 {2NL, NLNT(NR + 1)}
CMDNet 500 104-105 2NL + 1
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Chapter 4

Publication 2 – Semantic
Information Recovery in
Wireless Networks

This chapter has been published as open access under a Creative Commons
Attribution 4.0 License in:

E. Beck, C. Bockelmann, and A. Dekorsy, “Semantic Information Recovery
in Wireless Networks,” Sensors, vol. 23, no. 14, p. 6347, Jul. 2023. doi:
10.3390/s23146347

The simulation source code is available in [Bec24]. Further analyses and
additional details for this publication are provided in Appendix B.

4.1 Abstract
Motivated by the recent success of Machine Learning (ML) tools in wire-
less communications, the idea of semantic communication by Weaver from
1949 has gained attention. It breaks with Shannon’s classic design paradigm
by aiming to transmit the meaning of a message, i.e., semantics, rather than
its exact version and, thus, enables savings in information rate. In this work,
we extend the fundamental approach from Basu et al. for modeling semantics
to the complete communications Markov chain. Thus, we model semantics
by means of hidden random variables and define the semantic communication
task as the data-reduced and reliable transmission of messages over a com-
munication channel such that semantics is best preserved. We consider this
task as an end-to-end information bottleneck problem, enabling compression

https://doi.org/10.3390/s23146347
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while preserving relevant information. As a solution approach, we propose
the ML-based semantic communication system SINFONY and use it for
a distributed multipoint scenario; SINFONY communicates the meaning
behind multiple messages that are observed at different senders to a single
receiver for semantic recovery. We analyze SINFONY by processing images
as message examples. Numerical results reveal a tremendous rate-normalized
SNR shift up to 20 dB compared to classically designed communication
systems.

Keywords
Semantic communication; wireless communications; wireless networks; Info-
Max; information bottleneck; machine learning; task-oriented communica-
tion; goal-oriented communication

4.2 Introduction
When Shannon laid the theoretical foundation of the research area of commu-
nications engineering back in 1948, he deliberately excluded semantic aspects
from the system design [1], [2]. In fact, the idea of addressing semantics in
communications arose shortly after Shannon’s work in [2], but it remained
largely unexplored. Since then, the design focus of communication systems
has been on digital error-free point-to-point symbol transmission.

Today, the systems already operate close to the Shannon limit calling
for a paradigm shift towards including semantic content of messages in the
system design. For example, the data traffic growth still continues with
the emergence of the Internet-of-Everything including, e.g., autonomous
driving and virtual reality, and cannot be managed by semantics-agnostic
communication as it limits the achievable efficiency in terms of bandwidth,
power, latency, and complexity trade-offs [3]. Other notable examples include
wireless sensor networks, broadcast scenarios, and non-ergodic channels where
separation of source and channel coding according to Shannon’s digital design
paradigm is generally suboptimal [4], [5].

Owing to the great success of Artificial Intelligence (AI) and, in particular,
its subdomain Machine Learning (ML), ML tools have been recently inves-
tigated for wireless communications and has shown promising application
for improving the performance complexity trade-off [6]–[8]. Now, ML with
its ability to extract features appears to be a proper means to realize a
semantic design. Further, we note that the latter design is supported and
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possibly enabled by the 6G vision of integrating AI and ML on all layers of
the communications system design, i.e., by a ML-native air interface.

Motivated by these new ML tools, and driven by the unprecedented
needs of the next wireless communication standard, 6G, in terms of data
rate, latency, and power, the idea of semantic communication has received
considerable attention [2], [9]–[13]. It breaks with the existing classic design
paradigms by including semantics in the design of the wireless transmission.
The goal of such a transmission is, therefore, to deliver the required data
from which the highest levels of quality of information may be derived, as
perceived by the application and/or the user. More precisely, semantic
communication aims to transmit the meaning of a message rather than
its exact version and hence enables compression and coding to the actual
semantic content. Thus, savings in bandwidth, power, and complexity are
expected.

In the following, we first summarize in Section 4.3 related work on se-
mantic communication and justify our main contributions in Section 4.4. In
Section 4.5.1, we reinterpret Weaver’s philosophical considerations paving
the way for our proposed theoretical framework in Section 4.5. Finally, in
Sections 4.6 and 4.7, we provide one numerical example of semantic commu-
nication, i.e., SINFONY, and summarize the main results, respectively.

4.3 Related Work
The notion of semantic communication traces back to Weaver [2] who re-
viewed Shannon’s information theory [1] in 1949 and amended considerations
with regard to semantic content of messages. Often quoted is his statement
that “there seem to be [communication] problems at three levels” [2]:

A. How accurately can the symbols of communication be transmitted?
(The technical problem.)

B. How precisely do the transmitted symbols convey the desired meaning?
(The semantic problem.)

C. How effectively does the received meaning affect conduct in the desired
way? (The effectiveness problem.)

Since then semantic communication was mainly investigated from a philo-
sophical point of view, see, e.g., [14], [15].

The generic model of Weaver was revisited by Bao, Basu et al. in [16], [17]
where the authors define semantic information source and semantic channel.
In particular, the authors consider a semantic source that “observes the world
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and generates meaningful messages characterizing these observations” [17].
The source is equivalent to conclusions, i.e., “models” of the world, that
are unequivocally drawn following a set of known inference rules based
on observation of messages. In [16], the authors consider joint semantic
compression and channel coding at Level B with the classic transmission
system, i.e., Level A, as the (semantic) channel. In contrast, [17] only deals
with semantic compression and uses a different definition of the semantic
channel (which we will make use of in this article): It is equal to the
entailment relations between “models” and “messages”. By this means,
the authors are able to derive semantic counterparts of the source and
channel coding theorems. However, as the authors admit, these theorems
do not tell how to develop optimal coding algorithms and the assumption
of a logic-based model-theoretical description leads to “many non-trivial
simplifications” [16].

In [18], the authors follow a different approach in the context of Natural
Language Processing (NLP). They define semantic similarity as a semantic
error measure using taxonomies, i.e., human knowledge graphs, to quantify
the distance between the meanings of two words. Based on this metric,
communication of a finite set of words is modeled as a Bayesian game from
game theory and optimized for improved semantic transmission over a binary
symmetric channel.

Recently, drawing inspiration from Weaver, Bao, Basu et al. [2], [16], [17]
and enabled by the rise of ML in communications research, Deep Neural
Network (DNN)-based NLP techniques, i.e., transformer networks, were
introduced in AutoEncoders (AEs) for the task of text transmission [19]–[21].
The aim of these techniques is to learn compressed hidden representations of
the semantic content of sentences to improve communication efficiency, but
the exact recovery of the source (text) is the main objective. The approach
improves performance in semantic metrics, especially at low SNR compared
to classical digital transmissions. It has been adapted to numerous other
problems, e.g., speech transmission [22], [23] and multi-user transmission
with multi-modal data [24]. Even knowledge graphs, i.e., a prior knowledge
base, were incorporated into the transformer-based AE design to improve
inference at the receiver side and, thus, text recovery [25].

Not considering Weaver’s idea of semantic communication in particular,
the authors in [26] show, for the first time, that task-oriented communications
(Level C) for edge cloud transmission can be mathematically formulated
as an Information Bottleneck (IB) optimization problem. Moreover, for
solving the IB problem, they introduce a DNN-based approximation and
show its applicability for the specific task of edge cloud transmission. The
terminus “semantic information” is only mentioned once in [26] referring
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to Joint Source-Channel Coding (JSCC) of text from [19] using recurrent
neural networks. In [19], the authors observe that sentences that express the
same idea have embeddings that are close together in Hamming distance.
But they use cross-entropy between words and estimated words as the loss
function and use the word error rate as the performance measure, which
both do not reflect if two sentences have the same meaning but rather that
both are exactly the same.

As a result, semantic communication is still a nascent field; it still remains
unclear what this term exactly means [27] and, in particular, its distinction
from JSCC [19], [28]. As a result, many survey papers aim to provide an
interpretation, see, e.g., [9]–[13]. We will revisit this issue in Section 4.5.

4.4 Main Contributions
The main contributions of this article are:

• Motivated by the approach of Bao, Basu et al. [16], [17], we adopt
the terminus of a semantic source. Inspired by Weaver’s notion, we
bring it to the context of communications by considering the complete
Markov chain, including semantic source, communications source,
transmit signal, communication channel, and received signal in contrast
to both [16], [17]. Further, we also extend beyond the example of
deterministic entailment relations between “models” and “messages”
based on propositional logic in [16], [17] to probabilistic semantic
channels.

• We define the task of semantic communication in the sense that we
perform data compression, coding, and transmission of messages ob-
served such that the semantic Random Variable (RV) at a recipient is
best preserved. Basically, we implement joint source-channel coding of
messages conveying the semantic RV, but not differentiating between
Levels A and B. We formulate the semantic communication design
either as an information maximization or as an Information Bottleneck
(IB) optimization problem [29]–[31].

– Although the approach pursued here again leads to an IB prob-
lem as in [26], our article introduces a new classification and
perspective of semantic communication and different ML-based
solution approaches. Different from [26], we solve the IB problem
maximizing the mutual information for a fixed encoder output
dimension that bounds the information rate.
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– The publication presented here differs also both in the interpreta-
tion of what is meant by semantic information and in the objective
of recovering this semantic information from approaches to se-
mantic communication presented in the literature like, e.g., [21],
[32].

• Finally, we propose the ML-based semantic communication system
SINFONY for a distributed multipoint scenario in contrast to [26]:
SINFONY communicates the meaning behind multiple messages that
are observed at different senders to a single receiver for semantic
recovery. Compared to the distributed scenario in [33], [34], we include
the communication channel.

• We analyze SINFONY by processing images as an example of messages.
Notably, numerical results reveal a tremendous rate-normalized SNR
shift up to 20 dB compared to classically designed communication
systems.

4.5 A Framework for Semantics

4.5.1 Philosophical Considerations
Despite the much-renewed interest, research on semantic communication
is still in its infancy and recent work reveals a differing understanding of
the word semantics. In this work, we contribute our interpretation. To
motivate it, we shortly revisit the research birth hour of communications
from a philosophical point of view; its theoretical foundation was laid by
Shannon in his landmark paper [1] in 1948.

He stated that “Frequently the messages have meaning; that is they re-
fer to or are correlated according to some system with certain physical or
conceptual entities. These semantic aspects of communication are irrelevant
to the engineering problem”. In fact, this viewpoint abstracts all kinds of
information one may transmit, e.g., oral and written speech, sensor data, etc.,
and also lays the foundation for the research area of Shannon information
theory. Thus, it found its way into many other research areas where data or
information are processed, including Artificial Intelligence (AI) and especially
its subdomain Machine Learning (ML).

Weaver saw this broad applicability of Shannon’s theory back in 1949.
In their comprehensive review of [1], he first states that “there seem to be
[communication] problems at three levels” [2] already mentioned in Section 4.3.
These three levels are quoted in recent works, where Level C is oftentimes
referred to as goal-oriented communication instead [10].
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But we note that, in his concluding section, he then questions this segmen-
tation. He argues for the generality of the theory at Level A for all levels
and “that the interrelation of the three levels is so considerable that
one’s final conclusion may be that the separation into the three
levels is really artificial and undesirable”.

It is important to emphasize that the separation is rather arbitrary. We
agree with Weaver’s statement because the most important point that is
also the focus herein is the definition of the term semantics, e.g., by Basu et
al. [16], [17]. Note that the entropy of the semantics is less than or equal to
the entropy of the messages. Consequently, we can save information rate
by introducing meaning or context. In fact, we are able to add arbitrarily
many levels of semantic details to the communication problem and optimize
communications for a specific semantic background, e.g., an application or a
human.

4.5.2 Semantic System Model
Semantic Source and Channel

Now, we will define our information-theoretic system model of semantic
communication. Figure 4.1 shows the schematic of our model. We assume
the existence of a semantic source, described as a hidden target multivariate
Random Variable (RV) z ∈ MNz×1

z from a domain Mz of dimension Nz
distributed according to a probability density function (pdf) or probability
mass function (pmf) p(z). To simplify the discussion, we assume it to be
discrete and memoryless. For the remainder of the article, note that the
domain of all RVs M may be either discrete or continuous. Further, we note
that the definition of entropy for discrete and continuous RVs differs. For
example, the differential entropy of continuous RVs may be negative whereas
the entropy of discrete RVs is always positive [35]. Without loss of generality,
we will thus assume all RVs either to be discrete or to be continuous. In
this work, we avoid notational clutter by using the expected value operator;
replacing the integral by summation over discrete RVs, the equations are
also valid for discrete RVs and vice versa.

Our approach is similar to that of [16], [17]. In [16], [17], the semantic
source is described by “models of the world”. (Note that, in [17], the semantic
information source is defined as a tuple (z, s, p(z, s), L). In this original
notation, z is the model, s the message, p(z, s) the joint distribution of z and
s, and L is the deterministic formal language.) In [17], a semantic channel
then generates messages through entailment relations between “models” and
“messages”. We will call these “messages” source signal and define it to be
a RV s ∈ MNs×1

s as it is usually observed and enters the communication
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Figure 4.1: Block diagram of the considered semantic system model.

system. In the classic Shannon design, the aim is to reconstruct the source
s as accurately as possible at the receiver side. Further, we note that
the authors in [17] considered the example of a semantic channel with
deterministic entailment relations between z and s based on propositional
logic. In this article, we go beyond this assumption and consider probabilistic
semantic channels modeled by distribution p(s|z) that include the entailment
in [17] as special cases, i.e., p(s|z) = δ(s − f(z)) where δ(·) is the Dirac delta
function and f(·) is any generic function. Our viewpoint is motivated by the
recent success of pattern recognition tools that advanced the field of AI in
the 2010s and may be used to extract semantics [7].

Our approach also extends models as in [21]. There, the authors design a
semantic communication system for the transmission of written language/text
similar to [19] using transformer networks. In contrast to our work, [21]
does not define meaning as RV z. The objective in [21] is to reconstruct s
(sentences) as well as possible, rather than the meaning (RV z) conveyed in
s. Optimization is completed with regard to a loss function consisting of two
parts, cross-entropy between language input s and output estimate ŝ, as well
as a scaled mutual information term between transmit signal x and receive
signal y. After optimization, the authors measure semantic performance by
some semantic metric L(s, ŝ).

We now provide an example to explain what we understand under a
semantic source z and channel p(s|z). Let us imagine a biologist who has
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an image of a tree. The biologist wants to know what kind of tree it is by
interpreting the observed data (image). In this case, the semantic source z is
a multivariate RV composed of a categorical RV with M tree classes. For any
realization (sample value) zi of the semantic source, the semantic channel
p(s|z) then outputs with some probability one image si of a tree conveying
characteristics of z, i.e., its meaning. Note that the underlying meaning of
the same sensed data (message) can be different for other recipients, e.g.,
humans or tasks/applications, i.e., in other semantic contexts. Imagine
a child, i.e., a person with different characteristics (personality, expertise,
knowledge, goals, and intentions) than the biologist, who is only interested
if he/she can climb up this tree or whether the tree provides shade. Thus,
we include the characteristics of the sender and receiver in the RV z and
consider it directly in compression and encoding.

Compared to [16], we therefore argue that we also include level C by
semantic source and channel since context can be included on increasing
layers of complexity. First, a RV z1 might capture the interpretation, like the
classification of images or sensor data. Moving beyond the first semantic layer,
then a RV z2 might expand this towards a more general goal, like keeping a
constant temperature in power plant control. In fact, we can add or remove
context, i.e., semantics and goals, arbitrarily often according to the human
or application behind, and we can optimize the overall (communication)
system with regard to z1, z2, . . . , zi, respectively.

As a last remark, we note that we basically defined probabilistic semantic
relationships, and it remains the question of how exactly they might look. In
our example, the meaning of the images needs to be labeled into real-world
data pairs {si, zi} by experts/humans, since image recognition lacks precise
mathematical models. This is also true for NLP [21]; how can we measure
if two sentences have the same meaning, i.e., how does the semantic space
look like? In contrast, in [17], the authors are able to solve their well-defined
technical problem (motion detection) by a model-driven approach. We can
thus distinguish between model- and data-driven semantics, which both can
be handled within Shannon’s information theory.

Semantic Channel Encoding

After the semantic source and channel in Figure 4.1, we extend upon [16]
by differentiating between “message”/source signal s and transmit signal
x ∈ MNTx×1

x . Our challenge is to encode the source signal s onto the
transmit signal vector x for reliable semantic communication through the
physical communication channel p(y|x), where y ∈ MNRx×1

y is the received
signal vector. We assume the encoder pθ(x|s) to be parametrized by a
parameter vector θ ∈ RNθ×1. Note that pθ(x|s) is probabilistic here, but
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assumed to be deterministic in communications with pθ(x|s) = δ(x − µθ(s))
and encoder function µθ(s).

In summary, in contrast to both [16], [17], we consider the complete Markov
chain z ↔ s ↔ x ↔ y including semantic source z, communications source
s, transmit signal x and receive signal y. By this means, we distinguish
from [17] which only deals with semantic compression, and [16] which is
about joint semantic compression and channel coding (Level B). In [16], the
authors consider the classic transmission system (Level A) as the (semantic)
channel (not to be confused with the definition of the semantic channel
in [17] which we make use of in this publication).

At the receiver side, one approach is maximum a posteriori decoding with
regard to RV s that uses the posterior pθ(s|y), being deduced from prior p(s)
and likelihood pθ(y|s) by application of Bayes law. Based on the estimate
of s, then the receiver interprets the actual semantic content z by p(z|s).

Another approach we propose is to include the semantic hidden target RV
z into the design by processing pθ(z|y). If the calculation of the posterior is
intractable, we can replace pθ(z|y) by the approximation qφ(z|y), i.e., the
semantic decoder, with parameters φ ∈ RNφ×1. We expect the following
benefit: We assume the entropy H (z) = Ez∼p(z)[− ln p(z)] of the semantic
RV z, i.e., the actual semantic uncertainty or information content, to be
less or equal to the entropy H (s) of the source s, i.e., H (z) ≤ H (s). There,
Ex∼p(x)[f(x)] denotes the expected value of f(x) with regard to both discrete
or continuous RVs x. Consequently, since we would like to preserve the
relevant, i.e., semantic, RV z rather than s, we can compress more s.t.
preserving z conveyed in s. Note that in semantic communication the
relevant variable is z, not s. Thus, processing pθ(s|y) without taking
z into consideration resembles the classical approach. Instead of using
(and transmitting) s for inference of z, we now want to find a compressed
representation y of s containing the relevant information about z.

4.5.3 Semantic Communication Design via InfoMax
Principle

After explaining the system model and the basic components, we are able
to approach a semantic communication system design. We first define an
optimization problem to obtain the encoder pθ(x|s) following the Infor-
mation Maximization (InfoMax) principle from an information theoretic
perspective [35]. Thus, we like to find the distribution pθ(x|s) that maps
s to a representation x such that most information of the relevant RV z is
included in y, i.e., we maximize the Mutual Information (MI) I (z; y) with
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regard to pθ(x|s) [36]:

arg max
pθ(x|s)

Iθ (z; y) (4.1)

=arg max
pθ(x|s)

Ez,y∼pθ(z,y)

[︃
ln pθ(z,y)
p(z)pθ(y)

]︃
(4.2)

=arg max
pθ(x|s)

H (z) − H (pθ(z,y), pθ(z|y)) (4.3)

=arg max
pθ(x|s)

Ez,y∼pθ(z,y)[ln pθ(z|y)] . (4.4)

There, H (p(x), q(x)) = Ex∼p(x)[− ln q(x)] is the cross-entropy between two
pdfs/pmfs p(x) and q(x). Note the independence from θ in H (z) and
dependence in pθ(z|y) and pθ(z,y) through the Markov chain z → s → y.
Problem (4.1) is convex with regard to the encoder pθ(x|s) for fixed p(s) [37],
but not necessarily convex with regard to the encoder parameters θ. For
example, it is non-convex if the encoder function is non-convex with regard
to its parameters being typically the case with DNN encoders. It is worth
mentioning that we so far have not set any constraint on the variables we
deal with. Hence, the form of pθ(y|s) has to be constrained to avoid learning
a trivial identity mapping y = s. We indeed constrain the optimization by
our communication channel p(y|x) we assume to be given.

If the calculation of the posterior pθ(z|y) in (4.4) is intractable, we are
able to replace it by a variational distribution qφ(z|y) with parameters φ.
Similar to the transmitter, DNNs are usually proposed [21], [38] for the
design of the approximate posterior qφ(z|y) at the receiver. To improve
the performance complexity trade-off, the application of deep unfolding can
be considered, a model-driven learning approach that introduces model
knowledge of pθ(s,x,y, z) to create qφ(z|y) [8], [39]. With qφ(z|y), we are
able to define a MI Lower BOund (MILBO) [36] similar to the well-known
Evidence Lower BOund (ELBO) [7]:

Iθ (z; y) ≥ Ez,y∼pθ(z,y)[ln qφ(z|y)] (4.5)
= Ey∼pθ(y)

[︁
Ez∼pθ(z|y)[ln qφ(z|y)]

]︁
(4.6)

= − Ey∼pθ(y)[H (pθ(z|y), qφ(z|y))] (4.7)
= −LCE

θ,φ . (4.8)

The lower bound holds since −H (pθ(z,y), pθ(z|y)) itself is a lower bound
of the expression in (4.3) and Ez,y∼pθ(z,y)[ln pθ(z|y)/qφ(z|y)] ≥ 0. Now, we
can calculate optimal values of θ and φ of our semantic communication design
by minimizing the amortized cross-entropy LCE

θ,φ in (4.7), i.e., marginalized
across observations y [8].
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Thus, the idea is to learn parametrizations of the transmitter discriminative
model and of the variational receiver posterior, e.g., by AEs or reinforcement
learning. Note that, in our semantic problem (4.1), we do not auto-encode
the hidden z itself, but encode s to obtain z by decoding. This can be seen
from Figure 4.1 and by rewriting the amortized cross-entropy (4.7) and (4.8):

LCE
θ,φ = Ey∼p(y)[H (pθ(z|y), qφ(z|y))] (4.9)

= Es,x,y,z∼pθ(s,x,y,z)[− ln qφ(z|y)] (4.10)
= Es,z∼p(s,z)

[︁
Ex∼pθ(x|s)

[︁
Ey∼p(y|x)[− ln qφ(z|y)]

]︁]︁
.

We can further prove the amortized cross-entropy to be decomposable
into

LCE
θ,φ = Ey∼pθ(y)

[︁
Ez∼pθ(z|y)[− ln qφ(z|y) + ln pθ(z|y) − ln pθ(z|y)]

]︁
(4.11)

= Ey∼pθ(y)[DKL (pθ(z|y) ∥ qφ(z|y))] + H (z|y)⏞ ⏟⏟ ⏞
=−Iθ(z;y)+H(z)

(4.12)

=H (z) − Iθ (z; y)⏞ ⏟⏟ ⏞
enc. objective

+ Ey∼pθ(y)[DKL (pθ(z|y) ∥ qφ(z|y))]
⏞ ⏟⏟ ⏞

dec. objective

. (4.13)

In the end, maximization of the MILBO with regard to θ and φ balances
maximization of the mutual information Iθ (z; y) and minimization of the
Kullback–Leibler (KL) divergence DKL (pθ(z|y) ∥ qφ(z|y)). The former
objective can be seen as a regularization term that favors encoders with high
mutual information, for which decoders can be learned that are close to the
true posterior.

4.5.4 Classical Design Approach
If we consider classical communication design approaches, we would solve
the problem

arg max
pθ(x|s)

I (s; y) (4.14)

which relates to Joint Source-Channel Coding (JSCC). There, the aim is
to find a representation x that retains a significant amount of information
about the source signal s in y. Again, we can apply the lower bound (4.8).
In fact, bounding (4.14) by (4.8) shows that approximate maximization of
the mutual information justifies the minimization of the cross-entropy in the
AEs approach [6], often seen in recent wireless communication literature [6],
[19], [28].
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4.5.5 Information Bottleneck View
It should be stressed that we have not set any constraints on the variables in
the InfoMax problem so far. However, in many applications, compression is
needed because of the limited information rate. Therefore, we can formulate
an optimization problem where we like to maximize the relevant information
Iθ (z; y) subject to the constraint to limit the compression rate Iθ (s; y) to a
maximum information rate IC:

arg max
pθ(x|s)

Iθ (z; y) s.t. Iθ (s; y) ≤ IC . (4.15)

Problem (4.15) is an important variation of the InfoMax principle and
called the Information Bottleneck (IB) problem [10], [29], [40], [41]. The IB
method introduced by Tishby et al. [29] has been the subject of intensive
research for years and has proven to be a suitable mathematical/information-
theoretical framework for solving numerous problems—as well as in wireless
communications [30], [31], [42], [43]. Note that we aim for an encoder that
compresses s into a compact representation x for discrete RVs by clustering
and for continuous RVs by dimensionality reduction.

To solve the constrained optimization problem (4.15), we can use La-
grangian optimization and obtain

arg max
pθ(x|s)

Iθ (z; y) − βIθ (s; y) (4.16)

with Lagrange multiplier β ≥ 0. The Lagrange multiplier β allows the defin-
ing of a trade-off between the relevant information Iθ (z; y) and compression
rate Iθ (s; y), which indicates the relation to rate distortion theory [30]. With
β = 0, we have the InfoMax problem (4.1) whereas for β → ∞ we minimize
compression rate. Calculation of the mutual information terms may be com-
putationally intractable, as in the InfoMax problem (4.1). Approximation
approaches can be found in [44], [45]. Notable exceptions include if the RVs
are all discrete or Gaussian distributed.

We note that in [10], [26] the authors already introduced the IB problem
to task-oriented communications. But [10], [26] do not address our viewpoint
or classification. We compress and channel encode the messages/communi-
cations source s for given entailment p(s|z), in the sense of a data-reduced
and reliable communication of the semantic RV z. Basically, we implement
joint source-channel coding of s s.t. preserving the semantic RV z, and we do
not differentiate between Levels A and B, as indicated by Weaver’s notion
outlined in Section 4.3. Indeed, we draw a direct connection to IB compared
to related semantic communication literature [19], [21], [38] that, so far, only
included optimization with terms reminiscent of the IB problem.
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Semantic Information Bottleneck

This article does not only distinct itself on a conceptual, but also on a
technical level from [26], [34]. We follow a different strategy to solve (4.15).

First, using the data processing inequality [46], we see that the compression
rate is upper bounded by the mutual information of the encoder Iθ (s; x)
and that of the channel I (x; y):

Iθ (s; y) ≤ min {Iθ (s; x) , I (x; y)} . (4.17)

In case of negligible encoder compression Iθ (s; x) > I (x; y), the channel
becomes the limiting factor of information rate. For example, with a de-
terministic continuous mapping x = µθ(s), this is true since Iθ (s; x) → ∞.
Using the chain rule of mutual information [46], we see that this upper
bound on compression rate grows with the dimension of x, i.e., the number
of channel uses NTx:

Iθ (s; y) ≤ I (x; y) =
NTx∑︂

n=1
I (xn; y|xn−1, . . . , x1)⏞ ⏟⏟ ⏞

≥0

. (4.18)

Assuming y to be conditional dependent on xn given xn−1, . . . , x1, i.e.,
p(y|xn, . . . , x1) ̸= p(y|xn−1, . . . , x1) being, e.g., true for an Additive White
Gaussian Noise (AWGN) channel, it is I (xn; y|xn−1, . . . , x1) > 0 [46] and
the sum in (4.18) indeed strictly increases. Replacing y in I (x; y) of (4.18)
by s, the result also holds for encoder compression Iθ (s; x), respectively.
Hence, increasing the encoder output dimension NTx, we can increase the
possible compression rate Iθ (s; y). Interchanging x and y in (4.18), we see
that the same holds for the receiver input dimension NRx.

Furthermore, the mutual information of the channel and, thus, the com-
pression rate are upper bounded by channel capacity:

Iθ (s; y) ≤ I (x; y) ≤ max
p(x);E[|xn|2]≤1

I (x; y) = C . (4.19)

For example, with an AWGN channel with noise standard deviation σn, we
have C = NTx/2 · ln

(︁
1 + 1/σ2

n
)︁

again increasing with NTx.
Now, let us assume the RVs to be discrete so that H (x|s) ≥ 0. Indeed,

this is true if the RVs are processed discretely with finite resolution on digital
signal processors, as in the numerical example of Section 4.6. As long as
Iθ (s; x) < C, all information of the discrete RVs can be transmitted through
the channel with arbitrary low error probability according to Shannon’s
channel coding theorem [1]. Then, we can upper bound encoder compression
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Iθ (s; x) and thus compression rate Iθ (s; y) by the sum of entropies of any
output xn [46] of the encoder pθ(x|s)—each with cardinality |Mx|:

Iθ (s; x) = H (x) − H (x|s)⏞ ⏟⏟ ⏞
≥0

≤ H (x) ≤
NTx∑︂

n=1
H (xn) ≤ NTx · log2(|Mx|) .

(4.20)

Note that the entropy sum in (4.20) grows again with NTx for discrete RVs
since 0 ≤ H (xn) ≤ log2(|Mx|). Moreover, we can define an encoder capacity
Cθ analogous to channel capacity C in (4.19) that upper bounds encoder
compression Iθ (s; x). It may be restricted by the chosen (DNN) model
pθ(x|s) and optimization procedure with regard to θ, i.e., the hypothesis
class [7].

In summary, we have proven by (4.19) and (4.20) that there is an infor-
mation bottleneck when maximizing the relevant information Iθ (z; y) either
due to the channel distortion I (x; y) or encoder compression Iθ (s; x).

To fully exploit the available resources, we set constraint IC to be equal
to the upper bound, i.e., channel capacity C or the upper bound on encoder
compression rate NTx · log2(|Mx|). In both cases, the upper bound grows
(linearly) with the encoder output dimension NTx, and, thus, we can set the
constraint IC higher or lower by choosing NTx.

With fixed constraint IC, we maximize the relevant information Iθ (z; y).
By doing so, we derive an exact solution to (4.15) that maximizes Iθ (z; y)
for a fixed encoder output dimension that bounds the compression rate. As
in the InfoMax problem, we can exploit the MILBO to use the amortized
cross-entropy LCE

θ,φ in (4.9) as the optimization criterion.

Variational Information Bottleneck

In [26], however, the authors solve the variational IB problem of (4.16) and
require tuning of β. Albeit also using the MILBO as a variational approxima-
tion to the first term in (4.16), they introduce a KL divergence term as an up-
per bound to compression rate Iθ (s; y) derived by DKL (pθ(y) ∥ qϑ(y)) ≥ 0
with some variational distribution qϑ(y) with parameters ϑ [44]. Then, the
variational IB objective function reads [44]:

Iθ (z; y) − βIθ (s; y) ≥ Ez,y∼pθ(z,y)[ln qφ(z|y)]
− β · Es∼p(s)[DKL (pθ(y|s) ∥ qϑ(y))] . (4.21)

Moreover, the authors use a log-uniform distribution as the variational
prior qϑ(y) in [26] to induce sparsity on y so that the number of outputs
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is dynamically determined based on the channel condition or SNR, i.e.,
pθ(y|s, σ2

n). The approach additionally necessitates approximation of the
KL divergence term in (4.21) and estimation of the noise variance σ2

n.
With our approach we avoid the additional approximations and tuning

of the hyperparameter β in (4.21) possibly enabling better semantic perfor-
mance as well as reduced inference and training complexity at the cost of
full usage of NTx channels even when the channel capacity C enables its
reduction. We leave a numerical comparison to [26] for future research as
this is out of the scope of this paper.

4.5.6 Implementation Considerations
Now, we will provide important implementation considerations for opti-
mization of (4.8), (4.10) and (4.15). We note that computation of the
MILBO leads to similar problems as for the ELBO [35]; if calculating the
expected value in (4.10) cannot be solved analytically or is computationally
intractable—as typically the case with DNNs—we can approximate it using
Monte Carlo sampling techniques with N samples {(zi, si, xi, yi)}

N
i=1.

For Stochastic Gradient Descent (SGD)-based optimization like, e.g., in
the AE approach, the gradient with regard to φ can then be calculated by

∂LCE
θ,φ

∂φ
= ∂

∂φ
Ez,s,y∼pθ(y|s)p(s|z)p(z)[− ln qφ(z|y)] (4.22)

= − Ez,s,y∼pθ(y|s)p(s|z)p(z)

[︃
∂ ln qφ(z|y)

∂φ

]︃
(4.23)

≈ − 1
N

N∑︂

i=1

∂ ln qφ(zi|yi)
∂φ

(4.24)

with N being equal to the batch size Nb and by application of the backprop-
agation algorithm to ∂

∂φ ln qφ(zi|yi) = ∂
∂φqφ(zi|yi)/qφ(zi|yi) in Automatic

Differentiation Frameworks (ADFs), e.g., TensorFlow and PyTorch. Com-
putation of the so-called Reinforce gradient with regard to θ leads to a
high variance of the gradient estimate since we sample with regard to the
distribution pθ(y|s) dependent on θ [35].

Reparametrization Trick

Leveraging the direct relationship between θ and y in ln qφ(z|y) can help
reduce the estimator’s high variance. Typically, e.g., in the Variational
AutoEncoder (VAE) approach, the reparametrization trick is used to achieve
this [35]. Here, we can apply it if we can decompose the latent variable
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y ∼ pθ(y|s) into a differentiable function y = fθ(s,n) and a RV n ∼ p(n)
independent of θ. Fortunately, the typical forward model of a communication
system pθ(y|s) fulfills this criterion. Assuming a deterministic DNN encoder
x = µθ(s) and additive noise n with covariance Σ, we can thus rewrite y
into fθ(s,n) = µθ(s)+Σ1/2 ·n and, accordingly, the amortized cross-entropy
gradient into:

∂LCE
θ,φ

∂θ
= − ∂

∂θ
Ez,s,y∼pθ(y|s)p(s,z)[ln qφ(z|y)] (4.25)

= − Ez,s,n∼p(n)p(s|z)p(z)

[︃
∂fθ(s,n)

∂θ
· ∂ ln qφ(z|y)

∂y

]︃
(4.26)

≈ − 1
N

N∑︂

i=1

∂fθ(si,ni)
∂θ

· ∂ ln qφ(zi|yi)
∂y

⃓⃓
⃓⃓
y=fθ(si,ni)

. (4.27)

The reparametrization trick can be easily implemented in ADFs by adding
a noise layer—typically used for regularization in ML literature— after
(DNN) function x = µθ(s). Then, our loss function (4.10) amounts to

LCE
θ,φ ≈ − 1

N

N∑︂

i=1
ln qφ(zi|yi = fθ(si,ni)) . (4.28)

This enables the joint optimization of both θ and φ, as demonstrated in
recent works [6], treating unsupervised optimization of AEs as a supervised
learning problem.

4.6 Example of Semantic Information Recov-
ery

In this section, we provide one numerical example of data-driven semantics
to explain what we understand under a semantic communication design and
to show its benefits: It is the task of image classification. In fact, we consider
our example of the biologist from Section 4.5.2 who wants to know which
type the tree is.

For the remainder of this article, we will thus assume the hidden semantic
RV to be a one-hot vector z ∈ {0, 1}M×1 where all elements are zero except
for one element representing one of the M image classes. Then, the semantic
channel p(s|z) (see Figure 4.1) generates images belonging to this class, i.e.,
the source signal s.

Note that for point-to-point transmission, as in [26], we could first classify
the image based on the posterior qφ(z|s), as shown in Figure 4.2 and transmit
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z

Semantic
Channel

p(s|z)

ResNet
Feature

Extractor

Image:
s ∈ RNx×Ny×Nc

Classifier

ẑ

ResNet classifier: qφ(z|s)

r ∈ RNFeat×1

Figure 4.2: Central image processing: Based on the images, ResNet extracts
semantics by classification.

the estimate ẑ (encoded into x) through the physical channel since this would
be most rate or bandwidth efficient.

But if the image information is distributed across multiple agents, all (sub)
images may contribute useful information for classification. We could thus
lose information when making hard decisions on each transmitter’s side. In
the distributed setting, transmission and combination of features, i.e., soft
information, is crucial to obtain high classification accuracy.

Further, we note that transmission of full information, i.e., raw image data
s, through a wireless channel from each agent to a central unit for full image
classification would consume a lot of bandwidth. This case is also shown in
Figure 4.2 assuming perfect communication links between the output of the
semantic channel and the input of the ResNet feature extractor.

Therefore, we investigate a distributed setting shown in Figure 4.3. There,
each of four agents sees its own image s1, . . . , s4 ∼ p(si|z) being generated
by the same semantic RV z. Based on these images, a central unit shall
extract semantics, i.e., perform classification. We propose to optimize the
four encoders pθi(xi|si) with i = 1, . . . , 4, each consisting of a bandwidth
efficient feature extractor (ResNet Feature Extractor i) and transmitter (Tx
i) jointly with a decoder qφ(z|y = [y1,y2,y3,y4]T ), consisting of a Receiver
(Rx) and concluding classifier (Classifier), with regard to cross-entropy (4.10)
of the semantic labels (see Figure 4.3). Hence, we maximize the system’s
overall semantic measure, i.e., classification accuracy. Note that this scenario
is different from both [33], [34]; we include a physical communication channel
(Comm. Channel i) since we aim to transmit and not only compress. For the
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sake of simplicity, we assume orthogonal channel access. The IB is addressed
by limiting the number of channel uses, which defines the constraint IC
in (4.15).

As a first demonstration example, we use the grayscale MNIST and colored
CIFAR10 datasets with M = 10 image classes [47]. We assume that the
semantic channel generates an image that we divide into four equally sized
quadrants and each agent observes one quadrant s1, . . . , s4 ∈ RNx×Ny×Nc ,
where Nx and Ny is the number of image pixels in the x- and y-dimension,
respectively, and Nc is the number of color channels. Albeit this does not
resemble a realistic scenario, note that we can still show the basic working
principle and ease implementation.

4.6.1 ResNet
For the design of the overall system, we rely on a famous DNN approach for
feature extraction, breaking records at the time of invention: ResNet [47],
[48]. The key idea of ResNet is that it consists of multiple residual units.
Each unit’s input is fed directly to its output and if the dimensions do not
match, a convolutional layer is used. This structure enables fast training and
convergence of DNNs since the training error can be backpropagated to early
layers through these skip connections. From a mathematical point of view,
usual DNNs have the design flaw that using a larger function class, i.e., more
DNN layers, does not necessarily increase the expressive power. However,
this holds for nested functions like ResNet which contain the smaller classes
of early layers.

Each residual unit itself consists of two Convolutional NNs (CNNs) with
subsequent batch normalization and ReLU activation function, i.e., ρrelu (·) =
max(·, 0), to extract translation invariant and local features across two
spatial dimensions Nx and Ny. Color channels, like in CIFAR10, add a third
dimension Nc = 3 and additional information. The idea behind stacking
multiple layers of CNNs is that features tend to become more abstract from
early layers (e.g., edges and circles) to final layers (e.g., beaks or tires).

In this work, we use the pre-activation version of ResNet without bottle-
necks from [47], [48] implemented for classification on the dataset CIFAR10.
In Table 4.1, we show its structure for the distributed scenario from Fig-
ure 4.3. There, ResNetBlock is the basic building block of the ResNet
architecture. Each block consists of multiple residual unit (res. un.) and we
use 2 for the MNIST dataset and 3 for the CIFAR10 dataset, which means
we use ResNet14 and ResNet20, respectively. We arrive at the architecture
of central image processing from Figure 4.2 by removing the components
Tx, (physical) Channel, and Rx and increasing each spatial dimension by 2
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Figure 4.3: Semantic INFOrmation TraNsmission and RecoverY (SINFONY)
for distributed agents. Each agent extracts features for bandwidth-
efficient transmission. Based on the received signal, the central unit
extracts semantics by classification.
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Table 4.1: Semantic INFOrmation TraNsmission and RecoverY (SINFONY)–
DNN architecture for distributed image classification.

Component Layer Dimension

Input Image (MNIST, CIFAR10) (14, 14, 1), (16, 16, 3)

4× Conv2D (14, 14, 14), (16, 16, 16)
Feature ResNetBlock (2/3 res. un.) (14, 14, 14), (16, 16, 16)
Extractor ResNetBlock (2/3 res. un.) (7, 7, 28), (8, 8, 32)

ResNetBlock (2/3 res. un.) (4, 4, 56), (4, 4, 64)
Batch Normalization (4, 4, 56), (4, 4, 64)
ReLU activation (4, 4, 56), (4, 4, 64)
GlobalAvgPool2D (56), (64)

4× Tx ReLU NTx

Linear NTx

Normalization (dim.) NTx

4× Channel AWGN NTx

Rx ReLU (4× shared) (2, 2, Nw)
GlobalAvgPool2D Nw

Classifier Softmax M = 10

to contain all quadrants of the original image. For further implementation
details, we refer the reader to the original work [48].

4.6.2 Distributed Semantic Communication Design Ap-
proach

Our key idea here is to modify ResNet with regard to the communication
task by splitting it at a suitable point where a representation r ∈ RNFeat×1 of
semantic information with low-bandwidth is present (see Figures 4.2 and 4.3).
ResNet and CNNs in general can be interpreted to extract features; with full
images, we obtain a feature map of size 8 × 8 ×NFeat after the last ReLU
activation (see Table 4.1). These local features are aggregated by the global
average pooling layers across the 2 spatial dimensions into r. Based on these
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NFeat global features in r, the softmax layer finally classifies the image. We
note that the features contain the relevant information with regard to the
semantic RV z and are of low dimension compared to the original image or
even its sub-images, i.e., 64 compared to 16 × 16 × 3 = 768 for CIFAR10.

Therefore, we aim to transmit each agent’s local features ri ∈ RNFeat×1

(i = 1, . . . , 4) instead of all sub-images si and add the component Tx in
Table 4.1 to encode the features ri into xi ∈ RNTx×1 for transmission through
the wireless channel (see Figure 4.3). We note that xi ∈ RNTx×1 is analog
and that the output dimension NTx of xi defines the number of channel
uses per agent/image. Note that the less often we use the wireless channel
(NTx), the less information we transmit but the less bandwidth we consume,
and vice versa. Hence, the number of channel uses defines the IB in (4.15).
We implement the Tx module by DNN layers. To limit the transmission
power to one, we constrain the Tx output by the norm along the training
batch or the encoding vector dimension (dim.), i.e., xn = x̃n/

√︂
E
[︁
x̃2
n

]︁
or

xi =
√
NTx · x̃i/ ∥x̃i∥2, where x̃i ∈ RNTx×1 is the output of the layer Linear

from Table 4.1. For numerical simulations, we choose all Tx layers to have
width NTx.

At the receiver side, we use a single Rx module only with shared DNN
layers and parameters φRx for all inputs yi. This setting would be optimal if
any feature is reflected in any sub-image and if the statistics of the physical
channels are the same. Exploiting the prior knowledge of location-invariant
features and assuming AWGN channels, this design choice seems reasonable.
In our experiments, all layers of the Rx module have width Nw. A larger
layer width Nw is equivalent to more computing power.

The output of the Rx module can be interpreted as a representation of the
image features ri with index i indicating the spatial location. Thus, we have
a representation of a feature map of size (2, 2, Nw) that we aggregate across
the spatial dimension according to the ResNet structure. Based on this
semantic representation, a softmax layer with 10 units finally computes class
probabilities qφ(z|y) whose maximum is the maximum a posteriori estimate
ẑ. In the following, we name our proposed approach Semantic INFOrmation
TraNsmission and RecoverY (SINFONY).

4.6.3 Optimization Details
We evaluate SINFONY in TensorFlow 2 [49] on the MNIST and CIFAR10
datasets. The source code is available in [50] and the default simulation
and training parameters are summarized in Table 4.2. We split the dataset
into Ntrain = 60 k or 50 k training data and 10 k validation data samples,
respectively. For preprocessing, we normalize the pixel inputs to range [0, 1],
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Table 4.2: Default simulation and training parameters.

Parameter Name Variable Value (MNIST, CIFAR10)

Batch size Nb 64
Epoch number Ne 20, 200
Learning rate ϵ Schedule: ϵ = {0.1, 0.01, 0.001}

with Ne = {3, 6}, {100, 150}
Optimizer SGD with momentum= 0.9
Preprocessing Input normalization to [0, 1]
Training SNR range SNRtrain [−4, 6] dB
Training dataset size Ntrain 60 k, 50 k
Validation dataset size 10 k
Weight decay 0.0001
Weight initialization Glorot uniform, ReLU: He uniform
Encoder normalization dim. Batch dimension
Rx layer width Nw 56, 64

but we do not use data augmentation, in contrast to [47], [48], yielding slightly
worse accuracy. The ReLU layers are initialized with uniform distribution
according to He and all other layers according to Glorot [51].

In the case of CIFAR10 classification with central image processing and
original ResNet, we need to train Nθ +Nφ = 273, 066 parameters. We like
to stress that although we divided the image input into four smaller pieces,
this number grows more than four times to 4Nθ + Nφ = 1, 127, 754 with
NTx = NFeat = 64 for SINFONY. The reason lies in the ResNet structure
with minor dependence on the input image size and that we process at four
agents with an additional Tx module. Only Nφ = 4810 parameters amount
to the Rx module and classification, i.e., the central unit. We note that the
number of added Tx and Rx parameters of 33, 560 and 3192 is relatively
small. Since the number of parameters only weakly grows with Rx layer
width Nw in our design, we choose Nw = NFeat as the default.

For optimization of the cross-entropy (4.10) or the loss function (4.28),
we use the reparametrization trick from Section 4.5.6 and SGD with a
momentum of 0.9 and a batch size of Nb = 64. We add l2-regularization
with a weight decay of 0.0001 as in [47], [48]. The learning rate of ϵ = 0.1 is
reduced to 0.01 and 0.001 after Ne = 100 and 150 epochs for CIFAR10 and
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after 3 and 6 epochs for MNIST. In total, we train for Ne = 200 epochs with
CIFAR10 and for 20 with MNIST. In order to optimize the transceiver for a
wider SNR range, we choose the training SNR to be uniformly distributed
within SNRtrain ∈ [−4, 6] dB where SNR = 1/σ2

n with noise variance σ2
n.

4.6.4 Numerical Results and Discussion
In the following, we will investigate the influence of specific design choices on
our semantic approach SINFONY. Then, we compare a semantic transmission
approach with a classical Shannon-based transmission approach. The design
choices are as follows:

• Central: Central and joint processing of full image information by the
ResNet classifier, see Figure 4.2. It indicates the maximum achievable
accuracy.

• SINFONY – Perfect comm.: The proposed distributed design
SINFONY trained with perfect communication links and without
channel encoding, i.e., Tx and Rx module, but with Tx normalization
layer. Thus, the plain and power-constrained features are transmitted
with NTx = NFeat channel uses. It serves as the benchmark since it
indicates the maximum performance of the distributed design.

• SINFONY – AWGN: SINFONY – Perfect comm. evaluated with
AWGN channel.

• SINFONY – AWGN + training: SINFONY – Perfect comm.
trained with AWGN channel.

• SINFONY – Tx/Rx (NTx = NFeat): SINFONY trained with
channel encoding, i.e., Tx and Rx module, and NTx = NFeat channel
uses.

• SINFONY – Tx/Rx (NTx < NFeat): SINFONY trained with chan-
nel encoding and NTx < NFeat channel uses for feature compression.

• SINFONY – Classic digital comm.: SINFONY – Perfect comm.
with classic digital communications (Huffman coding, LDPC coding
with belief propagation decoding, and digital modulation) as additional
Tx and Rx modules. For details, see Section 4.6.4.

• SINFONY – Analog semantic AE: SINFONY – Perfect comm.
with ML-based analog communications (AE with regard to r) as addi-
tional Tx and Rx modules. It is basically the semantic communication
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approach from [19], [21], [28], [32]. For details, see Section 4.6.4 –
Semantic vs. Classic Design.

Since meaning is expressed by the RV z, we use classification accuracy to
measure semantic transmission quality. For illustration in logarithmic scale,
we show the opposite of accuracy in all plots, i.e., classification error rate.

MNIST Dataset

The numerical results of our proposed approach SINFONY on the MNIST
validation dataset are shown in Figure 4.4 for Nw = 56. To obtain a fair
comparison between transmit signals xi ∈ RNTx×1 of different length NTx,
we normalize the SNR by the spectral efficiency or rate η = NFeat/NTx. First,
we observe that the classification error rate of 0.5% of the central ResNet
unit with full image information (Central) is smaller than that of 0.9% of
SINFONY – Perfect comm. Note that we assume ideal communication links.
However, the difference seems negligible considering that the local agents
only see a quarter of the full images and learn features independently based
on it.

With noisy communication links (SINFONY – AWGN), the performance
degrades especially for SNR < 10 dB, and we can avoid degradation just
partly by training with noise (SINFONY – AWGN + training). Introducing
the Tx module (SINFONY – Tx/Rx NTx = 56), we further improve classifi-
cation accuracy at low SNR. If we encode the features from NFeat = 56 to
only NTx = 14 in the Tx module (SINFONY – Tx/Rx NTx = 14) to have
less channel uses/bandwidth (stronger bottleneck), the error rate is lowest
compared to other SINFONY examples with non-ideal links for low normal-
ized SNR. At high SNR, we observe a small error offset, which indicates
lossy compression. In fact, our system SINFONY learns a reliable semantic
encoding to improve the classification performance of the overall system
with non-ideal links. Every design choice in Table 4.1 is well-motivated.

CIFAR10 Dataset

Comparing these results to the classification accuracy on CIFAR10 shown
in Figure 4.5, we observe a similar behavior. But a few main differences
become apparent. Central performs much better with a 12% error rate than
SINFONY – Perfect comm. with 20%. We expect the reason to lie in the
more challenging dataset with more color channels. Further, SINFONY –
AWGN + training with NTx = NFeat = 64 channel uses runs into a rather
high error floor. Notably, even SINFONY – Tx/Rx (NTx = 16) with fewer
channel uses performs better than both SINFONY – AWGN and SINFONY –
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AWGN + training over the whole SNR range and achieves channel encoding
with negligible loss. This means adding more flexible channel encoding, i.e.,
Tx/Rx module, is crucial for CIFAR10.

Channel Uses Constraint

Since one of the main advantages of semantic communication lies in savings
of information rate, we also investigate the influence of the number of channel
uses NTx on MNIST classification error rate shown in Figure 4.6. From a
practical point of view, we fix the information bottleneck by the output
dimension NTx and maximize the mutual information Iθ (z; y). Decreasing
the number of channel uses from NTx = 14 to 2 and accordingly the up-
per bound IC on the mutual information Iθ (s; y), i.e., compression rate,
from (4.19) or (4.20), we observe that the error floor at high SNR increases.
We assume that, since the channel capacity decreases with SNR and NTx,
higher compression is required for reliable transmission through the channel
in the training SNR interval. For NTx = 56, almost no error floor occurs at
the cost of a smaller channel encoding gain. This means compression and
channel coding are balanced based on the channel condition, i.e., training
SNR region, to find the optimal trade-off to maximize Iθ (z; y), which we
can also observe in unshown simulations.

Semantic vs. Classic Design

Finally, we compare semantic and classic communication system designs.
For the classic digital design, we first assume that the images are compressed
lossless and protected by a channel code for transmission and reliable overall
image classification by the central unit based on qφ(z|s) (Central). We apply
Huffman encoding to a block containing 100 images si where each RGB color
entry contains 8 bits.

For fairness, we also compare to a SINFONY version where Tx and Rx
modules of Table 4.1 are replaced by a classic design (SINFONY – Classic
digital comm.). We first compress each element of the feature vector ri
that is computed in 32-bit floating-point precision in the distributed setting
SINFONY – AWGN to 16-bit. Then, we apply Huffman encoding to a block
containing 100 feature vectors of length NFeat.

Further, we use a 5G LDPC channel code implementation from [52]
with interleaver, rate RC = {0.25, 0.5, 0.25} and long block length of
{15360, 16000, 15360}, and modulate the code bits with {BPSK, BPSK,
16-QAM} such that we have, e.g., parameter set {0.25, 15360,BPSK} in one
simulation. For digital image transmission, we use a rate of RC = 0.25 with
a block length of 15360 and BPSK modulation. At the receiver, we assume
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Figure 4.4: Classification error rate of different SINFONY examples (distributed
setting) and central image processing on the MNIST validation
dataset as a function of normalized SNR.
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setting) and central image processing on CIFAR10 as a function of
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belief propagation decoding, where the noise variance is perfectly known for
LLR computation.

The results in Figure 4.7 reveal tremendous information rate savings for
the semantic design with SINFONY. We observe an enormous SNR shift
of roughly 20 dB compared to the classic digital design with regard to
both image (Central) and feature transmission (SINFONY – Classic digital
comm.). Note that the classic design is already near the Shannon limit and
even if we improve it by ML we are only able to shift its curve by a few
dB. The reason may lie in overall system optimization with SINFONY with
regard to semantics and analog encoding of x.

SINFONY vs. Analog “Semantic” Autoencoder

To distinguish both influences, we also implemented the approach of (4.14)
according to Shannon by analog AEs. The analog AE has been introduced
by O’Shea and Hoydis in [6]. From the viewpoint of semantic communication,
it resembles the semantic approach from [19], [21], [28], [32] without differ-
entiating between semantic and channel coding, and the mutual information
constraint I (x; y) like in [21]. We trained the AE matching the Tx and Rx
module in Table 4.1 with mean square error criterion for reliable transmission
of the feature vector r with SINFONY training settings. The Rx module
consists of one ReLU layer of width Nw = NTx providing the estimate of r.
We provide results (SINFONY – Analog semantic AE) in Figure 4.7. Indeed,
most of the shift is due to analog encoding. By this means, we further avoid
the typical thresholding behavior of a classic digital system seen at 14 dB.

In conclusion, this surprisingly clear result justifies an analog “semantic”
communications design and shows its huge potential to provide bandwidth
savings. However, introducing the semantic RV z by SINFONY, we can
further shift the curve by 2 dB and avoid a slightly higher error floor
compared to the analog “semantic” AE. We expect a larger performance gap
with more challenging image datasets, such as CIFAR10. More importantly,
the main benefit of SINFONY lies in its lower training complexity. We
avoid separate and possibly iterative semantic and communication training
procedures where in the first step we need to train SINFONY with ideal
links, which is hard to achieve in practice.

4.7 Conclusions
Motivated by the approach of Bao, Basu et al. [16], [17] and inspired by
Weaver’s notion of semantic communication [2], we brought the terminus
of a semantic source to the context of communications by considering its
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Figure 4.6: Classification error rate of SINFONY on the MNIST validation
dataset for different rate/channel uses constraints as a function of
normalized SNR.
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complete Markov chain. We defined the task of semantic communication
in the sense of a data-reduced and reliable transmission of communications
sources/messages over a communication channel such that the semantic
Random Variable (RV) at a recipient is best preserved. We formulated its
design either as an information maximization or as an information bottleneck
optimization problem covering important implementations aspects like the
reparametrization trick and solved the problems approximately by minimizing
the cross-entropy that upper bounds the negative mutual information. With
this article, we distinguish from related literature [16], [17], [21], [26], [32]
in both classification and perspective of semantic communication and a
different ML-based solution approach.

Finally, we proposed the ML-based semantic communication system SIN-
FONY for a distributed multipoint scenario: SINFONY communicates the
meaning behind multiple messages that are observed at different senders to a
single receiver for semantic recovery. We analyzed SINFONY by processing
images as an example of messages. Notably, numerical results reveal a
tremendous rate-normalized SNR shift up to 20 dB compared to classically
designed communication systems.

Outlook
In this work, we contributed to the theoretical problem description of
semantic communication and data-based ML solution approaches with DNNs.
There remain open research questions such as:

• Numerical Comparison to Variational IB: It remains unclear if
solving the variational IB problem (4.21) holds benefits compared to
our proposed approach.

• Implementation: Optimization with the reparametrization trick
requires a known differential channel model and training at one location
with dedicated hardware such as graphics processing units [53]. In
addition, large amounts of labeled data are required with data-driven
ML techniques, which can be expensive and time-consuming to acquire
and process. Hence, further research is required to clarify how a
semantic design can be implemented efficiently in practice.

• Semantic Modeling: Developing effective models of semantics is
crucial, and thus we proposed the usage of probabilistic models. If the
underlying problem can be described by a well-known model, e.g., a
physical process to be measured and processed by a sensor network [32],
a promising idea is to apply model-based approaches based on Bayesian
inference for encoding and decoding—potentially combined with the
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technique of deep unfolding. In the context of NLP, design of knowledge
graphs such as ontologies or taxonomies is a promising modeling
approach for human language.

• Inconsistent Knowledge Bases: We assumed that sender and
recipient share the same background knowledge base: How does per-
formance deteriorate if there is a mismatch and how to deal with this
problem [27]?
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[31] S. Hassanpour, D. Wübben, and A. Dekorsy, “Forward-Aware Informa-
tion Bottleneck-Based Vector Quantization: Multiterminal Extensions for
Parallel and Successive Retrieval,” IEEE Transactions on Communica-
tions, vol. 69, no. 10, pp. 6633–6646, Jul. 2021. doi: 10.1109/TCOMM.2021.
3097142.

[32] E. Beck, B.-S. Shin, S. Wang, T. Wiedemann, D. Shutin, and A. Dekorsy,
“Swarm Exploration and Communications: A First Step towards Mutually-
Aware Integration by Probabilistic Learning,” Electronics, Swarm Commu-
nication, Localization and Navigation, vol. 12, no. 8, p. 1908, Apr. 2023.
doi: 10.3390/electronics12081908.

[33] I. E. Aguerri and A. Zaidi, “Distributed Variational Representation Learn-
ing,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 43, no. 1, pp. 120–138, Jan. 2021. doi: 10.1109/TPAMI.2019.2928806.

[34] J. Shao, Y. Mao, and J. Zhang, “Task-Oriented Communication for Mul-
tidevice Cooperative Edge Inference,” IEEE Transactions on Wireless
Communications, vol. 22, no. 1, pp. 73–87, Jan. 2023. doi: 10.1109/TWC.
2022.3191118.

[35] O. Simeone, “A Brief Introduction to Machine Learning for Engineers,”
Foundations and Trends® in Signal Processing, vol. 12, no. 3-4, pp. 200–431,
Aug. 2018. doi: 10.1561/2000000102.

[36] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked Denoising Autoencoders: Learning Useful Representations in a
Deep Network with a Local Denoising Criterion,” Journal of Machine
Learning Research, vol. 11, no. 110, pp. 3371–3408, Dec. 2010.

[37] S. Hassanpour, “Source & Joint Source-Channel Coding Schemes Based
on the Information Bottleneck Framework,” Ph.D. dissertation, University
of Bremen, Bremen, Germany, Aug. 2022, p. 196.

[38] M. Sana and E. C. Strinati, “Learning Semantics: An Opportunity for
Effective 6G Communications,” in 19th IEEE Annual Consumer Commu-
nications Networking Conference (CCNC 2022), Virtual Conference, Jan.
2022, pp. 631–636. doi: 10.1109/CCNC49033.2022.9700645.

[39] N. Farsad, N. Shlezinger, A. J. Goldsmith, and Y. C. Eldar, “Data-Driven
Symbol Detection Via Model-Based Machine Learning,” in IEEE Statistical
Signal Processing Workshop (SSP 2021), Virtual Conference, Jul. 2021,
pp. 571–575. doi: 10.1109/SSP49050.2021.9513859.

https://doi.org/10.1109/TCOMM.2020.3019447
https://doi.org/10.1109/TCOMM.2021.3097142
https://doi.org/10.1109/TCOMM.2021.3097142
https://www.mdpi.com/2079-9292/12/8/1908
https://www.mdpi.com/2079-9292/12/8/1908
https://doi.org/10.3390/electronics12081908
https://doi.org/10.1109/TPAMI.2019.2928806
https://doi.org/10.1109/TWC.2022.3191118
https://doi.org/10.1109/TWC.2022.3191118
https://arxiv.org/abs/1709.02840
https://doi.org/10.1561/2000000102
https://jmlr.org/papers/v11/vincent10a.html
https://jmlr.org/papers/v11/vincent10a.html
https://doi.org/10.1109/CCNC49033.2022.9700645
https://doi.org/10.1109/SSP49050.2021.9513859


4.8 References 133

[40] Z. Goldfeld and Y. Polyanskiy, “The Information Bottleneck Problem
and its Applications in Machine Learning,” IEEE Journal on Selected
Areas in Information Theory, vol. 1, no. 1, pp. 19–38, May 2020. doi:
10.1109/JSAIT.2020.2991561.

[41] A. Zaidi, I. Estella-Aguerri, and S. Shamai Shitz, “On the Information
Bottleneck Problems: Models, Connections, Applications and Information
Theoretic Views,” Entropy, vol. 22, no. 2, p. 151, Feb. 2020. doi: 10.3390/
e22020151.

[42] B. M. Kurkoski and H. Yagi, “Quantization of Binary-Input Discrete
Memoryless Channels,” IEEE Transactions on Information Theory, vol. 60,
no. 8, pp. 4544–4552, 2014. doi: 10.1109/TIT.2014.2327016.

[43] J. Lewandowsky and G. Bauch, “Information-Optimum LDPC Decoders
Based on the Information Bottleneck Method,” IEEE Access, vol. 6,
pp. 4054–4071, 2018. doi: 10.1109/ACCESS.2018.2797694.

[44] A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy, “Deep Variational
Information Bottleneck,” in 5th International Conference on Learning
Representations (ICLR 2017), Toulon, France, Apr. 2017, pp. 1–19. doi:
10.48550/arXiv.1612.00410.

[45] M. I. Belghazi, A. Baratin, S. Rajeswar, S. Ozair, Y. Bengio, A. Courville,
and R. D. Hjelm, “MINE: Mutual Information Neural Estimation,” in
International Conference on Machine Learning (ICML 2018), Stockholm,
Sweden, Jun. 2018. doi: 10.48550/arXiv.1801.04062.

[46] T. M. Cover and J. A. Thomas, Elements of information theory, 2nd. Hobo-
ken, NJ, USA: Wiley-Interscience, Jul. 2006. doi: 10.1002/047174882X.

[47] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image
Recognition,” in 29th IEEE Conference on Computer Vision and Pattern
Recognition (CVPR 2016), Las Vegas, NV, USA, Jun. 2016, pp. 770–778.
doi: 10.1109/CVPR.2016.90.

[48] K. He, X. Zhang, S. Ren, and J. Sun, “Identity Mappings in Deep Residual
Networks,” in 14th European Conference on Computer Vision (ECCV
2016), ser. Lecture Notes in Computer Science, Amsterdam, Netherlands,
Oct. 2016, pp. 630–645. doi: 10.1007/978-3-319-46493-0_38.

[49] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A.
Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J.
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5.1 Abstract
Following the recent success of machine learning tools in wireless commu-
nications, the idea of semantic communication by Weaver from 1949 has
gained attention. It breaks with Shannon’s classic design paradigm by aim-
ing to transmit the meaning, i.e., semantics, of a message instead of its
exact version, allowing for information rate savings. In this work, we apply
the Stochastic Policy Gradient (SPG) to design a semantic communication
system by reinforcement learning, separating transmitter and receiver, and
not requiring a known or differentiable channel model — a crucial step
towards deployment in practice. Further, we motivate the use of SPG for
both classic and semantic communication from the maximization of the
mutual information between received and target variables. Numerical results
show that our approach achieves comparable performance to a model-aware
approach based on the reparametrization trick, albeit with a decreased
convergence rate.

Index Terms
Semantic communication, wireless networks, information maximization, in-
formation bottleneck, machine learning, reinforcement learning, stochastic
policy gradient, task-oriented.

5.2 Introduction
To meet the unprecedented needs of 6G communication efficiency in terms
of data rate, latency, and power, attention has been drawn to semantic
communication [1]–[4]. It aims to transmit the meaning of a message rather
than its exact version, which has been the main focus of digital error-
free system design so far [1]. Bao, Basu et al. [5] were the first to define
semantic information sources and channels to tackle the semantic design by
conventional approaches arguing for the generality of Shannon’s theory not
only for the technical level but for semantic level design as Weaver [1].

Recently, inspired by [1], [5] and the rise of Machine Learning (ML) in
communications research, transformer-based Deep Neural Networks (DNNs)
have been introduced to AutoEncoders (AEs) for text transmission to learn
compressed hidden representations of semantic content, aiming to improve
communication efficiency [6]. In [7], the authors suggest using semantic
similarity as the objective function: As most semantic metrics are non-
differentiable, they propose a self-critic Reinforcement Learning (RL) solution.
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Both [6], [7] improve performance especially at low SNR compared to classical
digital transmissions with [7] being slightly superior.

This paper builds on our idea from [4]: There, we define semantic com-
munication as the data-reduced, reliable transmission of semantic sources
and cast its design as an Information Bottleneck (IB) problem extending [5].
We apply our ML-based design Semantic INFOrmation TraNsmission and
RecoverY (SINFONY) to a distributed multipoint scenario, communicat-
ing meaning from multiple image sources to a single receiver for semantic
recovery. Numerical results show that SINFONY outperforms classical
communication systems.

Semantic communication is a developing field: For a more in-depth survey,
we refer the reader to, e.g., [2]–[4]. It remains still unclear how the approaches
proposed so far can be implemented in practice which motivates the main
contributions of this article:

• We apply the Stochastic Policy Gradient (SPG) to train a semantic
communication system, i.e., RL-SINFONY, by RL. By this means,
we separate transmitter and receiver, and do not require a known or
differentiable channel model — a crucial step towards deployment in
practice.

• Further, we derive the application of the SPG for both classic and
semantic communication from maximization of the mutual information
between target and received variables compared to [8].

• In particular, we investigate a task-oriented system model and a dis-
tributed application scenario with multiple sources and transmitters.
By this means, our work distinguishes from the RL-based approach
in [7] that was extended to handle non-differentiable channels at the
time of writing.

• Further, the authors of [7] observed that training does not converge
within their time limit to comparable results as the baseline approach
in their setup for text transmission. We confirm the problem of slow
convergence hinting at solution approaches and demonstrate feasibility
in our scenario.

In the following, we revisit our theoretical framework from [4] in Sec. 5.3.
For RL-based optimization, we introduce the SPG in Sec. 5.4. Finally, in
Sec. 5.5 and 5.6, we provide one numerical example for SINFONY application
from [4] and summarize the main results, respectively.
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Figure 5.1: Block diagram of the considered semantic system model.

5.3 Semantic Communication Framework

5.3.1 Semantic System Model

Semantic Source and Channel

First, we define our information-theoretic system model of semantic commu-
nication shown in Fig. 5.1. Motivated by the approach of Bao, Basu et al. [5],
we adopt the terminus of a semantic source as in [4] and describe it as a
hidden target multivariate Random Variable (RV) z ∈ MNz×1

z from domain
Mz of dimension Nz distributed according to a probability density function
(pdf) or probability mass function (pmf) p(z). To simplify the discussion,
we assume it to be discrete and memoryless.1

Then, a semantic channel modeled by conditional distribution p(s|z)
generates an observation or source signal, a RV s ∈ MNs×1

s , that enters
the communication system. Compared to [5] where the semantic channel is
the transmission system, we consider probabilistic semantic channels p(s|z)
using the definition from [4]. We refer the reader to [4] for an example of
what these RVs may look like.

1For the remainder of the article, note that the domain of all RVs M may be either
discrete or continuous. Further, we note that the definition of entropy for discrete and
continuous RVs differs. For example, the differential entropy of continuous RVs may
be negative whereas the entropy of discrete RVs is always positive [9]. Without loss of
generality, we will thus assume all RVs either to be discrete or to be continuous. In this
work, we avoid notational clutter by using the expected value operator: Replacing the
integral by summation over discrete RVs, the equations are also valid for discrete RVs and
vice versa.
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Semantic Channel Encoding

Our challenge is to encode the source s onto the transmit signal x ∈ MNTx×1
x

(see Fig. 5.1) for efficient and reliable semantic transmission through the
physical communication channel p(y|x), where y ∈ MNRx×1

y is the received
signal vector, such that the semantic RV z at a recipient is best preserved [4].
We parametrize the encoder pθ(x|s) by a parameter vector θ ∈ RNθ×1

and assume pθ(x|s) to be deterministic in communications with pθ(x|s) =
δ(x−µθ(s)) and encoder function µθ(s). In summary, we bring the semantic
source z to the context of communications by considering the complete
Markov chain z ↔ s ↔ x ↔ y in contrast to [5].

In classic Shannon design, the posterior pθ(s|y) is processed to recover the
observation s as accurately as possible at the receiver side. Instead, we recover
semantics z processing pθ(z|y): Since the entropy H (z) = Ez∼p(z)[− ln p(z)]
of the semantic RV z is expected to be less or equal to the entropy H (s)
of the source s, i.e., H (z) ≤ H (s), we can compress by transmitting the
semantic RV z. There, Ex∼p(x)[f(x)] denotes the expected value of f(x)
w.r.t. both discrete or continuous RVs x.

5.3.2 Semantic Communication Design
Now, we revisit our two design approaches from [4].

InfoMax Principle

First, we like to find the encoder pθ(x|s) that maps s to a representation y
such that most information of the relevant RV z is included in y, i.e., we
maximize the Mutual Information (MI) Iθ (z; y) w.r.t. pθ(x|s):

arg max
pθ(x|s)

Iθ (z; y) (5.1)

=arg max
pθ(x|s)

Ez,y∼pθ(z,y)

[︃
ln pθ(z,y)
p(z)pθ(y)

]︃
(5.2)

=arg max
pθ(x|s)

H (z) − H (pθ(z,y), pθ(z|y)) (5.3)

=arg max
pθ(x|s)

Ez,y∼pθ(z,y)[ln pθ(z|y)] . (5.4)

There, H (p(x), q(x)) = Ex∼p(x)[− ln q(x)] is the cross-entropy between two
pdfs/pmfs p(x) and q(x).

If the posterior pθ(z|y) in (5.4) is intractable to compute, we can replace
it with a variational distribution qφ(z|y) with parameters φ ∈ RNφ×1, i.e.,
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the semantic decoder in Fig. 5.1. Then, we can define a MI Lower BOund
(MILBO) [4]:

Iθ (z; y) ≥ Ez,y∼pθ(z,y)[ln qφ(z|y)] (5.5)
= − Ey∼p(y)[H (pθ(z|y), qφ(z|y))] (5.6)
= −LCE

θ,φ . (5.7)

Now, we can learn optimal parametrizations θ and φ of the transmitter
discriminative model pθ(x|s) and of the variational receiver posterior qφ(z|y)
by minimizing the amortized cross-entropy LCE

θ,φ in (5.6), i.e., marginalized
across received signals y [4]. The encoder can be seen by rewriting:

LCE
θ,φ = Es,x,y,z∼pθ(s,x,y,z)[− ln qφ(z|y)] (5.8)

= Es,z∼p(s,z)
[︁
Ex∼pθ(x|s)

[︁
Ey∼p(y|x)[− ln qφ(z|y)]

]︁]︁
.

The idea is to solve (5.8) by AEs or — in this article — RL. Thus, we use
DNNs for the design of both encoder pθ(x|s) and decoder qφ(z|y) [6].

Note that in our semantic problem (5.1) or (5.8), we do not auto encode
the hidden z or s as in [6] itself, but encode s to obtain z by decoding. This
means our interpretation of semantic information and its recovery deviates
from literature: We define semantics z explicitly compared to, e.g., [6], that
optimizes on s and then measures semantic similarity w.r.t. its estimate ŝ
explicitly by some semantic metric L(s, ŝ).

Information Bottleneck View

Further, introducing a constraint on the information rate in (5.1), we can
formulate an Information Bottleneck (IB) optimization problem [2], where we
like to maximize the relevant information Iθ (z; y) subject to the constraint
to limit the compression rate Iθ (s; y) to a maximum information rate IC:

arg max
pθ(x|s)

Iθ (z; y) s.t. Iθ (s; y) ≤ IC . (5.9)

In this article, we set constraint IC by fixing NTx since then an upper bound
on Iθ (s; y) grows as shown in [4]. With fixed constraint IC, we then need
to maximize the relevant information Iθ (z; y). As in the InfoMax problem,
we can exploit the MILBO to use the amortized cross-entropy LCE

θ,φ in (5.8)
as the optimization criterion.
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5.4 Stochastic Policy Gradient-based Rein-
forcement Learning

If calculating the expected value of the amortized cross-entropy LCE
θ,φ in (5.8)

is analytically or computationally intractable as typical with DNNs, we
can approximate it using Monte Carlo sampling techniques with N samples
{(zi, si, xi, yi)}

N
i=1.

5.4.1 Stochastic Gradient Descent-based Optimization
For Stochastic Gradient Descent (SGD)–based optimization, the gradient
w.r.t. φ can then be calculated by

∂LCE
θ,φ

∂φ
= − Ez,s,y∼pθ(y|s)p(s|z)p(z)

[︃
∂ ln qφ(z|y)

∂φ

]︃
(5.10)

≈ 1
N

N∑︂

i=1

∂ [− ln qφ(zi|yi)]
∂φ

(5.11)

with N being equal to the batch size Nb and by application of the back-
propagation algorithm in Automatic Differentiation Framework (ADF), e.g.,
TensorFlow or PyTorch.

Reinforce Gradient

Computing the gradient w.r.t. θ is not straightforward since we sample w.r.t.
the distribution pθ(y|s) dependent on θ [9]. For continuous-valued y and
using the log-trick ∂ ln pθ(y|s)

∂θ = ∂pθ(y|s)
∂θ /pθ(y|s), we derive:

∂LCE
θ,φ

∂θ

= − ∂

∂θ
Ez,s,y∼pθ(y|s)p(s,z)[ln qφ(z|y)] (5.12)

= − Ez,s∼p(s,z)

[︃ ∫︂

MNRx
y

∂pθ(y|s)
∂θ⏞ ⏟⏟ ⏞

=pθ(y|s)· ∂ ln pθ(y|s)
∂θ

· ln qφ(z|y) dy
]︃

(5.13)

= − Ez,s,y∼pθ(y|s)p(s,z)

[︃
∂ ln pθ(y|s)

∂θ
· ln qφ(z|y)

]︃
(5.14)

≈ − 1
N

N∑︂

i=1

∂ ln pθ(yi|si)
∂θ

· ln qφ(zi|yi) . (5.15)
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We arrive at the same result with discrete RVs y replacing the integral
in (5.13) by a sum. The Monte Carlo approximation (5.15) is the Reinforce
gradient w.r.t. θ [9]. This estimate has high variance since we sample w.r.t.
the distribution pθ(y|s) dependent on θ.

Reparametrization Trick

Leveraging the direct relationship between θ and y in ln qφ(z|y) can help
reduce the estimator’s high variance. Typically, e.g., in Variational Au-
toEncoders (VAEs), the reparametrization trick is used to achieve this [9].
Here we can apply it if we can decompose the latent variable y ∼ pθ(y|s)
into a differentiable function y = fθ(s,n) and a RV n ∼ p(n) independent
of θ. Fortunately, the typical forward model of a communication system
pθ(y|s) fulfills this criterion. Assuming a deterministic (DNN) encoder
x = µθ(s) and additive noise n with covariance Σ, we can thus rewrite y
into fθ(s,n) = µθ(s) + Σ1/2 · n and accordingly the amortized cross-entropy
gradient (5.12) into:

∂LCE
θ,φ

∂θ
= − Ez,s,n∼p(n)p(s|z)p(z)

[︃
∂fθ(s,n)

∂θ
· ∂ ln qφ(z|y)

∂y

]︃
(5.16)

≈ − 1
N

N∑︂

i=1

∂fθ(si,ni)
∂θ

· ∂ ln qφ(zi|y)
∂y

⃓⃓
⃓⃓
y=fθ(si,ni)

. (5.17)

The trick can be easily implemented in ADFs by adding a noise layer after
function x = µθ(s), typically used for regularization in ML literature. Then,
our loss function (5.8) is the empirical cross-entropy:

LCE
θ,φ ≈ − 1

N

N∑︂

i=1
ln qφ(zi|yi = fθ(si,ni)) . (5.18)

This allows for joint learning of both θ and φ, as demonstrated in recent
works [4], [10], treating unsupervised optimization of AEs and SINFONY as
a supervised learning problem.

5.4.2 Stochastic Policy Gradient
We note that optimization of encoder and decoder with both gradients (5.15)
or (5.17) requires model-awareness, i.e., a known and differentiable forward
model pθ(y|s). But the gradient

∂ ln pθ(y|s)
∂θ

= ∂µθ(s)
∂θ

· ∂p(y|x)
∂x · ∂ ln p(y|x)

∂p(y|x) (5.19)



5.4 Stochastic Policy Gradient-based Reinforcement Learning 143

with deterministic encoder x = µθ(s) may not be computable, as the channel
model p(y|x) could be non-differentiable or unknown without any channel
estimate. Further, in practice, the transmitter and receiver are separated at
different locations and have at most a rudimentary feedback link, requiring
independent optimization w.r.t. θ and φ: The transmitter does not know
qφ(z|y) and the receiver pθ(x|s), vice versa.

To tackle these challenges in gradient computation, we now introduce a
stochastic policy pθ(x|s) ̸= δ(x − µθ(s)) that fulfills the reparametrization
property:

∂LCE
θ,φ

∂θ
= − ∂

∂θ
Ez,s,x,y∼p(y|x)pθ(x|s)p(s,z)[ln qφ(z|y)] (5.20)

= − Ez,s∼p(s,z)

[︃ ∫︂

MNTx
x

∂pθ(x|s)
∂θ⏞ ⏟⏟ ⏞

=pθ(x|s)· ∂ ln pθ(x|s)
∂θ

· Ey∼p(y|x)[ln qφ(z|y)] dx
]︃

(5.21)

= − Ez,s,x,y∼pθ(z,s,x,y)

[︃
∂ ln pθ(x|s)

∂θ
· ln qφ(z|y)

]︃
(5.22)

≈ 1
N

N∑︂

i=1

∂ ln pθ(xi|si)
∂θ

· [− ln qφ(zi|yi)] . (5.23)

Again the log-trick is applied in (5.21) to arrive in (5.22) and the results
hold for discrete RVs x. Most importantly, (5.22) is the policy gradient
and the derivation is equivalent to the Stochastic Policy Gradient (SPG)
theorem, a fundamental result of continuous-action RL [11]. For integration
into ADFs, usually, an objective function whose gradient is the Monte Carlo
policy gradient estimator of (5.22), i.e., the Reinforce gradient (5.23), is
constructed:

LSPG
θ = 1

N

N∑︂

i=1
ln pθ(xi|si) · [− ln qφ(zi|yi)] . (5.24)

With objective (5.24) or Reinforce gradient (5.23), we can finally optimize
LCE
θ,φ w.r.t. θ, since we can sample {(z, s,x,y)} ∼ pθ(z, s,x,y) and compute

∂ ln pθ(xi|si)
∂θ at the transmitter and − ln qφ(zi|yi) being equal to the per-

sample cross-entropy at the receiver.
Note that si and xi only have to be known at the transmitter and both zi

and yi at the receiver, respectively. This enables the separation or spatial
distribution of transmitter and receiver when the following conditions are
met:
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• Only an a priori known pilot sequence DP = {(zi, si)}Npilot
i=1 of size

Npilot is required. This sequence translates into the training set DT =
{(zi, si, xi, yi)}

Ntrain
i=1 of size Ntrain which is divided into batches of size

Nb for SGD-based optimization.

• Moreover, we require a feedback link to transmit the per-sample cross-
entropy − ln qφ(zi|yi) to the encoder. This term can be interpreted as
a reward or critic known from RL [11]. Accordingly, the transmitter
can be seen as an actor with a policy pθ(x|s). The best continuous
action/policy is then learned by optimization w.r.t. these rewards.

Stochastic Policy

Introducing a stochastic policy means we need to add a probabilistic sam-
pler/explorer function p(x|x̄) to the encoder as shown in Fig. 5.2. Replacing
p(y|s) and p(y|x) by p(x|s) and p(x|x̄) in (5.19) and applying the result
to (5.23), we derive that this function needs to be differentiable. If the
encoder output, i.e., the action space, is continuous with Mx = R, we can
achieve this using for example a Gaussian policy, i.e., a multivariate Gaussian
pdf

p(x|x̄) = p
(︁
x|x̄, σ2

exp
)︁

= N
(︂

(1 − σ2
exp)1/2 · x̄, σ2

exp · I
)︂

(5.25)

with exploration variance σ2
exp ∈ (0, 1) where scaling of the mean x̄ = µθ(s)

is done to ensure the conservation of average energy. Furthermore, the
Gaussian policy offers the benefit of simplicity in parametrization, requiring
tuning of only two pdf parameters. Hence, we employ it in our numerical
experiments. For discrete action spaces MNTx×1

x , a continuous differentiable
relaxation such as the Gumbel Softmax is required [12].

In the special case σ2
exp → 0, the Gaussian policy p(x|x̄, σ2

exp) approaches
a deterministic policy. In [8], the authors show that the true channel
gradient ∂

∂xp(y|x) is then perfectly approximated. However, using a near-
deterministic policy leads in their experiments to high variance of the gradient
estimate (5.23) resulting in slow convergence. To compensate for this effect,
we require a much larger and computationally expensive batch size N = Nb.
From the view of RL, using a stochastic policy with σ2

exp ̸= 0 enables the
exploration of the set of possible actions.

5.4.3 Alternating RL-based Training
After introducing the SPG, we now derive an optimization procedure akin
to [8] for the whole semantic communication system. It does not require
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p(x|x̄)

Communication
Channel p(y|x)

Semantic Decoder
qφ(z|y)

2. Train Encoder
∂

∂θ
LSPG

θ

1. Train Decoder
∂

∂φ
LCE

θ,φ

si ∈ DT

x̄i

xi ∈ DT
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Feedback link:
− ln qφ(zi|yi)

Reinforcement
Learning

Supervised
Learning

Figure 5.2: Optimization procedure of a semantic encoder and decoder without a
differentiable channel model: 1. Train the decoder supervised based
on the training sequence and updated encoder but without sampler.
2. Encoder explores transmit signals xi and improves its policy
according to the decoder reward feedback. 3. Alternate between
both steps until convergence.

any channel model but a fixed pilot, i.e., training, sequence and a feedback
link. Further, it enables separation of encoder and decoder. We show it in
Fig. 5.2:

1. We note that according to (5.11) decoder optimization reduces to
supervised learning w.r.t. LCE

θ,φ and φ at the receiver side. Thus, in
the first step, we train the decoder based on the training sequence and
updated encoder, but without sampler/explorer (σ2

exp = 0).

2. Second, the encoder explores with transmit signals xi. It is optimized
based on the policy gradient of LSPG

θ and the reward − ln qφ(zi|yi)
that the decoder feeds back.

3. We alternate between the first and second training steps until conver-
gence. Note that we can use one or multiple SGD steps and batches
for each alternating training step, respectively.



146 5 Pub. 3 – Reinforcement Learning of Semantic Communication by SPG

z

p(s1|z)

Encoder 1:
pθ1 (x1|s1)

Channel 1

s1 ∈ RNx×Ny×Nc

x1 ∈ RNTx×1

p(s2|z)

Encoder 2:
pθ2 (x2|s2)

Channel 2

s2

x2

p(s3|z)

Encoder 3:
pθ3 (x3|s3)

Channel 3

s3

x3

p(s4|z)

Encoder 4:
pθ4 (x4|s4)

Channel 4

s4

x4

ẑ
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Figure 5.3: RL-SINFONY scenario: Four distributed agents extract features for
rate-efficient transmission to a decoder that extracts semantics.

Reminiscent of the RL fashion of the stochastic policy optimization of
semantic information transmission and recovery [4], we name this approach
RL-SINFONY. Finally, we have derived the SPG for semantic communication
starting from the InfoMax problem (5.1). Replacing Iθ (z; y) by Iθ (s; y),
this result can be generalized to also hold for classic communications.

5.5 Example of Model-free Semantic Recovery
To evaluate the proposed model-free optimization approach RL-SINFONY,
we use the numerical example of distributed image classification with SIN-
FONY from [4] shown in Fig. 5.3. Thus, we will now assume the hidden
semantic RV to be a one-hot vector z ∈ {0, 1}M×1 representing one of M
image classes. Then, each of the four agents observes its image, i.e., the
observation si ∼ p(si|z) with i = 1, . . . , 4, through a semantic channel, being
generated by the same semantic RV z and thus belonging to the same class.
Based on these images, a central unit shall extract semantics, i.e., perform
classification.

We propose to optimize the four encoders pθi(xi|si) jointly with a decoder
qφ(z|y = [y1,y2,y3,y4]T ) w.r.t. cross-entropy (5.8) of the semantic labels
(see Fig. 5.3). Hence, we maximize the system’s overall semantic measure, i.e.,
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classification accuracy.
To show the basic working principle and ease implementation, we use

the grayscale MNIST and colored CIFAR10 datasets with M = 10 image
classes [4]. We assume that the semantic channel generates an image that
we divide into four equally sized quadrants and each agent observes one
quadrant si ∈ RNx×Ny×Nc where Nx and Ny is the number of image pixels
in the x- and y-dimension, respectively, and Nc is the color channel number.

5.5.1 Distributed SINFONY Approach
For the design of SINFONY, we rely on the powerful DNN approach ResNet
for feature extraction [4]. We use the pre-activation version of ResNet
without bottlenecks implemented for CIFAR10 classification. In Tab. 5.1,
we show its structure modified for the distributed scenario from Fig. 5.3.
There, ResNetBlock is the basic building block of the ResNet architecture.
Each block consists of multiple residual unit (res. un.) and we use 2 for the
MNIST and 3 for the CIFAR10 dataset. For further implementation details,
we refer the reader to the original work [4] and our source code [13].

Our key idea here is to modify ResNet w.r.t. the communication task by
splitting it where a low-bandwidth representation of semantic information
is present. Therefore, we aim to transmit each agent’s local features of
length NFeat provided by the Feature Extractors in Tab. 5.1 instead of
all sub-images si and add the component Tx to encode the features into
xi ∈ RNTx×1 for transmission through the wireless channel (see Fig. 5.3).
We note that xi ∈ RNTx×1 is analog and that the output dimension NTx
defines the number of channel uses per agent and thus information rate. To
limit the transmit power to one, we constrain the Tx Linear layer output by
the norm along the training batch or the encode vector dimension (dim.).

For RL-SINFONY, we add a Gaussian Sampler (5.25) after the Tx output
compared to [4]. Further, we assume all agents and the Rx module to share
a training set DT and a perfect reward feedback link from the Rx module to
all agents.

At the receiver side, we use a single Rx module only with shared DNN
layers of width Nw and parameters φRx for all inputs yi [4]. Based on an
aggregation of the four Rx outputs, a softmax layer with M = 10 units
finally computes class probabilities qφ(z|y) whose maximum is the maximum
a posteriori estimate ẑ.

5.5.2 Optimization Details
We evaluate RL-SINFONY in TensorFlow 2 on the MNIST and CIFAR10
datasets with training set DT [13]. For cross-entropy loss minimization, we
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Table 5.1: RL-SINFONY–DNN architecture for image example.

Component Layer Dimension

Input Image (MNIST, CIFAR10) (14, 14, 1), (16, 16, 3)

4× Conv2D (14, 14, 14), (16, 16, 16)
Feature ResNetBlock (2/3 res. un.) (14, 14, 14), (16, 16, 16)
Extractor ResNetBlock (2/3 res. un.) (7, 7, 28), (8, 8, 32)

ResNetBlock (2/3 res. un.) (4, 4, 56), (4, 4, 64)
Batch Normalization (4, 4, 56), (4, 4, 64)
ReLU activation (4, 4, 56), (4, 4, 64)
GlobalAvgPool2D (56), (64)

4× Tx ReLU NTx

Linear NTx

Normalization (dim.) NTx

4× Sampler AWGN + Normalization NTx

4× Channel AWGN NTx

Rx ReLU (4× shared) (2, 2, Nw)
GlobalAvgPool2D Nw

Classifier Softmax M = 10

use the gradient approximations from Sec. 5.4 and the SGD-variant Adam
with a batch size of Nb = 500. We add l2-regularization with a weight decay
of 0.0001. To optimize the transceiver for a wider SNR range, we choose the
SNR to be uniformly distributed within [−4, 6] dB where SNR = 1/σ2

n with
noise variance σ2

n. We set Nw = NFeat as default and refer to [4], [13] for
more implementation details. In the following, we compare the performance
of2:

• Digital comm.: Digital transmission baseline from [4] with capacity
achieving LDPC code and ResNet classifier.

2It is not straightforward to compare the approach from [7] with RL-SINFONY as
different models were investigated. We leave a detailed comparison with other approaches
from the literature for future work.
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• SINFONY: The distributed SINFONY design from [4] trained model-
aware as one DNN with channel noise layer using the reparametrization
trick (5.17) to approximate the gradients. We train forNe = 100 epochs
with the MNIST dataset.

• RL-SINFONY: New approach trained model-free via RL as shown
in Fig. 5.2 using SPG (5.23). We alternate between 10 decoder and
encoder optimization steps. Note that one decoder and encoder step
amounts to one iteration of the model-aware approach where the
encoder and decoder are optimized jointly. Hence, for a fair comparison,
we divide the number of alternating iterations or epochs Ne of the SPG
approach by 2. We choose Ne = 3000 and add Ne,rx = 600 epochs
of receiver fine-tuning at the end [8]. To decrease the SPG estimator
variance, we choose a rather high exploration variance σ2

exp = 0.15.

- Perfect comm.: SINFONY trained with perfect communication links
without Tx and Rx modules, but with Tx normalization. Thus, the
plain power-constrained features are transmitted with NTx = 56 or 64
channel uses. It serves as the benchmark, as it indicates the maximum
performance of the distributed design.

- Tx/Rx NTx: Default SINFONY from Tab. 5.1 trained with Tx and
Rx module and NTx channel uses.

5.5.3 Numerical Results
To measure semantic transmission quality, we use classification error rate
on semantic RV z and normalize the SNR by the spectral efficiency η =
NFeat/NTx [4].

MNIST dataset

The numerical results of our proposed approach RL-SINFONY on the MNIST
validation dataset are shown in Fig. 5.4. We observe that both approaches
RL-SINFONY and SINFONY with Tx/Rx module approach the benchmark
with ideal links (SINFONY – Perfect comm.) at high SNR and beat Digital
comm. w.r.t. communication efficiency. Notably, both curves are very close
to each other, i.e., the performance gap after training is minor. This means
training of RL-SINFONY converged successfully. Note that Digital comm.
classifies the entire image at once and thus outperforms at high SNR [4].
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Convergence Rate

Since the number of training epochs required to achieve the same performance
deviates significantly with Ne + Ne,rx = 3000 + 600 = 3600 compared to
Ne = 100, we take a closer look at training convergence in terms of the
cross-entropy loss shown in Fig. 5.5. We averaged the loss over 10 training
runs and illustrate the interval between the maximum and minimum loss
value using shaded areas. To reach the same loss, we require more than 10
times more epochs with RL-SINFONY compared to SINFONY. The reason
for the decreased convergence is the increased variance of the Reinforce
gradient (5.23) compared to the reparametrization trick gradient (5.17).
Further, we attribute the increased variance in training losses (blue-shaded
area) to it.

CIFAR10 dataset and convergence issues

We further evaluate RL-SINFONY on the more challenging CIFAR10 vali-
dation dataset with NTx = 16 and fine-tuned learning rate ϵ = 10−4. The
performance curves of SINFONY and RL-SINFONY with Adam, depicted
in Fig. 5.6, closely align, affirming the effectiveness of RL-SINFONY.

Nevertheless, it is crucial to highlight that training with Adam does not
converge to a local minimum with the same 80% validation accuracy achieved
by the SINFONY benchmark in [4]. In that work, we utilized SGD with a
batch size of Nb = 64, ran for Ne = 200 epochs, and employed a dedicated
learning rate schedule. Despite exploring various hyperparameter settings,
replicating the same performance with RL-SINFONY has proven elusive.

Additionally, we observed that the training of RL-SINFONY on the
CIFAR10 dataset exhibits slow convergence. For example, using SGD with
Nb = 128 and ϵ = 10−4 (see Fig. 5.6), we achieve a validation accuracy
of 50% at high SNR after Ne + Ne,rx = 5000 + 1000 = 6000 epochs, still
gradually improving to a maximum of 60% after an extensive training period
of Ne +Ne,rx = 50000 + 10000 = 60000 epochs.

We assume the slow convergence to be caused by the high variance of the
Reinforce gradient (5.23), which increases by decreasing σ2

exp and increasing
the continuous output space NTx of x. Training with the more challenging
CIFAR10 dataset may require more accurate gradient estimates compared to
MNIST. Thus, we suggest exploring variance-reduction techniques in future
work [9], [14]. Note that, analogous to the mean x̄ = µθ(s) of the Gaussian
policy (5.25), also the exploration variance σ2

exp can be parametrized by a
DNN with shared parameters θ or independent parameters θ = [θx̄,θσ2

exp
]T .

Both approaches could facilitate quicker convergence and more efficient
hyperparameter tuning, ultimately leading to higher validation accuracy.
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5.6 Conclusion

In this work, we expanded on our previous idea from [4] by introducing the
Stochastic Policy Gradient (SPG): We designed a semantic communication
system via reinforcement learning, separating transmitter and receiver, and
not requiring a known or differentiable channel model — a crucial step
towards deployment in practice. Further, we derived the use of the SPG
for both classic and semantic communication from the maximization of the
Mutual Information (MI) between received and target variables. Numerical
results show that our approach achieves comparable performance to a model-
aware approach, albeit at the cost of a decreased convergence rate by at least
a factor of 10. It remains the question of how to improve the convergence
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rate with more challenging datasets.
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6.1 Abstract
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ẑ: “Tool is worn.”

z: Worn tool

s:

Semantic Source
z, s ∼ p(z, s)

Wireless Semantic
Communication

pθ(y|s)

Semantics
Presentation

p(ν|y)

Human Decision-
Making p(ẑ|ν)
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Figure 6.1: Graphical Abstract of [BLR+25].

As early as 1949, Weaver defined communication in a very broad sense to
include all procedures by which one mind or technical system can influence
another, thus establishing the idea of semantic communication. With the
recent success of machine learning in expert assistance systems where sensed
information is wirelessly provided to a human to assist task execution, the
need to design effective and efficient communications has become increasingly
apparent. In particular, semantic communication aims to convey the meaning
behind the sensed information relevant for Human Decision-Making (HDM).
Regarding the interplay between semantic communication and HDM, many
questions remain, such as how to model the entire end-to-end sensing-
decision-making process, how to design semantic communication for the
HDM and which information should be provided to the HDM. To address
these questions, we propose to integrate semantic communication and HDM
into one probabilistic end-to-end sensing-decision framework that bridges
communications and psychology. In our interdisciplinary framework, we
model the human through a HDM process, allowing us to explore how feature
extraction from semantic communication can best support HDM both in
theory and in simulations. In this sense, our study reveals the fundamental
design trade-off between maximizing the relevant semantic information and
matching the cognitive capabilities of the HDM model. Our initial analysis
shows how semantic communication can balance the level of detail with
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human cognitive capabilities while demanding less bandwidth, power, and
latency.

Index Terms
6G, assistance systems, human decision-making, human-machine interface,
information maximization (InfoMax), machine learning, psychology, semantic
communication, task-oriented communication, wireless communications

6.2 Introduction
With recent breakthroughs in Machine Learning (ML), such as generative
Artificial Intelligence (AI) or Natural Language Processing (NLP), assis-
tance systems are now finding their way into everyday life [1]. For example,
doctors are supported by expert assistance systems that outperform human
expertise in evaluating medical image data for disease diagnosis [2]. Many
assistance systems acquire information about physical, chemical, and bi-
ological processes through sensors or sensor networks and transmit it to
humans for decision-making when performing specific tasks. Applications
that exploit such assistance systems include remote operation concepts for
production, rescue scenarios, healthcare, autonomous driving, underwater
repairs, remote sensing for earth observation and swarm exploration [3]. For
example, mobile robotic systems equipped with sensors can assist Human
Decision-Making (HDM). All of this relies heavily on efficient and effective
wireless communications, which is therefore an integral part of the entire
end-to-end sensing-decision-making process.

At this point, semantic communication comes into play as it deals with the
question of how information from the assistance system can be communicated
more effectively to the human to improve HDM in task execution while
demanding less bandwidth, power, and latency. Several research questions
can be identified from this interplay:

a) How to model the end-to-end sensing-decision-making process that
bridges the disciplines communications and psychology?

b) Is semantic communication suitable for providing the information
needed in terms of relevance and accuracy to facilitate effective HDM?
Given a task, which and how much information should semantic com-
munication provide, i.e., how to design semantic communication for
accurate HDM?
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c) Given the provided semantic information, how does the HDM process
impact the end-to-end sensing-decision-making process?

To address these questions, we propose integrating semantic communication
and HDM into a unified probabilistic end-to-end sensing-decision framework,
thereby composing all three levels described by Weaver [4]. To showcase our
framework’s applicability and highlight its key mechanisms, we examine a
case study grounded in an empirical categorization example. As a starting
point of our study, we will first reflect upon the State of the Art (SotA) in
semantic communication and Human Decision-Making (HDM).

6.2.1 Semantic Communication
In the 1949 review of Shannon’s general theory of communication [4], Weaver
introduces the idea of semantic communication with regard to both humans
and technical systems. There, he used the term communication “in a very
broad sense to include all of the procedures by which one mind may affect
another. This, of course, involves not only written and oral speech, but
also music, the pictorial arts, the theatre, the ballet, and in fact all human
behavior. In some connections it may be desirable to use a still broader
definition of communication, namely, one which would include the procedures
by means of which one mechanism [. . . ] affects another mechanism [. . . ].”
To meet the unprecedented demands of 6G communication efficiency in
terms of bandwidth, latency, and power, attention has been drawn to the
broad concept of semantic communication [4]–[9]. It aims to transmit the
meaning of a message rather than its exact version, which has been the
focus of digital error-free system design [4]. Approaches to the description or
design of semantic communication can be divided into statistical probability-
based [10], logical probability-based [11], knowledge graph-based [12], and
kernel-based [13].

Arguing for the generality of Shannon’s theory not only for the technical
level but for the semantic level design as Weaver [4], Bao, Basu et al. [14],
[15] were the first to define semantic information sources and channels to
tackle the semantic design by information-theoretic approaches.

With the rise of Machine Learning (ML) in communication research,
transformer-based Deep Neural Networks (DNNs) have been introduced
to AutoEncoders (AEs) for text transmission to learn compressed hidden
representations of semantic content, aiming to improve communication
efficiency [16]. However, accurate recovery of the source (text) is the main
goal. The approach improves performance in semantic metrics, especially at
low Signal-to-Noise Ratio (SNR), compared to classical digital transmissions.
It has been adapted to many other problems, e.g., speech transmission [17],
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[18]. Meanwhile, also recent advances in large AI models have found their
way into semantic communication [19], [20].

From a theoretical perspective, building upon the ideas of Bao, Basu et
al. [14], [15], in [9], [21], the authors explicitly define a semantic random
variable and identify the Information Maximization (InfoMax) problem
and its variation, the Information Bottleneck (IB) problem, as appropriate
semantic design criteria. Solving the InfoMax problem with ML tools,
the authors obtain their design Semantic INFOrmation TraNsmission and
RecoverY (SINFONY). For more details, we refer the reader to Sec. 6.3.2
and Sec. 6.3.2. Furthermore, task-oriented edge-cloud transmission has been
formulated as an IB problem [10].

Semantic communication has been extended to process several types of
data, i.e., multimodal data, such as image, text, depth map data [22], [23].
In addition, monitoring, planning, and control of real worlds require the
processing of multiple tasks. Thus, in [24], [25], the authors extend the
concept of a semantic source to include multiple semantic interpretations. To
facilitate cooperative multitask processing and improve training convergence,
the semantic encoders are divided into common and specific units, extracting
common low-level features and separate high-level features.

So far, the human behind the application or task has only been taken into
account by theory, with the rate-distortion-perception trade-off [26], [27]. For
example, the mean square error distortion is known to be inconsistent with
human perception and thus not a good semantic optimization criterion [26].
Precisely because humans make the final decision when performing a task,
we aim to fill the research gap of bridging semantic communication and
human decision-making into an end-to-end sensing-decision framework.

6.2.2 Human Decision-Making
Even though the decision capability of artificial systems is increasing, in
many situations the final decision-maker will be a human, and humans do
not always make rational decisions. Therefore, to optimize the results, the
needs, and capabilities of the decision-maker must be considered in the
semantic communication design, e.g., by definition of the semantic source.

Humans are undoubtedly expert decision-makers who can cope well with
uncertainty and complexity [28], [29]. However, it has been repeatedly shown
that Human Decision-Making (HDM) can be systematically biased and
decisions can be influenced by irrelevant information and context, as shown
in the large literature on heuristics and biases [30]. For example, judges’
sentencing decisions can be systematically influenced by asking whether a
sentence should be higher or lower than a randomly generated number [31],
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and decisions differ depending on whether the same information is presented
in frequencies or percentages [32].

Rational models of decision-making typically require the decision-maker
to consider all relevant information about the decision options and the
context [33]. However, humans have limited cognitive resources, such as
attention or working memory capacity, which restricts the amount of infor-
mation they can process at once [34], [35].

It is often assumed that humans deal with these limited capacities by
using simplified decision strategies that often consider only a subset of the
information and discard “extra” information [30], [33], [35]. For example,
the “take-the-best” heuristic assumes that the decision-maker considers only
one dimension at a time in the order of validity of the dimension. A decision
is made when the decision-maker encounters a dimension that discriminates
between alternatives [36]. Importantly, the use of heuristics such as the take-
the-best heuristic often leads to decision performance on par with complex
decision rules if the most valid predictors are indeed considered [37].

However, humans are not always able to identify the best predictors,
especially when the information environment is complex, they lack expertise,
are pressed for time, or are distracted [38]. In these situations, as the growing
literature on decision-support/assistance systems shows, human decision-
making can be supported and improved by highlighting relevant information,
providing summary information, or reducing irrelevant information [39].
Even when the human decision-maker has access to all relevant information
and is able to integrate the information properly, humans have a tendency
to respond probabilistically [40], [41]. When given several options, and each
option has a certain probability of being correct, the optimal decision (that
has the highest chance of being correct) is to deterministically choose the
option with the highest probability of being correct. While humans choose
the best option in the majority of the trials, they usually also tend to choose
other options. This variability in human decision-making has likely multiple
causes [42].

Semantic communication offers the flexibility to adapt the transmitted
information to facilitate the achievement of the human decision-maker’s goals.
The integration of semantic communication and human decision-making
leads to a paradigm shift that includes the communication chain in the
decision-support/assistance system.

6.2.3 Main Contributions
The main contributions addressing the above-mentioned research questions
are the following:
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• In this article, we propose a probabilistic end-to-end sensing-decision
framework that wirelessly links sensed data with relevant information-
based Human Decision-Making (HDM) by semantic communication.

• Based on this framework, we extend the information-theoretic view on
semantic communication towards presentation design and HDM model
training, revealing the fundamental presentation or semantic commu-
nication design trade-off between maximizing the relevant semantic
information and matching the cognitive capabilities of the HDM model.
In this sense, our study provides new insights for the design/interaction
of semantic communication with models of HDM.

• To showcase our framework’s applicability and investigate its key
mechanisms, we examine a categorization example using effective
HDM models. Simulation results show that, when balancing the design
trade-off between feature extraction in semantic communication and
cognitive constraints of the HDM model, adjusting the level of detail
to match human cognitive capabilities is more important for achieving
high decision accuracy than simply providing more relevant information.
Moreover, uncertainty in the HDM process decreases accuracy.

• Semantic communication is able to provide the HDM model with
sufficient information for making accurate decisions, while demand-
ing less bandwidth, power, and latency compared to classical digital
Shannon-based approaches.

• Finally, we provide an outlook on open research questions of our
approach, including the design of information presentation through
visualization, as well as game theory perspectives on sender-receiver
conflicts of interest.

6.3 End-to-End Sensing-Decision Framework
To elaborate on our idea, we now describe our proposed end-to-end sensing-
decision framework, which consists of multiple steps, exemplarily sketched
in Fig. 6.2 and modeled as shown in Fig. 6.3. It is based on the semantic
communication model of [9], including the complete communication Markov
chain with the HDM model.

6.3.1 Semantic Source
The human performs tasks such as ensuring that machines in production
run smoothly, which requires judging whether a tool is damaged or still
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x +

ẑ: “Tool is worn.”
z: Worn tool

s:

Semantic Source Wireless Semantic
Communication

Semantic
Presentation

Human Decision-
Making

Design Trade-Off: 1) Maximizing relevant information about z 2) Matching
cognitive process

Figure 6.2: Sketch of the end-to-end sensing-decision process for the example of
tool wear assessment. It also situates the fundamental design trade-
off between semantic communication and human decision-making.

operational. We will refer to this tool categorization task as our guiding
example, whose flow is sketched in Fig. 6.2. The task defines the model of the
world, i.e., the semantics, and is described by a semantic multivariate Random
Variable (RV) z ∈ MNz×1

z from the domain Mz of dimension Nz, distributed
according to a probability density or mass function (pdf/pmf) p(z) [9]. To
simplify the discussion, we assume that it is discrete and memoryless.1 The
semantic source p(s, z) links the semantics expressed by z with the sensed,
observed signal RV s ∈ MNs×1

s that enters the communication system. This
sensed data can be, e.g., images of a tool taken from different perspectives,
as shown in Fig. 6.2. The semantic link can be modeled in the Markov chain
by a semantic channel, a conditional distribution p(s|z), as shown in Fig. 6.3.

6.3.2 Semantic Communication
The semantic communication system encodes the sensed signal s with the
encoder pθ(x|s), parametrized by θ ∈ RNθ×1, to the transmit signal x ∈
MNTx×1

x (see Fig. 6.3) for efficient and reliable semantic transmission over
the physical communication channel p(y|x), where y ∈ MNRx×1

y is the

1For the rest of the article, note that the domain of all RVs M can be either discrete or
continuous. Also note that the definition of entropy is different for discrete and continuous
RVs. For example, the differential entropy of continuous RVs can be negative, while the
entropy of discrete RVs is always positive [43]. Thus, without loss of generality, we will
assume that all RVs are either discrete or continuous. In this paper, we avoid notational
clutter by using the expectation operator: By replacing the integral with summation over
discrete RVs, the equations are valid for continuous RVs and vice versa [9].
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Semantic RV
z ∼ p(z)
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Channel
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E2E Sensing-Decision Framework: p (z, s, x, y, ν, ẑ)

Figure 6.3: Block diagram of the end-to-end sensing-decision framework, i.e., the
probabilistic system model including human decision-making.

received signal vector, so that the semantic RV z is best preserved [9]. At
the receiver side, the decoder qφ(z|y) with parameters φ ∈ RNφ×1 recovers
the semantics z for the receiver.

In [9], the authors identified the Information Maximization (InfoMax)
problem as an appropriate design criterion for semantic communication, since
it maximizes the amount of mutual information Iθ (z; y) of the semantic RV
z contained in the received signal y:

arg max
pθ(x|s)

Iθ (z; y) (6.1)

= arg max
θ

Ez,y∼pθ(z,y)

[︃
ln pθ(z,y)
p(z)pθ(y)

]︃
(6.2)

= arg max
θ

H (z) − Hθ (z|y) (6.3)

= arg max
θ

Ez,y∼pθ(z,y)[ln pθ(z|y)] . (6.4)
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There, Ex∼p(x)[f(x)] denotes the expected value of f(x) with respect to both
discrete and continuous RV x, H (z) = Ez∼p(z)[− ln p(z)] the entropy of z,
and H (z|y) the conditional entropy.

If the computation of the posterior pθ(z|y) in (6.4) is intractable, we can
replace it by a variational distribution, i.e., the decoder qφ(z|y), to define a
MI Lower BOund (MILBO) [9], [44], [45]:

Iθ (z; y) ≥ H (z) + Ez,y∼pθ(z,y)[ln qφ(z|y)] (6.5)
= H (z) + Ey∼pθ(y)

[︁
Ez∼pθ(z|y)[ln qφ(z|y)]

]︁
(6.6)

= H (z) − LCE
θ,φ . (6.7)

Noting that only the negative amortized cross-entropy LCE
θ,φ in (6.7) de-

pends on both θ and φ and fixing the transmit dimension to NTx, we can
optimize encoder and decoder parameters [9]:

{θ∗,φ∗} = arg min
θ,φ

LCE
θ,φ . (6.8)

Note that the form of pθ(y|s) must be constrained to avoid learning a
trivial identity mapping y = s. In fact, we constrain the optimization
and information rate by our communication channel p(y|x) and number
of channel uses NTx, which we assume to be given. This introduces an
Information Bottleneck (IB). Alternatively, we can explicitly constrain the
information rate Iθ (s; y) in an IB problem [9], [21]. To solve (6.8), we use
the empirical cross-entropy and ML techniques such as DNNs, stochastic
gradient descent, and the reparametrization trick to obtain our ML-based
design Semantic INFOrmation TraNsmission and RecoverY (SINFONY) [9],
[21].

We note that the semantic communication system is able to make a
decision by itself after optimization/training based on the decoder qφ(z|y).
For the discrete RVs, the most likely option, i.e., the MAP estimate, is
optimal:

z̃ = arg max
z

qφ(z|y) . (6.9)

This decision process in operation mode is modeled as p(z̃|y).

6.3.3 Semantics Presentation
Finally, semantic communication presents the received signal y or the
extracted probabilistic semantic decoder estimate qφ(z|y) — in the best
case containing maximum amount of information about the semantic RV z
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according to (6.4) or (6.5) — to the HDM model. We describe this process
by p(ν|y) with a presentation RV ν ∈ RNϕ×1. In practice, the presentation
ν must be tailored to a human, requiring a Human-Machine Interface (HMI)
that is typically designed handcrafted, such as visualization (see Fig. 6.2).
In this work, we abstract the HMI as in a technical system — where the
components are connected by a deterministic function ν = f(y).

6.3.4 Human Decision-Making Model
Based on the HMI or semantics presentation ν, the human decision-maker
then makes a decision to complete the overall task. In this work, we will
model the Human Decision-Making (HDM) process probabilistically by
p(ẑ|ν) to make a first step towards integrating and evaluating the human
with the technical system, i.e., semantic communication and HDM. Finally,
by decision, we obtain the estimated semantics ẑ ∈ MNz×1

z , which can be
different from the true semantic RV z (see Fig. 6.2). In our guiding example,
this could mean that the HDM process decides that the tool is damaged
even though it is still usable, and vice versa.

Reflecting the variance in decision tasks, the literature on HDM includes
a variety of theoretical models and approaches to capture decision pro-
cesses [46], [47]. The most appropriate model often varies depending on the
type of decision task and context. In this example, we focus on categoriza-
tion tasks where the decision-maker must decide based on their experience
whether an object belongs to one of M categories, such as whether a tool can
still be used or whether the concentration of a toxic gas is above a certain
threshold.

Generalized Context Model

While a large number of increasingly complex models of human categorization
have been proposed [48]–[50], the core assumptions of the Generalized Con-
text Model (GCM) [51], [52] are commonly adapted by many successors [53]
and have been successfully used to describe categorizations of complex real
world stimuli [54], [55].

Despite the relative simplicity of the GCM, the well-studied model and
its variants can easily account for HDM under different contexts, e.g., under
time pressure [56], [57], capture human judgment under cognitive load [58],
and explain common HDM biases, e.g., base-rate bias [59]. At the same
time, GCM has been applied to different aspects of human cognition, e.g.,
artificial grammar [60], leadership competence judgment [61], and mental
multiplication [62]. Several extensions of GCM have been created to explain
even broader aspects of HDM such as reaction time in decision-making [63]
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or learning [64]. Since the GCM is a powerful approximation to human
categorization decisions, we choose it to simulate the decision-making process.

An important assumption of the GCM is that categorization decisions are
made on the basis of exemplar memory, i.e., previously seen realizations that
are retrieved from memory. Accordingly, in the tool example, the model
assumes that the decision-maker first experiences N tool realizations and
whether those tools need to be replaced. These tools are then remembered
as the i-th “exemplar”, i.e., realization νi, with the corresponding label zi,
so we have an exemplar dataset or HDM knowledge base DHK = {νi, zi}Ni=1.
Since the semantic RV z is a categorical RV, we can describe it by a one-hot
vector z = one-hot(k) where all elements are zero except for the element
k ∈ {1, . . . ,M} that represents the tool state from a total number of M
states. For example, for binary states, we have k ∈ {1, 2} with M = 2.

When the decision-maker encounters a new tool presentation ν, the
probability qφG(z = z|ν,DHK) = q(z = z|ν,DHK,φG) of making the decision
z = one-hot(k) given this representation ν is the result of the comparison
between ν and all seen realizations νi from DHK:

qφG(z = z|ν,DHK) =

N∑︁
i=1

sim(νi,ν|φG) · [zi = z]

N∑︁
i=1

sim(νi,ν|φG)
(6.10)

with GCM parameters φG and [zi = z] being the Iverson bracket, which is
equal to 1 if zi = z and 0 otherwise. This means the approximating posterior
qφG(z|ν,DHK) is determined by the sum of similarities between ν and all
the seen realizations zi that belong to the decision z, and normalized by the
similarity to all the seen realizations regardless of the decision. We note that
the model (6.10) assumes that the decision-maker has perfect memory of its
knowledge base DHK.

The similarity sim(ν1, ν2|φG) between two presentations decreases expo-
nentially as the Euclidean distance between two presentations increases and
depends on the learnable GCM parameters φG = {γ,w}:

sim(ν1, ν2|φG) = e−γ·(|ν1−ν2|T ·diag{w}·|ν1−ν2|)1/2
(6.11)

with diag {w} creating a diagonal matrix with elements of w ∈ RNϕ×1 on
its diagonal.

A unique assumption of the GCM is that each element or feature νn of
a seen realization νi is weighted by attention weights wn and hence does
not contribute equally to the perceived similarity. To achieve the attention
functionality, the weights are constrained by wn ≥ 0 and normalized by
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∑︁Nϕ
n=1 wn = 1. The parameter γ has two interpretations: First, the similarity

gradient γ describes the sharpness of the decline in similarity, with higher
γ resulting in a sharper decline of similarity when the distance increases.
Second, the parameter γ describes the consistency in making decisions and
reflects the probabilistic nature of the HDM process, akin to the temperature
parameter in the Boltzmann distribution [65]. Accordingly, a lower parameter
γ results in a new tool being more confidently categorized to the category
with higher similarity.

HDM-based Probabilistic Decision-Making

After training of the GCM (see Sec. 6.3.6), the strategy of the HDM model
is equal to the random process

ẑ ∼ p(ẑ|ν) = qφG(z = ẑ|ν,DHK) . (6.12)

When faced with options of varying probabilities, people tend to distribute
their choices according to the probability distribution rather than always
selecting the most likely option resulting in a suboptimal policy. Thus,
the accuracy of human decisions can be worse compared to that of the
optimal deterministic policy (6.9) of the technical (semantic communication)
system, e.g., SINFONY.

6.3.5 End-to-End Sensing-Decision Model
With all the aforementioned subcomponent models, we are able to create
a generative model of the end-to-end sensing-decision process. We note
that we can distinguish between four different models corresponding to four
system stages:

1. Design of semantic encoder pθ(x|s) and decoder qφ(z|y) based on the
forward communications model

p(z, s,x,y) = p(z, s) · pθ(x|s) · p(y|x) . (6.13)

2. Semantic communication is executed in operation mode to make deci-
sions via (6.9). Then, the model is

p(z, s,x,y, z̃) = p(z, s,x,y) · p(z̃|y) . (6.14)

3. The HDM model qφG(z|ν,DHK) is trained based on seen presentation
and label realizations from semantic communication in operation mode.
The underlying model is

p(z, s,x,y,ν) = p(z, s,x,y) · p(ν|y) . (6.15)
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4. Semantic communication presents information to the HDM model that
finally makes a decision. The overall end-to-end sensing-decision model
of Fig. 6.3 in operation mode after all training phases is:

p(z, s,x,y,ν, ẑ) = p(z, s,x,y,ν) · p(ẑ|ν) . (6.16)

6.3.6 Information-theoretic Overall View on Design in
the End-to-End Sensing-Decision Framework

We can exploit our end-to-end sensing-decision framework (6.13)-(6.16), to
extend the information-theoretic view of semantic communication to both
the semantics presentation and the HDM model to gain new insights.

HDM Model – Training

For optimization of the GCM parameters φG = {γ,w} given a presentation
ν based on a fixed optimized semantic communication system of model (6.15),
typically the maximum likelihood criterion is used [52]. We note that maxi-
mization of the log-likelihood function is equal to amortized minimization
of the empirical cross-entropy on the training set [43]. Transferring the
InfoMax view from the semantic communication system in (6.7), this means
we optimize a lower bound on the mutual information Iθ (z;ν), but now
between z and ν with respect to φG:

Iθ (z;ν) ≥ H (z) + Ez,ν∼pθ(z,ν)[ln qφG(z|ν,DHK)] (6.17)
= H (z) − LCE

φG . (6.18)

From an information-theoretic view, we conclude that the choice of the GCM
optimization criterion

φ∗
G = arg min

φG

LCE
φG (6.19)

is well-motivated. To solve (6.19), computer search methods are typically
used [52]. In this work, we employ a variant known as the differential
annealing algorithm. By integrating differential evolution’s population-
based search with simulated annealing’s probabilistic acceptance of solutions,
differential annealing aims to balance exploration and exploitation in complex
search spaces to enhance global optimization capabilities [66].

Semantics Presentation – Design Optimization

Moreover, if we add the presentation process as a tunable encoder pθP(ν|y)
with parameters θP to the optimization problem (6.19), we arrive at the
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MILBO objective function:

Iθ,θP (z;ν) ≥H (z)
+ Ez,y,ν∼pθ(z,y)·pθP (ν|y)[ln qφG(z|ν,DHK)]

=H (z) − LCE
θP,φG . (6.20)

Decomposing the amortized cross-entropy LCE
θP,φG

as in [9] into

LCE
θP,φG = H (z) − Iθ,θP (z;ν) (6.21)

+ Eν∼pθ,θP (ν)[DKL (pθ,θP(z|ν) ∥ qφG(z|ν,DHK))]

reveals two possibly conflicting design criteria:

1. The presentation encoder pθP(ν|y) should maximize the mutual infor-
mation Iθ,θP (z;ν) that depends solely on it through the true posterior
pθ,θP(z|ν) (see (6.4)).

2. Both true posterior pθ,θP(z|ν) and hence the presentation encoder
pθP(ν|y) and the HDM model qφG(z|ν,DHK) are matched by mini-
mizing the Kullback–Leibler (KL) divergence.

In a technical semantic communication system from Sec. 6.3.2, we can avoid
the design conflict by using a model qφ(z|y) expressive enough to approximate
pθ(z|y) arbitrarily well, such that the focus lies on the InfoMax term.
However, in case of the end-to-end sensing-decision training model (6.15),
if the HDM model (or human) constrains the form of qφG(z|ν,DHK), i.e.,
the solution space, to some degree, the two optimization terms in (6.21) are
traded-off: Then, the true posterior pθ,θP(z|ν) has to be fit to qφG(z|ν,DHK)
and we do not maximize Iθ,θP (z;ν) alone which could lead to a loss in
mutual information.

Example 1: These abstract information-theoretic insights explain well
what we observe in practice with handcrafted presentations. In reality,
it is difficult to understand and subsequently visualize the received raw
communications signal y for a human without any preprocessing:

• We have to match the presentation encoder pθP(ν|y) to the cognitive
process qφG(z|ν,DHK) according to the KL divergence term in (6.21).
Fortunately, the semantic decoder qφ(z|y) obtained by maximizing
the MILBO extracts the semantic information of z from y and allows
for meaningful presentation to and interpretation by the HDM model
qφG(z|ν,DHK) (or human).

• However, we may lose relevant information about z fitting the pre-
sentation to the cognitive process including the semantic decoder
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preprocessing in the Markov chain z → y → qφ(z|y) → ν according
to the data processing inequality

I (z; y) ≥ I (z; qφ (z|y)) ≥ I (z;ν) . (6.22)

Example 2: Another example of how the HDM process influences presentation
design is that research on HDM models focuses on the interplay between
relevant features ν and require certain level of feature extraction from raw
images s (or y) for HDM model processing. For an overview of this research,
we refer the reader to [67]. These HDM models were not built to process raw
images s directly, i.e., qφG(z|ν = s,DHK), which would lead to unrealistically
poor performance despite maximum relevant information in s about z. Thus,
in the numerical results of Sec. 6.4.4, we cannot compare to a setup where
the raw data of the images s are digitally communicated and then directly
processed by the HDM model.

Based on our end-to-end sensing-decision framework, we conclude that it
highly depends on the processing capabilities of the HDM model if it can
extract more or less information about z from y than the semantic decoder.
Moreover, we conclude that balancing of two possibly conflicting criteria is
key for presentation design:

1. Relevant information preservation: On the one hand, careful
design of ν is required to not lose any relevant information about z for
the final decision. For example, the higher the dimension Nϕ of the
presentation RV ν, the more detailed the presentation to the HDM
model and the more information it contains.

2. Presentation alignment to the HDM model: On the other hand,
the presentation has to be in a form that can be understood by the
HDM model, effectively restricting the set of possible presentations
ν. For example, compressing the relevant information about z into ν
may be required to ease cognitive processing.

To investigate how to balance these two design rules, we compare two
handcrafted presentations in our numerical example of Sec. 6.4.4. For an
outlook on the inclusion of HMIs in practice, please refer to Sec. 6.5.

6.4 Simulative Investigation
In this section, we evaluate first numerical results of our joint framework
using the example of image classification. The inclusion of diverse datasets
for semantic source modeling, such as the standard MNIST and CIFAR10
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datasets in addition to our guiding tool example, enables the generalization
of conclusions beyond the specific case of tool wear.

6.4.1 Performance Measures
We measure the performance of decision-making for both semantic commu-
nication and the HDM model by the categorical accuracy

A = Ez∼p(z)[p (z̃ = z|z)] =
∑︂

z∈MNz×1
z

p (z̃ = z, z) (6.23)

≈ 1
N

N∑︂

i=1
[z̃i = zi] (6.24)

— comparing predicted and true category realizations z̃i and zi — or the
classification error rate 1 − A common in communications. Since the HDM
model decides probabilistically based on the input νi, we can calculate the
accuracy based on the end-to-end sensing-decision model (6.16) shown in
Fig. 6.3 by the sum of the probabilities of the GCM responding to the correct
category zi [51]:

A = Ez∼p(z)[p (ẑ = z|z)] (6.25)
= Ez∼p(z)

[︁
Eν∼p(ν|z)[p (ẑ = z|ν)]

]︁
(6.26)

= Ez,ν∼p(z,ν)[p (ẑ = z|ν)] (6.27)

≈ 1
N

N∑︂

i=1
p(ẑ = zi|ν = νi) (6.28)

= 1
N

N∑︂

i=1
qφG(z = zi|ν = νi,DHK) . (6.29)

This method of calculating accuracy is commonly used in psychology studies
for HDM models [51].

6.4.2 Example Semantic Source Datasets
Tool wear and tool replacement decisions pose a common challenge in the
metal cutting industry to reduce production costs [68], and represent an
exemplary semantic source of this work. In this decision-making problem,
the semantic RV z is modeled as a binary variable with two states, where
z = [1, 0]T indicates a worn tool and z = [0, 1]T indicates a usable tool.
Although optical measurement techniques provide accurate assessments
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of tool wear, small and medium-sized companies often rely on machine
operators to manually assess tool wear. To automate this process, a dataset
was recorded where human experts were presented two different grayscale
images of each tool [69]: One image s1 ∈ {0, 1, . . . , 255}218×380×1 taken from
the side and another s2 ∈ {0, 1, . . . , 255}487×380×1 taken from the top (see
Fig. 6.2). Based on these observations s = {s1, s2}, the experts labeled the
tools into the binary states z.

This process resulted in a dataset D = {(si, zi)}Ni=1 modeling our semantic
source p(s, z) and consisting of N = 1632 data pairs, with an 85% split
between training and validation data. We also revisit the MNIST and
CIFAR10 examples from [9], [70] to extend our analysis.

6.4.3 Semantic Communication Analysis
As the design approach for semantic communication and to solve (6.8) with
the model (6.13), we use our ML-based SINFONY approach from [9], [21].
However, we note that the conclusions derived from the results about the
interplay between semantic communication and HDM models are not limited
to this approach. These also extend to other, e.g., model-based, methods
capable of providing the same quality of soft information at inference runtime.
For example, RL-SINFONY leverages reinforcement learning to train the
design via (6.7) to comparable performance [21].

SINFONY Design

As shown in [9], [21], we apply SINFONY to a distributed multipoint scenario,
where meaning from multiple image sources is communicated to a single
receiver for semantic recovery of the RV z. In the numerical example of [9],
four distributed agents extract features from different image views with an
encoder based on the famous and powerful ResNet architecture [71] for rate-
efficient transmission. Based on the received signals, the decoder recovers
semantics by classification. Numerical results of [9] on images from the
MNIST and CIFAR10 datasets show that SINFONY outperforms classical
digital communication systems in terms of bandwidth, latency and power
efficiency.

In this article, we reuse the SINFONY approach for integration with the
HDM model. SINFONY is particularly well-suited for integration because it
can be easily adapted to any semantic source p(s, z), i.e., use case, including
tool damage classification, by changing the data samples and specifically
designing its DNN architecture.

In the guiding tool example, two image sensors provide different views of
the tool (see Fig. 6.2). This results in a SINFONY design (see Communica-
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Figure 6.4: Comparison of the classification error rate of SINFONY with different
number of channel uses NTx per encoder and central image processing
with digital image transmission on the tool validation dataset as a
function of SNR.

tions Design in Fig. 6.3) with two encoders piθ(xi|si) with i = {1, 2} that can
be concatenated into one virtual encoder pθ(x|s), and one decoder qφ(z|y).
Owing to the large image dimensions of si, we adopt the ImageNet version of
ResNet18 to reduce numerical complexity in feature extraction [72], resulting
in NFeat = 512 features per encoder. We test two SINFONY Tx module
designs that map those features onto the transmit signal xi ∈ MNTx×1

x : one
with feature compression (NTx = 128) and one without (NTx = 512). Note
that the number of channel uses NTx is proportional to bandwidth, i.e.,
B ∼ NTx. The signals xi are transmitted over an AWGN channel p(yi|xi)
to the decoder that consists of a common Rx layer of width Nw = 1024
processing the concatenated received signals yi ∈ MNRx×1

y , each of length
NRx = NTx, and a final softmax layer with M = 2 classes. As in [9], we
train for SNRtrain ∈ [−4, 6] dB in model (6.13). We also reuse the SINFONY
designs for the MNIST and CIFAR10 datasets from [9] and combine them
with the HDM model. The source code including all details is available
in [70].

SINFONY-based Decision-Making

First, we evaluate the performance of SINFONY-based decision-making
within the semantic communication operation mode model (6.14), where
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SINFONY makes the final decision via (6.9). Fig. 6.4 shows the classification
error rate 1 − A with A from (6.24) on the tool dataset as a function of
SNR. The key findings are similar to those for MNIST and CIFAR10 [9]
but become much more obvious: Using less channel uses per encoder with
SINFONY NTx = 128 than the number of features (NFeat = 512) results
in the same performance compared to SINFONY Tx/Rx NTx = 512. This
indicates that feature compression and thus a reduction in bandwidth is
possible.

Moreover, we compare to central image processing by a ResNet classi-
fier [70] with classic digital transmission of the sensed images (Classic digital):
We assume that the RGB image bits are Huffman encoded, protected by an
LDPC code with rate 0.25 and BPSK modulated. At the receiver side, we
use belief propagation for decoding. On average, the channel is utilized over
23, 400 times more frequently per encoder, with NTx ≈ 2, 998, 626.82 ≈ 3 ·106

uses. Furthermore, at low SNR, significantly more power is needed to achieve
the same classification error rate, e.g., about 10 dB more for 35%. Instead
of graceful degradation as for SINFONY, we observe a cliff effect typical
for digital communication at a SNR threshold of −2.5 dB: Communication
quality remains robust as long as channel capacity exceeds code rate and
the LDPC code operates within its working point, but rapidly breaks down
otherwise. This sharp contrast in performance and bandwidth highlights the
huge potential of semantic communication.

6.4.4 End-to-end Sensing-Decision Analysis
Now, we assume our end-to-end sensing-decision model, i.e., the overall
model (6.16): The semantic information in the images is transmitted by
SINFONY over an AWGN channel and then fed into the HDM model, i.e.,
the GCM. Note that, in contrast to the SINFONY scenario of Sec. 6.4.3,
the HDM model now makes the final decision.

Semantics Presentation Design

In Sec. 6.3.6, we derive two design criteria for the semantics presentation ν:
1) It should keep all relevant information about z. 2) It should fit to cognitive
processing capabilities of the HDM model. We note that since HDM models
are not capable to process the raw data of the images s directly [67] as
outlined in Sec. 6.3.6, we cannot simply compare to a setup where the raw
data of the images s are digitally communicated and processed. This means
the design choice ν = s is ruled out in this work.

Therefore, we aim to gain first insights on the design trade-off by comparing
HDM model performance with different presentations that reflect a different
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weighting of the two design criteria. To reflect practical considerations as
outlined in Sec. 6.3.6, we design the presentation handcrafted based on
the semantic decoder (see Fig. 6.2). In this context, in other words, we
investigate how to balance the feature extraction of semantic communication
and HDM models to achieve the best task performance, i.e., to minimize
the classification error rate.

We present either the categorical probability outputs (E2E categorical) or
the relevant decision features (E2E Nϕ) from SINFONY as ν to the HDM
model, i.e., the GCM:

1. E2E categorical: The low-dimensional and interpretable probability
estimate of SINFONY for each category (E2E categorical) that fulfills
design rule 2), e.g., whether the tool is damaged or not:

ν = f1(qφ(z|y)) =

⎡
⎢⎢⎢⎣

qφ

(︂
z = one-hot(1)T |y

)︂

...

qφ

(︂
z = one-hot(M)T |y

)︂

⎤
⎥⎥⎥⎦ . (6.30)

2. E2E Nϕ: To provide the HDM model at an abstract level with
potentially more relevant semantic information about z according to
data processing inequality (6.22) and design rule 1) for decision-making,
we use the relevant decision features

ν = f2(y) = v(NL−1)
qφ (y) , (6.31)

where v(l)
qφ is the output of the l-th layer of qφ(z|y) and NL the depth of

the DNN. This means we extract the inputs to the final dense softmax
layer of the SINFONY decoder used for probability estimation, similar
to a previous study that aims to model categorization with natural
material [73].
To further vary the level of detail or dimension of the presentation, we
extract the most important Nϕ = {5, 10, 20, 40} of the N (NL−1)

h final
layer features to facilitate effective processing of the HDM model ac-
cording to design rule 2). The importance of the i-th feature [v(NL−1)

qφ ]
i
,

with respect to all output nodes qφ(z = one-hot(k)T |y), is quantified
by the sum of the absolute weight values in each column of the last-layer
weight matrix W(NL−1), given by

∑︁M
k=1 |w(NL−1)

ki |.

Based on the selected presentation, i.e., SINFONY features, the GCM
classifies into M categories, e.g., into the binary tool states of wear and



176 6 Pub. 4 – Integrating Semantic Communication and Human Decision-Making

non-wear. To present the SINFONY features in the numerical evaluation,
we use the SINFONY version with NTx = 128 from Fig. 6.4 for semantic
communication (see Sec. 6.3.2) on the tool dataset. For MNIST and CIFAR10
datasets, we use the trained SINFONY versions with NTx = 56 and NTx = 64
from [9], [70]. Note that NTx differs per dataset, since we tailored the
SINFONY architecture to the specific dataset.

Simulation Scenarios

We evaluate our proposed framework on three datasets: Tools, MNIST, and
CIFAR10. Furthermore, we perform two main simulations — a simulation
of the accuracy as a function of the SNR typical for communications, and
a simulation of the expertise of the HDM model touching a psychological
aspect:

1. In the SNR simulation, we assume that the HDM model (6.10) has
sufficient experience with the presented SINFONY features, i.e., it
has perfect memory of the training set with DHK = DT, i.e., the seen
presented realizations encompass the entire training dataset of semantic
communication. Its attention weights w and the similarity gradient γ
from (6.11) are optimized to maximize the classification accuracy on
the training set at a training SNR of 20 dB. For evaluation, the HDM
model receives the output of SINFONY under varying SNR.

2. In the expert simulation, we assume the highest evaluated SNR of 20
dB during communication and vary the number of seen presentation
realizations, i.e., images randomly selected from the training set. We
define the number of seen realizations |DHK| of classified tools as
the expertise of the HDM model and simulate the performance at
this expertise independently. Accordingly, a HDM model with high
expertise has a larger knowledge base DHK compared to a HDM model
with low expertise. The GCM parameters were optimized for the
specific HDM knowledge bases DHK.

In both simulations, the accuracy was calculated based on the validation
dataset. We performed multiple Monte Carlo runs for evaluation: For the
SNR simulations, we iterated ten times through the dataset for each SNR
value. For the expertise simulations, we iterated 100 times for each expertise
level.

Numerical Results

We present the simulation results in Fig. 6.5, comparing to SINFONY-based
decision-making (SINFONY) of the technical system on z̃ via (6.9) as the
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baseline. First, we note that the accuracy of the GCM is worse than that of
SINFONY. This can be explained by the probabilistic decision process (6.12)
of the HDM model, which deviates from the optimal strategy to choose the
most likely option.

SNR Simulation

Furthermore, the SNR curves show a similar trend for all three datasets.
Accuracy increases as a function of SNR and plateaus after a certain SNR
is reached. The performance of the HDM model is best when receiving
the categorical probability input of SINFONY (E2E categorical) compared
to receiving the Nϕ most important feature dimensions (E2E Nϕ). With
the latter input, more features yield better accuracy, and the performance
reaches an asymptote after a certain number of feature dimensions. The
number of features needed to reach saturation varies depending on the
dataset.

Reaching saturation indicates that the HDM model is not able to extract
more relevant information about z from many feature inputs, i.e., from
a more detailed representation. In contrast, the model performs better
with SINFONY’s preprocessed probability estimates, indicating SINFONY’s
ability to efficiently extract the semantic information. This indicates that
InfoMax optimized outputs are suitable as an input for human decision-
making: SINFONY’s graceful degradation translates directly into the GCM
curve.

Expertise Simulation

The expertise simulation (bottom row in Fig. 6.5) shows that accuracy
increases with the number of seen presentation realizations. Regardless of
expertise, using the probability output of SINFONY again results in the best
performance compared to receiving the Nϕ important feature dimensions.
This shows that the GCM’s semantic information processing was not as
effective as that of SINFONY.

Moreover, unlike in the SNR simulation where a larger number of Nϕ
features always yields better performance, the accuracy does not always
increase with the number of features under different expertise levels. For
example, the accuracy on the tool dataset with Nϕ = 10 and 20 features
exceeds the accuracy simulated with 40 features at lower expertise. Even
with the highest expertise on the CIFAR10 dataset, the accuracy with 20
features still beats that with 40 features.

This means that GCM is not always capable to learn to effectively extract
the semantic information when provided with extra information. This
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behavior is consistent with the bias-variance trade-off from statistical learning,
which explains why low-capacity models generalize better with limited
data [43]: GCMs with fewer parameters constrain the hypothesis space of
solutions, effectively regularizing the learning process. In contrast, high-
capacity GCMs with more inputs and attention weights tend to overfit to a
limited knowledge base DHK based on a few seen realizations. We conclude
that providing more features, i.e., details, to the decision-maker with a
small knowledge base DHK can lead to a suboptimal decision compared to
providing less information.

Main Conclusions

Recalling the design trade-off (6.20) from Sec. 6.3.6, we conclude from both
simulation scenario observations that it is more important to match the
cognitive capabilities of the GCM by a low-dimensional presentation, i.e,
more elaborate SINFONY preprocessing, in this task than providing more
relevant information about z by raw decision features.

However, providing more features instead of the final SINFONY output
can have other benefits. For one, we have a slight reduction in processing
complexity, since some nodes are removed. Also, in this case, SINFONY is
optimized for solving a single task, i.e., deciding whether a tool needs to be
replaced or not. In more complex situations, however, HDM may need to deal
with unexpected events or changing goals not covered by the current form of
our end-to-end sensing-decision framework. A more detailed representation
allows the HDM model to react to these changes compared to the probability
estimates. Finally, the study focused on decision accuracy alone, using a
simulated decision-maker. With human decision-makers, motivational and
emotional aspects such as experienced autonomy and competence will affect
performance in addition to information processing ability [74], as we will
discuss in the outlook in Sec. 6.5.

The main takeaways provide answers to the research questions stated at
the beginning:

b1) Which information should semantic communication provide for ac-
curate HDM? The semantic information provided by the SINFONY
architecture supports HDM, as motivated by the InfoMax principle.
However, using raw decision features leads to imperfect information in-
tegration of the HDM model compared to SINFONY, evident through
saturation in the simulations. This is consistent with the derived
design trade-off and shows that it is more important to match the
cognitive capabilities of the GCM by more elaborate SINFONY feature
extraction than providing more relevant information.
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b2) How much information should semantic communication provide for
accurate HDM? Providing more detailed representations, i.e., more
features, does not always increase HDM decision accuracy. The satura-
tion indicates that the HDM model at some point misses subtle details
in the additional features. The effect of extra features also depends on
the context. For example, with little expertise, more information can
misguide instead of help the HDM model which requires carefully bal-
ancing the design trade-off, i.e., the information provided by semantic
communication with the HDM process.

c) How does the HDM process impact the end-to-end sensing-decision-
making process? The accuracy of the HDM model can be inferior
to that of semantic communication systems due to the probabilistic
nature of HDM.

6.5 Outlook – Open Questions and Challenges
The proposed end-to-end sensing-decision framework is a first step towards
integrating semantic communication and the human receiver. We will now
explore remaining open questions and challenges with respect to all our
framework components from Fig. 6.3, and what they mean for semantic
communication.

6.5.1 Challenge: Optimization of Semantic Communi-
cation for Human Decisions

In this article, we have examined how semantic communication affects the
decisions of a HDM model in theory and simulations. There remains the
question of how semantic communication can be optimized directly for the
given human or HDM model to improve decisions.

One idea is to include the human or HDM model in the optimization
process. This idea is supported in theory by our extension of the information-
theoretic framework on semantic communication via (6.20) from Sec. 6.3.6,
originally aimed to understand both presentation design and HDM model
training given a fixed optimized semantic communication system. Including
the semantic encoder parameters θ in maximization of the MILBO (6.20)
allows for joint end-to-end optimization of all components with respect to
all framework parameters θ,θP,φG, leading to a unified design.

However, since both the human and the HDM model are essentially a black
box that is not known or differentiable in practice as assumed in this work,
this seems difficult. However, it is possible to evaluate the cross-entropy
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loss or another target metric for the human or HDM model decision and
feed it back to SINFONY as a reward. So one idea could be to use the
stochastic policy gradient as in [21] to allow optimization over the whole
chain, including SINFONY and the human/HDM model.

6.5.2 Challenge: Limitations of Human Decision-Mak-
ing Models

To include the HDM model in an optimization process, it is essential to have
an accurate representation of the HDM process. Here, we simulated the
decision-making process by applying a computational model, the GCM, for
illustrative purposes. While our simulation reflects many traits of HDM with
human participants, not all assumptions will apply to realistic categorization
decisions. For instance, given the lack of HDM data for the simulated
tasks, we assumed perfect memory and optimal performance on the training
set for the GCM. These assumptions are difficult to achieve in a real-life
situations, but more appropriate assumptions are likely to strongly depend
on individuals and tasks.

Accordingly, just like in most of psychological research on HDM, future
HDM models will need to be carefully selected and designed to accurately
reflect human decision processes for the task of interest, e.g., by accounting
for limitations in human information retrieval [53], [75] and contextual
influences on the decision process such as limited cognitive resources due
to multitasking, acute stress, or time pressure, e.g., [56], [57]. As outlined
in Sec. 6.3.4, it is possible to extend the basic GCM (6.10) used in this
work to model many of these HDM aspects. Nevertheless, experimental
validation with human participants, typical for psychological experiments, is
required to develop and validate appropriate HDM models for the decision
problem at hand, assess the beneficial effects of semantic communication
and their visualizations, and understand the trade-offs between performance
facilitation and potential negative impacts on motivation.

6.5.3 Challenge: Presentation of Semantic Information
For tractability in the simulations and to reflect constraints on realistic
cognitive processing, we provided the HDM model with two interpretable,
handcrafted presentations containing varying amount of information — prob-
ability outputs or the most important decision features of semantic com-
munication. The key question is how this abstract representation ν = f(y)
or process p(ν|y), shown in Fig. 6.3, translates into real-world scenarios
with human subjects. To help humans interpret the output y or qφ(z|y), it
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is essential to present it through a Human-Machine Interface (HMI) that
connects human users with semantic communication. In practice, this could
involve visualizing, e.g., tool damage probabilities, through symbols and col-
ors on a screen or in augmented/virtual reality, with varying levels of detail
(see Fig. 6.2) — from basic machine learning outputs (e.g., tool wear status)
to more detailed insights such as algorithm certainty, textual explanations,
and even image-based class activation mapping [76].

The HMI is a critical component, as the presentation format can strongly
influence the HDM process [77], [78]. It must hence present complex infor-
mation in a way that enables informed decisions while maintaining essential
context. Designing a successful HMI requires an understanding of the do-
main in which it operates, including the industry, the user base, and the
types of decisions being made [79]. A context-aware HMI that adapts to
the user’s history, preferences, and current situation can further improve
decision-making by providing personalized and relevant information [80].

6.5.4 Challenge: Variability in Human Decision Goals
and Expertise

For many tasks, human decision-makers will differ in their preferences,
intentions, and levels of expertise. In addition, task goals may be multi-
faceted and subject to change of time, requiring to adjust transmitted
information to the individual and the current situation. For example, when
communicating information about tools, a person interested in understanding
how different machines affect tool usability will need different information
than someone focused on identifying tools that need to be replaced. In
addition, an expert is likely to prefer a detailed, rich presentation, while a
novice may benefit more from clear, concise support.

Furthermore, individual differences can lead to different information even
when the decision objective is the same. For example, people differ in how
much risk they are willing to accept [81]. Given the same information about
the probability that the tool will fail, a risk-seeking person may conclude
that the risk is acceptable, while a more risk-averse person would choose
to exchange it. Thus, semantic communication that attempts to optimize
tool use while keeping the failure rate below a tolerable threshold may
require adapting the information conveyed to the decision-maker, for example
by changing how potential risks are presented [82], [83]. While the core
model (6.10) of the GCM investigated in this work does not accommodate
all individual differences, it can be extended to simulate variability.
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6.5.5 Challenge: Conflict of Interest between Sender
and Receiver

The interests or goals of a human sender may not be well aligned with
those of the human receiver. A fundamental factor contributing to such a
misalignment of interests could be that human receivers are risk-averse. For
example, even if a tool remains functional, the receivers may classify it as
defective in order to avoid potential errors, since they are reluctant to take
responsibility for using a worn tool. The sender thus has an incentive to
manipulate the message in order to influence the receiver’s decisions. If the
difference in interests is too large, the receiver could ignore any message the
sender sends.

This means that successful semantic communication also depends on trust
between sender and receiver. Economists, following [84], have long studied
this sender-receiver problem using game theory. For a recent overview of this
literature, see [85]. They found that the amount of information that can be
transmitted depends on how large the difference in interests is. Considering
how much the sender wants to manipulate the information to influence
the receiver’s action is important in semantic communication. Even if the
technology allows for very accurate transmission of semantic meaning, the
best transmission strategy would still depend on the characteristics of the
sender and receiver.

6.6 Conclusion
In this paper, integrating an interdisciplinary perspective from communica-
tions and psychology, we proposed a probabilistic end-to-end sensing-decision
framework that wirelessly links sensed data with Human Decision-Making
(HDM) by semantic communication. We analyzed this integration exem-
plarily using SINFONY and an effective HDM model based on generalized
context models for specific datasets. The theoretical and numerical results
indicate that semantic communication can optimize task performance by bal-
ancing information detail with human cognitive processes, achieving accurate
decisions while demanding less bandwidth, power, and latency compared to
classical methods.

This work is intended to inspire further interdisciplinary research on higher
semantic levels of communication. Open questions include how to optimize
semantic communication for human decisions, how to extend the HDM
model, how to design human-machine interfaces that convey meaning more
effectively, and how to account for different intentions between sender and
receiver as well as individual differences among receivers.



184 6 Pub. 4 – Integrating Semantic Communication and Human Decision-Making

6.7 References
[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L.

Kaiser, and I. Polosukhin, “Attention is All you Need,” in 31st Conference
on Advances in Neural Information Processing Systems (NIPS 2017), Long
Beach, CA, USA, Dec. 2017, pp. 6000–6010.
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Chapter 7

Conclusion

New Artificial Intelligence (AI) technologies find their way into everyday life
enabling many new possibilities such as medical diagnosis, chat assistance,
and autonomous driving. The question arises of how these recent Machine
Learning (ML) techniques can be leveraged in wireless communications with
its well-established channel models and high-end designed standards. In
this thesis, this question was tackled identifying that algorithm and model
deficit are indicative of beneficial usage. These deficits motivate the split of
this thesis into two parts, respectively: Improving digital communication
(Part I) and enabling semantic communication (Part II). Further, we laid the
theoretical foundation for a unified view of both design problems through
the lens of information maximization.

In Chapter 2, we introduce key Machine Learning (ML) concepts like
amortized Monte Carlo (MC) Variational Inference (VI) and Deep Neural
Network (DNN), linking them to communication design through information
theory. A central contribution is the use of the Information Maximiza-
tion (InfoMax) criterion as a unified learning framework for receiver and
transceiver design. Building on this unified view, we reflect on the approaches
employed throughout this thesis in the broader context of ML theory, thereby
motivating both their choice and possible alternatives.

In Chapter 3, we propose a hybrid approach to address the algorithm
deficit in soft detection for large systems like digital massive Multiple Input
Multiple Output (MIMO). First, we introduce a continuous relaxation of
the prior probability mass function (pmf) into a probability density function
(pdf) for Maximum A Posteriori (MAP) detection, enabling computationally
cheaper optimization via gradient descent. We then combine model- and ML-
based techniques to create Concrete MAP Detection Network (CMDNet), a
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deep unfolding model that optimizes detection accuracy while maintaining
low complexity. Using an information-theoretic approach, we derive the
optimization criterion from the Kullback–Leibler (KL) divergence and show
that CMDNet can learn an approximation of the ideal detector reducing
computational cost. Numerical results demonstrate CMDNet’s effectiveness
and reliability, providing accurate soft outputs for MIMO decoders, outper-
forming recent ML-based methods, and offering a strong trade-off between
accuracy and complexity.

In Appendix A, we extend the analysis of CMDNet, providing a full deriva-
tion of binary Concrete MAP Detection (CMD) and proving that CMD and
binary CMD are distinct algorithms for Binary Phase Shift Keying (BPSK)
symbols. We systematically explore the optimization process for CMDNet,
discussing key ML aspects like hyperparameters, optimization algorithms,
batch size, and layer depth. Our analysis highlights how communications
design challenges standard ML practices, and vice versa, such as tracking
of the validation loss, revealing that suboptimal approaches, such as us-
ing Adaptive Moment Estimation (Adam) or Mean Square Error (MSE)
optimization, can yield comparable results to theoretically well-motivated
approaches.

In Chapter 4, we contribute to theoretical modeling and problem formula-
tion in semantic communication by incorporating a semantic source into the
full communications Markov chain, extending information theory to include
semantic information. Using the InfoMax principle and the Information
Bottleneck (IB) as design criteria, we propose a unified approach that in-
tegrates all levels of communication to preserve meaning. Unlike existing
IB-based methods, we maximize Mutual Information (MI) for a fixed encoder
output. We introduce Semantic INFOrmation TraNsmission and RecoverY
(SINFONY), a data-driven method addressing the model deficit in semantic
communication, demonstrating an improved trade-off between data rate and
energy efficiency over classic digital communication in distributed multipoint
scenarios.

In Chapter 5, we tackle the practical problems of purely data-driven
approaches like SINFONY in semantic communication, especially when
adapting to unknown channels. We optimize the transmitter and receiver
separately using Reinforcement Learning (RL) with Stochastic Policy Gra-
dient (SPG), derived from the InfoMax principle without needing a known
or differentiable channel model. This allows for online refinement of the
semantic design once deployed. Numerical evaluations in the distributed
SINFONY scenario show performance comparable to channel model-aware
methods, albeit with slower convergence.

In Appendix B, we delve deeper into semantic communication, incor-
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porating philosophical and interdisciplinary insights such that meaning
(semantics) is linked to emergence in the universe, with multiple hierarchi-
cal levels. With extended numerical evaluations, we demonstrate a more
pronounced performance advantage of SINFONY compared to traditional
digital communications in more complex scenarios and validate our design
choice, e.g., finding minimal gains with separate receiver modules. A key
insight is the semantic information barrier caused by hard Variable-Length
Codes (VLC), suggesting the removal of block-wise structures, as seen in
SINFONY.

In Chapter 6, we propose a probabilistic end-to-end sensing-decision
framework that wirelessly links sensed data from assistance systems with
Human Decision-Making (HDM) by semantic communication. By integrat-
ing perspectives from communications and psychology, our interdisciplinary
framework enhances understanding of how semantic communication impacts
HDM and improves decision-making effectiveness in human-assisted tasks.
To investigate this interplay, we model HDM as a cognitive process and reveal
both in theory and simulations the fundamental design trade-off between
maximizing the relevant semantic information and matching the cognitive
capabilities of the HDM model. Using the examples of SINFONY and a
HDM model, i.e., the Generalized Context Model (GCM), we demonstrate
how semantic communication balances information detail in feature extrac-
tion with human cognitive capabilities, achieving accurate decisions while
demanding less bandwidth, power, and latency compared to classical digital
Shannon-based methods.

7.1 Open Questions and Future Work
Despite the development of ML-based algorithms for communications design,
several open challenges remain. The following questions present opportunities
for future exploration beyond the scope of this thesis:

• In Appendix A, we reveal that CMDNet can be extended easily to
large-scale MIMO systems with sparse activity patterns and non-
linear system models of other research domains. Moreover, joint
optimization of CMDNet soft detector and channel decoder could lead
to overall systems’ performance improvements. Numerical evaluation
of the effectiveness of the latter approaches remains an open question.
Further, a deeper online training analysis could shed light on its
training efficiency.

• Moreover, the large hyperparameter space makes it difficult to examine
the true potential of the ML approaches. This challenge may be tackled



196 7 Conclusion

with a more efficient random search.

• Other promising ML application areas include detection in highly
quantized systems, semi-supervised learning for channel estimation,
and precoding at the transmitter.

• One of the initial plans was to conduct a practical evaluation of the
developed methods under real conditions using a Software Defined
Radio (SDRadio). The motivation is that data-driven ML approaches
can mitigate the non-idealities present in traditional expert models
of wireless communication. A comparison with expert-designed sys-
tems could reveal additional advantages and limitations of these new
methods.

• An early idea that ended after algorithm design was to apply variational
inference in a non-linear forward model, e.g., with a non-linear ampli-
fier. This enables Bayesian inference in non-linear systems using an
approximation with the aid of the first-order Taylor series [CGWW09].
The resulting iterative scheme, which is similar to the non-linear Least
Squares (LS) approach, can also be applied to dynamic systems.

• While this work primarily focuses on wireless communications, fiber-
optical links can also benefit significantly from ML application. Fiber-
optical channel models are typically described by differential equations.
But non-idealities such as time-continuity are difficult to capture. To
estimate these channels more accurately, neural ordinary differential
equations [CRBD18] could be exploited. This approach leverages
existing ordinary differential equation solvers and can be interpreted
as a continuous version of ResNet.

• In this work, we contributed to the theoretical description of seman-
tic communication and data-driven ML using Deep Neural Networks
(DNNs). Open questions remain, such as the benefits of solving the
variational IB problem over our proposed method, developing effective
semantic models with solution approaches such as Bayesian inference
and deep unfolding, and addressing the impact of mismatched knowl-
edge bases on system performance.

• In this thesis, we have primarily focused on processing a single mean-
ing or task in semantic communication based on one type of obser-
vations, i.e., images. However, real-world scenarios require managing
multiple-tasks for efficient implementation. One design approach is
presented in [HBD24; HTB+25]. Further, numerous sensors types are
employed including, e.g., camera and temperature sensors, delivering
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multimodal data. It remains the question of how to seamlessly fuse
and interpret the multimodal data in semantic communication.

• In Chapter 5, Reinforcement Learning-based SINFONY (RL-
SINFONY) suffers from slow training convergence. Gradient variance
reduction techniques or application of the Deep Deterministic Policy
Gradient (DDPG) could help to alleviate this problem.

• The analysis of the end-to-end sensing-decision-making framework in
Chapter 6 highlights critical areas for future exploration of the interplay
between communication and HDM, such as optimizing semantic com-
munication for human decisions, extending the HDM model, designing
Human-Machine Interfaces (HMIs) that more effectively convey mean-
ing, and addressing sender-receiver conflicts and individual differences
among users.

The future in the field of AI will remain exciting and offers a lot of potential.
We personally believe that this potential will also be further exploited in
the field of communications and that AI will find its way into new wireless
communication standards. However, ML approaches need to be cleverly
tailored to the communication problem so that an improvement can be
achieved compared to previous standards.
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Appendix A

CMDNet Extensions

A.1 Overview
This chapter extends the article [BBD21], corresponding to Chapter 3, by
further detailed explanations such as a complete derivation of CMDNet for
the special case of binary Random Variables (RVs). Moreover, we contribute
deeper insights on CMDNet training revealing common ML guidelines and
how these can be transferred to problems of the communications domain
shedding new light on them. Finally, we propose and investigate algorithm
extensions meant to enhance CMDNet’s performance.

A.2 Extended CMDNet Analysis and Expla-
nation

In this section, we provide more details regarding a collection of important
aspects that were abbreviated or cut in [BBD21] including a detailed expla-
nation of the correlated massive MIMO channel model in Appendix A.2.2.

Non-convexity of the Objective Function: In Sec. 3.3.3, we show that
both using the concrete distribution and applying the reparametrization
trick results in a non-convex objective function. Here, we like to provide
more details and visualization.

We note that from non-convexity of the relaxed MAP objective
− ln p(y|x̃)−ln p(x̃) in (3.9) does not directly follow non-convexity of L(G, τ).
But indeed we are able to find examples where L(G, τ) is non-convex. For
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Figure A.1: (a) Example of the surface (blue) of the objective function
L(g1, g2|τ,m,α, σ2

n, y) for y = −1, α1 = 0.2, α2 = 0.8, τ = 0.1,
σ2

n = 0.25, m1 = −1 and m2 = 1. The minima are indicated as
red points. (b) Example of the objective function L(s|τ, α, σ2

n, y)
for the special case of binary RVs for y = −1, α = 0.2, τ = 0.1
and σ2

n = 0.25. Since there are multiple minima in (a) and (b), the
functions are non-convex.

real-valued model (3.1), NT = 1, M = 2, m1 ̸= m2 and H = 1, we have:

L(G, τ) =L(g1, g2|τ,m,α, σ2
n, y)

= 1
σ2

n
·
(︃
y − m1 · e(ln(α1)+g1)/τ +m2 · e(ln(α2)+g2)/τ

e(ln(α1)+g1)/τ + e(ln(α2)+g2)/τ

)︃2

+ g1 + g2 + e−g1 + e−g2 . (A.1)

The first term is a vertically shifted two-dimensional sigmoid function with
respect to (w.r.t.) g1 and g2 being squared and scaled. The operations
applied to the sigmoid do not change non-convexity. Also, the sum of this
non-convex term and convex functions, i.e., linear and exponential functions,
remains non-convex. In Fig. A.1 (a), we illustrate one example for y = −1,
α1 = 0.2, α2 = 0.8, τ = 0.1, σ2

n = 0.25, m1 = −1 and m2 = 1. Note that a
detailed mathematical analysis or proof in which cases the objective function
is non-convex, convex or invex goes beyond the scope of this thesis. As a
final remark, non-convexity may also hold for the special case of binary RVs
as illustrated in Fig. A.1 (b).
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AMP Performance Degradation at High SNR: In [BBD21] or
Sec. 3.5.6, we note that the output statistics of Approximate Message
Passing (AMP) become unreliable for high Signal-to-Noise Ratio (SNR) in
finite dimensional systems. Here, we explain this aspect in more detail.

In fact, LArge MIMO Approximate message passing (LAMA)
from [JGMS15; JGMS18] is able to achieve the error-rate performance
of the Individual Optimal (IO) detector under certain assumptions. These
assumptions include the large system limit, i.e., β = NT/NR with NT → ∞,
since then interference or equalized interference of a huge number of transmit
symbols can be assumed to be Gaussian-distributed according to the central
limit theorem.

Therefore, the estimates obtained by LAMA/AMP correspond to the true
signal perturbed by independent and identically distributed (i.i.d.) Gaussian
noise. The smaller the finite-dimensional system dimensions, the Gaussian
approximation becomes less accurate and the statistics computed by AMP
become less reliable, especially in the interference-limited region where noise
is small (high SNR). At low SNR, where external Gaussian noise mostly
limits performance, interference plays a minor role and AMP is able to
denoise translating into excellent performance.

For a more detailed explanation, we refer the reader to [JGMS15; JGMS18].

Numerical Results of the Massive MIMO Simulation with i.i.d.
Channel: In [BBD21] and Sec. 3.5.5, we just shortly report the results
of a 64 × 32 massive MIMO system with Quadrature Phase Shift Keying
(QPSK) modulation for i.i.d. Gaussian channel taps. For completeness, in
the thesis, we also provide the numerical results in Fig. A.2.

CMDNet and Massive MIMO Network (MMNet) are trained for Eb/N0 ∈
[4, 11] like Detection Network (DetNet). Being more complex, the curves of
OAMP Network (OAMPNet) and SemiDefinite Relaxation (SDR) are not
shown. AMP runs into a noticeable error floor at 10 dB. The BER curves
of learning based approaches and SDR follow that of Sphere Detector (SD)
very closely.

As noted in Sec. 3.5.5, the close performance of all approaches motivates
the numerical evaluation with more realistic and challenging channel models
such as the One-Ring model with correlated channel taps used in Sec. 3.5.5
and described in Appendix A.2.2.
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Figure A.2: Bit Error Rate (BER) curves of various detection methods in a 64×32
massive MIMO system with QPSK modulation. Effective system
dimension is 128 × 64 and for iterative algorithms Nit = NL = 64.

A.2.1 Extended Derivation for the Special Case of Bi-
nary Random Variables

In [BBD21] and Sec. 3.3.5, we briefly summarize the derivation result of bi-
nary CMD. In this section, we provide a more detailed derivation of [BBD20]
assuming a real-valued system model with BPSK modulation as an example
at specific steps.

Noting that the softmax function (3.7) is normalized, we are able to
eliminate one degree of freedom in matrix G ∈ RM×NT along dimension M .
For the special case of binary RVs, i.e., M = 2 classes, this means that the
matrix G can be reduced to a vector s ∈ RNT×1 of logistic RVs to derive a
different algorithm of low complexity.

First, we eliminate one variable in z̃n and assume a symmetric BPSK
modulation, i.e., m = [−1, 1]T :

x̃n(gn) = z̃Tnm =
[︂
z̃1n z̃2n

]︂
·

⎡
⎣−1

1

⎤
⎦ =

[︂
z̃1n 1 − z̃1n

]︂
·

⎡
⎣−1

1

⎤
⎦

= −2z̃1n + 1 . (A.2)

Second, z̃1n still depends on two variables. We now reduce this to one. By
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rewriting

z̃1n = στ

(︂
[g1n, g2n]T

)︂
= e

lnα1+g1n
τ

e
lnα1+g1n

τ + e
lnα2+g2n

τ

= 1
1 + e

lnα2−lnα1+g2n−g1n
τ

, (A.3)

we notice that the difference of two i.i.d. Gumbel RVs sn = g2n −
g1n is distributed according to the logistic distribution p(sn) =
exp(−sn)/(1 + exp(−sn))2. By transforming the two Gumbel RVs g2n and
g1n into one RV sn and making use of α = α1 = 1 − α2, we have

z̃1n = 1
1 + e

ln(1/α−1)+sn
τ

(A.4)

= ρ

(︃
− ln (1/α− 1) + sn

τ

)︃
. (A.5)

Finally, we combine (A.2) and (A.4) to arrive at

x̃(s) = tanh
(︃

ln (1/α− 1) + s
2τ

)︃
. (A.6)

This means we only need to determine one variable s. Now, we are able to
reparametrize the objective function for binary RVs in terms of logistic RVs
s ∈ RNT×1 with the new prior pdf p(s):

L(s, τ) = − ln p(y|s) −
NT∑︂

n=1
ln p(sn) (A.7)

= − ln p(y|s) + 1T s + 2 · 1T ln
(︁
1 + e−s)︁ (A.8)

(3.1)= 1
2σ2

n
(y − Hx̃(s))T (y − Hx̃(s))

+ NR
2 ln(2πσ2

n) + 1T s + 2 · 1T ln
(︁
1 + e−s)︁ . (A.9)

The prior pdf acts like a regularization contributing the second term. The
first term is finally derived in (A.9) for a linear Gaussian model (3.1).
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Analogously to (3.14), we derive the gradient descent step of binary CMD:

s(j+1) = s(j) − δ(j) · ∂L(s, τ)
∂s

⃓⃓
⃓⃓
s=s(j)

(A.10a)

∂L(s, τ)
∂s = −∂x̃(s)

∂s · ∂ ln p(y|s)
∂x̃ + tanh

(︂ s
2

)︂
(A.10b)

(3.1)= 1
σ2

n
· ∂x̃(s)

∂s ·
[︁
HTHx̃(s) − HTy

]︁
+ tanh

(︂ s
2

)︂
(A.10c)

∂x̃(s)
∂s = 1

2τ (j) · diag
{︁

1 − x̃2(s)
}︁

(A.10d)

x̃(s) = tanh
(︃

ln (1/α− 1) + s
2τ (j)

)︃
. (A.10e)

The final step consists again of quantization of x̃ with the quantization
operator QM {x̃} onto the set of symbols M. In this case, (3.15) simplifies
to the sign function:

x̂ = QM
{︂

x̃
(︂

s(Nit)
)︂}︂

= arg min
x∈MNT×1

⃦⃦
⃦x − x̃

(︂
s(Nit)

)︂⃦⃦
⃦

2
(A.11)

= sign
(︂

x̃
(︂

s(Nit)
)︂)︂

. (A.12)

As a concluding remark, comparing (A.10) with (3.14), we note that it is
not clear whether both algorithms — CMD and the special binary version
of CMD — are different for M = 2 classes.

The following theorem answers this question.

Theorem 1 (CMD ̸= binary CMD). CMD and binary CMD are different
algorithms for BPSK symbols m = [−1, 1]T . We now provide a proof by
contradiction.

Proof. First, we rewrite (3.14) into

(︂
G(j+1)

)︂T
=

⎡
⎣G(j+1)

1,∗

G(j+1)
2,∗

⎤
⎦
T

(A.13a)

=
[︂
G(j)

1,∗ G(j)
2,∗

]︂
− δ(j) ·

(︃
∂L(G)
∂G

)︃T ⃓⃓
⃓⃓
G=G(j)

(A.13b)

=
[︂
G(j)

1,∗ G(j)
2,∗

]︂
− δ(j) · AT (A.13c)
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to note that the following two equalities should hold since sn = g2,n − g1,n:

s(j+1) = s(j) − δ(j) · ∂L(s)
∂s

⃓⃓
⃓⃓
s=s(j)

!=
[︂
G(j)

2,∗ − G(j)
1,∗

]︂
− δ(j) · [A2,∗ − A1,∗] (A.14)

⇒ ∂L(s)
∂s

!= A2,∗ − A1,∗ . (A.15)

Both sides of (A.15) can be divided into two parts — the log-likelihood and
the log-prior gradients:

∂L(s)
∂s = − ∂ ln p(y|s)

∂s − ∂ ln p(s)
∂s (A.16)

A2,∗ − A1,∗ = − ∂ ln p(y|G)
∂G2,∗

− −∂ ln p(y|G)
∂G1,∗

− ∂ ln p(G)
∂G2,∗

− −∂ ln p(G)
∂G1,∗

. (A.17)

We now prove if both sides differ. First, the log-prior gradients are different:

−∂ ln p(s)
∂s

!= −∂ ln p(G)
∂G2,∗

+ ∂ ln p(G)
∂G1,∗

(A.18a)

tanh(s/2) !=
(︁
1 − e−G2,∗

)︁
−
(︁
1 − e−G1,∗

)︁
(A.18b)

e−G1,∗ − e−G2,∗

e−G1,∗ + e−G2,∗
̸= e−G1,∗ − e−G2,∗ . (A.18c)

Second, comparing both sides of the log-likelihood gradients

−∂ ln p(y|s)
∂s = −∂x̃(s)

∂s · ∂ ln p (y|x̃(s))
∂x̃ (A.19)

and

−∂ ln p(y|G)
∂G2,∗

+ ∂ ln p(y|G)
∂G1,∗

= −
[︂
[ −1 1 ] · ∂x̃1(g1)

∂g1
. . . [ −1 1 ] · ∂x̃NT (gNT )

∂gNT

]︂

· diag
{︃
∂ ln p (y|x̃(G))

∂x̃

}︃
, (A.20)

and noting that ∂ ln p(y|x̃(G))
∂x̃ = ∂ ln p(y|x̃(s))

∂x̃ , we only need to prove the
equality:

∂x̃n(sn)
∂sn

!= ∂x̃n(g2,n)
∂g2,n

− ∂x̃n(g1,n)
∂g1,n

. (A.21)
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However, using (3.14), (A.2), and the sigmoid function ρ (x) = 1/(1 + e−x)
(see Appendix C), the following results hold:

∂x̃n(gn)
∂gn

= 1
τ (j) ·

[︂
diag {στ (gn)} − στ (gn) · στ (gn)T

]︂
· m (A.22)

= 1
τ (j) ·

[︁
diag {z̃} − z̃ · z̃T

]︁
·

⎡
⎣−1

1

⎤
⎦ (A.23)

= 2
τ (j) ·

⎡
⎣ z̃2

1,n − z̃1,n

−(z̃2
1,n − z̃1,n)

⎤
⎦ (A.24)

⇒∂x̃n(g2,n)
∂g2,n

− ∂x̃n(g1,n)
∂g1,n

(A.25)

= 4
τ (j) ·

(︁
z̃1,n − z̃2

1,n
)︁

(A.26)

= 4
τ (j) ·

(︃
ρ

(︃
g2,n − g1,n

τ (j)

)︃
− ρ2

(︃
g2,n − g1,n

τ (j)

)︃)︃
(A.27)

= 4
τ (j) · ρ′

(︃
g2,n − g1,n

τ (j)

)︃
(A.28)

= 1
τ (j) ·

[︃
1 − tanh2

(︃
g2,n − g1,n

2τ (j)

)︃]︃
(A.29)

̸= ∂x̃n(sn)
∂sn

(A.30)

= 1
2τ (j) ·

[︂
1 − tanh2

(︂ sn
2τ (j)

)︂]︂
. (A.31)

After noting that the sums of log-likelihoods and log-priors in (A.16)
and (A.17) also differ, i.e., (A.15) does not hold, this final contradiction
completes our proof.

As final remark, we note that (A.29) and (A.31) only differ by a constant
factor of 2, and also both sides in (A.18c) only by a normalization with
exp (−G1,∗) − exp (−G2,∗). The high similarity of CMDNet and binary
CMDNet (CMDNetbin) could explain why both algorithms are able to
achieve a similar performance as shown in Fig. 3.7.

A.2.2 Local Scattering Massive MIMO Model
In order to assess the performance of the proposed symbol detection algo-
rithms from Chapter 3 and Appendix A, we use the local scattering model
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dr
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1

d

Figure A.3: Local scattering model for the far-field of massive systems. With
uniformly distributed angular deviation ϵ ∼ U(−φ∆, φ∆), we arrive
at the so-called One-Ring model.

in this work shown in Fig. A.3 as a first step towards a realistic massive
MIMO model [BHS17]. In this model, we assume that a Base Station (BS)
is equipped with a horizontal uniform linear antenna array with NR receive
antennas. The antenna spacing d is measured by

D = d

λ
∈ (0, 1/2] (A.32)

in multiple of the wavelength λ at the carrier frequency and usually below
D ≤ 1/2 to achieve a good spatial resolution of the array. Further, the BS
serves multiple User Equipments (UEs) usually located at fixed positions in
the far-field of the BS as shown in Fig. A.3.

Since the BS is elevated, it has no scatterers in its near-field, and scattering
is concentrated around the UEs. Considering an uplink without connection
via Line-Of-Sight (LOS), the transmit signal of one UE n ∈ {1, . . . , NT} is
diffracted and reflected from multiple nearby scatterers towards the BS array
resulting in a high number Npath of multipaths. Each of these multipath
components reaches the Uniform Linear Array (ULA) in a plane wave from a
particular angle φ̃i with specific gain and phase-rotation ξi. Since the plane
wave further arrives phase-shifted at each antenna, the array response is:

ai = ξi ·
[︂
1 e2πjD sin(φ̃i) e2πjD(NR−1) sin(φ̃i)

]︂T
. (A.33)

Now, each of the channel responses in the massive MIMO channel matrix

H =
[︂
h1 · · · hNT

]︂
(A.34)
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results from the superposition of multipath components:

h =
Npath∑︂

i=1
ai . (A.35)

Assuming φ̃i and ξi to be i.i.d. RVs with pdfs p(φ̃i) = p(φ̃) and p(ξi), respec-
tively, and ξi to be zero-mean — a reasonable assumption due to random
phase rotation — we can approximate the statistics of h by application of
the multidimensional central limit theorem as the number of paths grows
very large (Npath → ∞) [BHS17]:

h ∼ NC(0,Rh) for Npath → ∞ . (A.36)

To conclude the derivation of the local scattering model, calculation of the
correlation matrix Rh is required. By rewriting Rh = E[

∑︁Npath
i=1 aiaHi ], each

entry in Rh is [BHS17]:

[Rh]l,m (A.37a)

=
Npath∑︂

i=1
Eξi∼p(ξi)

[︂
|ξi|2

]︂
· Eφ̃i∼p(φ̃)

[︂
e2πjD(l−1) sin(φ̃i)e−2πjD(m−1) sin(φ̃i)

]︂

(A.37b)

= Eφ̃∼p(φ̃)

[︂
e2πjD(l−m) sin(φ̃)

]︂
·
Npath∑︂

i=1
Eξi∼p(ξi)

[︂
|ξi|2

]︂

⏞ ⏟⏟ ⏞
=ζ

(A.37c)

= ζ⏞⏟⏟⏞
=1

·
∞∫︂

−∞

e2πjD(l−m) sin(φ̃)p(φ̃) dφ̃ . (A.37d)

If we assume perfect power allocation or equivalently that each UE has the
same distance dr to the BS, we can set the path gain to ζ = 1. Since [Rh]l,m
only depends on the difference or distance between antennas l −m, Rh is
further a Toeplitz matrix. Its diagonal entries (l = m) are ζ = 1. The
integral in (A.37d) can be evaluated numerically for any angular distribution
p(φ̃) of multipath components.

To finally arrive at the local scattering model, we assume these compo-
nents to originate from one scattering cluster around the UE as shown in
Fig. A.3 [BHS17]. Then, the angle φ̃ can be decomposed into the determin-
istic nominal angle between UE and ULA φ and a random deviation ϵ by
φ̃ = φ+ ϵ.
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Table A.1: Typical parameters of the local scattering model.

Environment σφ φ∆

urban 10◦ 17.32◦ ≈ 20◦

flat rural < 10◦

hilly > 10◦

We note that it is possible to assume different deviation distributions p(ϵ)
like, e.g., a Gaussian or Laplace distribution. In our work, we use uniformly
distributed ϵ ∼ U(−φ∆, φ∆) with angular spread φ∆ =

√
3 · σφ and angular

standard deviation σφ. Thus, we assume all scatterers to lie on a circle
centered at the UE (see Fig. A.3). For this reason, this model is called
One-Ring model. It leads to high spatial correlation [BHS17] making it a
worst-case scenario. By inserting the uniform distribution into (A.37d), we
finally arrive at

[Rh]l,m = 1
2φ∆

φ+φ∆∫︂

φ−φ∆

e2πjD(l−m) sin(φ̃) dφ̃ . (A.38)

Typical local scattering model parameters of p(ϵ) are shown in
Tab. A.1 [BHS17].

In our simulations of this work, we assume a value of φ∆ = 20◦ to resemble
an urban cellular network scenario. Furthermore, we assume each ULA to
cover one specific area or direction within the cellular network. Inside this cell
sector of size φcell, the ULA serves multiple UEs and each UE n is located at
a random uniformly distributed angle φn ∼ U(−φcell/2, φcell/2). Assuming
the BS to be equipped with 3 ULAs, we choose a φcell = 120◦ cell sector to
cover the whole 360◦ radius for massive MIMO system simulations. Moreover,
we sample NT angles uniformly from integer values without replacement
such that φ = i with i ∈ Z between i ∈ [−φcell/2,−φcell/2[ and φn ̸= φn+1.
After computation of Rh,n according to (A.38), we sample the respective
columns n of the channel matrix H as:

hn = R1/2
h,n · n with n ∼ NC (0, INT) . (A.39)

As a final remark, we note that three key effects of today’s massive MIMO
systems are not captured by the local scattering model: scattering in the near-
field of the BS, multiple scattering clusters around the UEs and shadowing
over the array [BHS17].
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A.3 Deeper Insights into Training of CMDNet
Unfortunately, not all results of our extensive investigations on CMDNet
found their way into publications. In this section, we provide these additional
results. In particular, we want to shed light on training aspects which have
fallen short in [BBD21] and are only mentioned as part of the training
hyperparameter setup. These aspects are of major importance since the
number of training hyperparameters is quite large and makes it thus difficult
to find a combination leading to promising accuracy. For example, these
aspects include the aforementioned starting point initialization but also
the selection of the training criterion / optimization loss, the visualization
of the training progress, the selection of the optimization algorithm and
of the architecture, i.e., the number of layers. Further, we present a first
investigation of CMDNet’s online training capability and point out the effects
of various training mismatches.

A.3.1 Soft Information Measure
In the following sections, we draw on results of soft information, i.e., cross-
entropy, besides BER accuracy to gain deeper insights since usually subse-
quent soft decoding is assumed in communications. Therefore, we now detail
our empirical computation of the cross-entropy H (p, q): To avoid numerical
computation of ln(0) leading to NaN outputs, the inputs q(xi|yi,θ) < 10−7

of the cross-entropy are clipped to 10−7. In this chapter, the cross-entropy
is calculated empirically and normalized by NT to enable comparison of
MIMO systems with different dimensions:

Ĥ (p, q) = − 1
NNT

N∑︂

i=1
ln q(xi|ỹi,θ) ≈ H (p, q)

NT
. (A.40)

However, numerical optimization according to (A.40) without modification
may be numerical instable. A combination of softmax and loss into one
layer simplifies computation of gradients and improves numerical stability.
Surprisingly, we observed faster convergence without this combination at
optimization run time. Throughout this thesis, in CMDNet experiments, we
consequently used the Keras backend implementation of the categorical cross-
entropy function with from_logits = False from [AAB+15] for training
being equal to our own computation for validation.
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Figure A.4: Empirical cross-entropy loss Ĥ (p, q) with (a) training and (b) vali-
dation data as a function of training batch iteration of CMDNet,
trained with different parametrization in a 32 × 32 MIMO system.

A.3.2 Training Progress
First, we deal with an essential part of DNN training: observation and hence
visualization of the training progress. Tracking the value of the objective
function (3.23) equivalent to the loss is key to understand the training
progress. This makes it possible to recognize if and how fast training
converges, i.e., how many training iterations Ne are required. It is computed
in every training iteration besides the gradient updates of the parameters
by Stochastic Gradient Descent (SGD) and backpropagation and a measure
of the quality of the soft information.

In Fig. A.4 (a), we show the training loss of CMDNet, i.e., cross-entropy
ĤTrain (p, q), computed with the current training data batch for different
training initialization in a 32 × 32 MIMO system as a function of training
iteration. In the scenario of MIMO detection, the x-axis represents batch
iterations rather than epochs, which are the default measure used in the ML
domain. This is because the classic definition of an epoch — one full pass
through the entire training dataset — cannot be applied when new data is
generated in each batch iteration according to a well-defined model, e.g., a
MIMO system model.

The loss was tracked with a resolution of 100 training iterations to save
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memory, and computation time in case of validation data. It starts at a
high value depending on the starting point initialization. First, it decreases
fast and then converges slowly. In the area of convergence (after ≈ 1000
iterations), the curve becomes very noisy with a small training data batch
size Nb = 500, making it difficult to evaluate whether training has stopped
or progresses minimally.

Owing to the noisy training loss, we decided to introduce a constant
validation dataset (see Chapter 2) with large batch size Nb = 10, 000. The
reason different from those of the ML domain makes the use of validation
data an innovation. Usually, the limited amount of data typical for problems
of the ML community necessitates validation of the progress of training or the
selection of the model with a separated dataset to avoid overfitting. However,
in this case, we are able to compute infinite data according to our model and
the training loss resembles the training progress closely but noisy.

As a result of our introduction, the validation loss, i.e., cross-entropy
ĤVal (p, q), shown in Fig. A.4 (b), depicts the training progress much more
clearly. Depending on the architecture and the parameter starting point,
the progress behaves different: For example, a starting point θ0,splin with
linear decreasing parameters τ (j) and δ(j) from (3.36) leads to a low loss in
the beginning and ending over the whole training SNR region in contrast to
training with default starting point θ0 from (3.35). Note that the BER per-
formance in the high SNR region is worse than with default parametrization
being the reason for choosing the default one. The loss may even increase
after the first iterations as being the case with NL = 16 layers. Even after
10, 000 iterations, we still observe noise. We conjecture that Adam has
found a local (or global) minimum and oscillates around it, making only very
little progress since the step size may be too large. The training progress of
DNNs in general has been investigated from an information theoretic view
in [TZ15; ST17] and was also found to have two SGD phases with high and
low gradient means and variances, vice versa. These both phases may lead
to fitting and compression in DNNs, respectively. Further, we observe that
the validation loss of CMDNet with NL = 64 layers falls below of that with
NL = 16 beyond 20000 iterations. The increased accuracy of CMDNet with
NL = 64 seems to originate from training in this region.

At this point, we note that comparison of different validation losses is only
possible up to a certain accuracy determined by the size of the validation
dataset. In general, visualization of the validation loss serves as a quick tool
to assess the quality of the selected training hyperparameters. As a final
remark, we notice that the larger the validation dataset is, the more precise
the loss computation. But also training time increases since the computation
of the validation loss requires inference through CMDNet, which, although
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low in complexity, still adds overhead compared to the SGD training itself.
Besides validation, a third evaluation — resembling the test set in the ML
domain (see Chapter 2) and performed in this thesis — is necessary in the
end to reliably determine BER accuracy and other metrics with the required
precision.

A.3.3 Optimization Criterion and Training Loss
As noted in Sec. 3.4.2 and [BBD21], we combine Cross-Entropy (CE) and
CMDNet with probability output, i.e., softmax layer, since this choice is
grounded in information theory and enables optimization of soft outputs ap-
proximating those of the IO detector. In contrast, recent literature [SDW19;
GAH20; KAHF20] considers mainly the MSE as the loss function. This
implies an estimation, not the actual detection problem, and means that a
Gaussian variational posterior distribution is assumed — as shown in Chap-
ter 2 in (2.62) — with the mean equivalent to the symbol estimate x̂, i.e.,
x̃(G(Nit)) from (3.15) for CMDNet. Likewise, the RV x is relaxed into the
entire complex domain CNT×1, and not limited into [min(M),max(M)]NT×1

as in the case of CMDNet. After noting the independence of the variance
from the optimization parameters θ, the empirical loss function w.r.t. the
symbol estimator output of CMDNet reads:

ĤMSE (p, q) = 1
NNT

N∑︂

i=1

⃦⃦
⃦xi − x̃

(︂
G(Nit)|ỹi,θ

)︂⃦⃦
⃦

2

2
≈ H (p, q)

NT
. (A.41)

Although it may seem like a crude assumption, it leads not only to promising
results for detectors from [SDW19; GAH20; KAHF20] but also if applied to
CMDNet. Surprisingly, the detection accuracy of CMDNet with MSE loss
and symbol estimation output shown in Fig. A.5 (a) increases beyond default
CMDNet (CE loss) and becomes even similar to that of OAMPNet, i.e., the
best considered suboptimal detector in a 32 × 32 MIMO system. Examining
a measure of soft information, i.e., Cross-Entropy (CE), we are able to
understand this both surprising and impressive result: We note that the
cumulative integral, i.e., the area below the curve, is larger between 4 and 6
dB within the SNR training interval of Eb/N0 ∈ [4, 27] dB when using the
MSE criterion compared to cross-entropy. Since the cross-entropy loss in
this SNR region is significantly larger than outside it, it dominates the total
cross-entropy. Thus, default CMDNet still minimizes cross-entropy over the
whole training interval. However, this implies that optimization with MSE
loss places greater emphasis on errors at higher SNR values compared to the
cross-entropy. The same observation holds for OAMPNet being trained with
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Figure A.5: BER curves and cross-entropy of CMDNet trained according to
different optimization criteria in a 32 × 32 MIMO system.

MSE loss as well. In fact, CMDNet is able to perform as well as OAMPNet
when trained with the same loss.

Furthermore, inspired by the notion of auxiliary classifiers from GoogLeNet,
the authors of [SDW19; KAHF20] use a weighted sum of the MSE losses
w.r.t. the outputs of each layer j as the loss function. This so-called multi-
loss addresses multiple challenges when training DNNs such as vanishing
gradients or initialization sensitivity. Hence, we also experimented with
multi-loss and applied it to default CMDNet over multiple layers:

Ĥmulti-loss (p, q) = − 1
NNT

N∑︂

i=1

Nit∑︂

j=1
j · ln q(j)

(︂
x(j)
i |ỹi,θ

)︂

≈
Nit∑︂

j=1

H
(︁
p, q(j))︁

NT

with ln q(j)
(︂

x(j)|ỹ,θ
)︂

=

⎡
⎢⎢⎢⎣

xn = m1
...

xn = mM

⎤
⎥⎥⎥⎦

T

· ln
(︂
στ(j)

(︂
g(j)
n

)︂)︂
. (A.42)

From Fig. A.5, we observe that the accuracy deteriorates significantly in the
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high SNR region and that the multi-loss does not provide any benefit. Using
a multi-MSE-loss, we observe the same performance. The reason may lie
in constraining of the hidden layer outputs στ(j)(g(j)

n ). Further, we see that
selection of a model-based unfolding approach may alleviate the need for
further regularization or modification compared to DNNs, and enables fast
training convergence and high detection accuracy.

A.3.4 Optimization Algorithm
Besides selection of a loss function including regularization, the choice of an
optimization algorithm is another hyperparameter crucial for DNN training.
Usually, first order gradient descent methods, i.e., variants of SGD are used
since, e.g., second order Newton methods require analytical or numerical
computation of the second derivative being computationally demanding
or intractable. Basically, as outlined in Chapter 2, SGD is equivalent to
gradient descent steps with not all, but with a random subset of the training
data also known as a batch with size Nb. Using a subset, allows adjusting
training to computing resources. Further, the variance of the gradient steps
becomes larger or noisy with decreasing batch size allowing to leave a local
minimum and to find one inside a flat objective landscape which is known
to improve generalization [WRS+17].

In related works [SDW19; GAH20; KAHF20] and our work [BBD21],
Adam is used — a variant of SGD. The reason for this choice may be its
popularity: It is common in recent ML literature [WRS+17] since it is easy to
use, i.e., requires little hyperparameter tuning, and provides fast convergence
speed. One major drawback is that Adam tends to find drastically different
solutions compared to SGD and sharp minima known to generalize poorly
to unseen data points [WRS+17]. However, in contrast to typical data-based
ML problems, we are able to neglect or avoid these generalization problems in
MIMO detection: Since we have a model, we are able to generate an amount
of training data large enough to fulfill (3.33) by (3.34) approximately. This
makes application of Adam a valid option.

Motivated by the findings from [WRS+17] that SGD finds different solu-
tions from Adam, we experimented and also optimized CMDNet by SGD.
In Fig. A.6, we compare the BER results of CMDNet optimized by SGD
and Adam for different batch sizes Nb, both with standard parametrization
according to [AAB+15]. This means we applied basic SGD with learn-
ing rate 10−2 without momentum. The number of training iterations
Ne = {105, 1.5 · 106, 4 · 104} is chosen to allow for convergence with each
batch size Nb = {500, 32, 5000}.

Considering Adam, we observe that especially a smaller batch size (Nb =
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Figure A.6: BER curves of CMDNet trained with different batch sizes Nb and
optimizers Adam and SGD in a 32 × 32-MIMO system.

32) than default (Nb = 500) leads to degradation in accuracy. The reason
may lie in the poor generalization of Adam already mentioned necessitating
larger batches. In contrast, choosing a larger batch size Nb = 5000 results
in negligible performance loss. It remains the question if fine-tuning around
the default value of Nb = 500 may lead to higher accuracy. At this point,
we refer to the huge number of training hyperparameters making it nearly
impossible to find the correct parametrization in a reasonable amount of
time.

When optimizing CMDNet with default initialization θ0 by SGD, we
noticed that training does not converge. Hence, we applied starting point
θ0,splin from (3.36). Using SGD, rather a low training batch size Nb = 32
commonly used in the ML domain leads to satisfying results. However, the
BER is worse over the whole SNR region compared to that of CMDNet
with both θ0 and θ0,splin trained with Adam. We conjecture that the pre-
settings of Adam make it easy to use and leads to good convergence if the
generalization issue is negligible or taken into account. In contrast, SGD
may simply require more hyperparameter fine-tuning to achieve the same
results.

We note that using Nesterov’s accelerated gradient method speeds up
training and improves convergence by incorporating momentum, which helps
the optimizer anticipate the direction of the gradient, leading to faster
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updates and reducing oscillations [SLA+19]. Numerical experiments (with
momentum of 0.9) suggest that larger batch sizes are required or possible with
Nesterov momentum similar to Adam with built-in momentum. This result
is in accordance with observations from literature [SLA+19]. In our case,
training with Nb = 500 leads to similar BER compared to basic SGD with
Nb = 32, whereas training with Nb = 32 does not converge. Furthermore,
we note that we have not used a schedule with decreasing learning rate in
this thesis which may be beneficial for both optimization with Adam and
SGD as noted in Chapter 2.

Finally, we notice that it is difficult to draw specific conclusions with such
a large number of hyperparameters and that finding a good parametrization
seems like pure game of chance. It necessitates spending a lot of time on
validation since general exact guidelines do not exist (see, e.g., [WRS+17;
SLA+19]). One promising idea to overcome this problem could be to ex-
ploit random hyperparameter search known to be more efficient than grid
search [BB12].

A.3.5 Model Architecture: Number of Layers
Similar to optimization, also selection of a DNN model or architecture
requires a trial and error validation procedure. When it comes to CMDNet,
there is fortunately only one hyperparameter besides parameters initialization
to tune the model: the number of iterations or layers Nit = NL. In Fig. A.7,
we present results of CMDNet with different numbers of layers NL in our
default example of a 32 × 32 MIMO system expanding on results from
Sec. 3.5.3 and Fig. 3.6. As a benchmark and for comparison, it is shown
how the performance of the AMP algorithm changes with the number of
iterations. We observe that the BER of CMDNet decreases with an increase
in layer number as expected. Further, we note significant accuracy gains from
NL = 4 to 16. Above NL = 16, the accuracy gains are minor or ambiguous.
For example, CMDNet with NL = 128 performs worse than with default
NL = 64. Maybe, the unadapted number of training iterations Ne = 100000
is too low and does not allow for convergence. However, we note again
that this is speculative, and that other layer numbers may require other
hyperparameter settings besides Ne. The almost maximum performance
with just NL = 16 layers compared to NL = {32, 64, 128} points into this
direction.

A.3.6 Online vs. Offline Training
In the review process of the article [BBD21], a misconception of our approach
became apparent. In [BBD21], we focus explicitly on offline learning, making
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Figure A.7: BER curves for AMP and CMDNet with a varying number of
iterations Nit or layer NL in a 32 × 32 MIMO system.

online training aspects such as dataset size and number of training iterations
less critical. The reasons for following our strategy are:

1. Amortized Inference. Offline learning means that we amortized our
unfolded CMD algorithm CMDNet across multiple realizations of our
training data to which y, H and σ2

n belong to (see Chapter 2). Hence,
we optimized the parameters θ of CMDNet only once for the whole
statistics of these RVs and used it accordingly for those statistics.
In theory, this concept is known as Amortized Inference (see Chapter 2)
and allows lowering complexity at the potential cost of accuracy since
our DNN-like structure is not adapted to every realization anymore.
In fact, at least amortization across y is usually assumed in most
publications that deal with DNNs.
In practice, this means that numerical optimization (training) w.r.t.
all input statistics requires approximation of the expected value in
equation (3.24) and (3.33) by an empirical sum (average) in (3.26)
and (3.34), respectively. To make this approximation tight, we used a
huge number of batches of training data, in this case N = Ne ·Nb =
105 · 500. From a supervised learning perspective, allowing for tight
approximation with a huge amount of training data is equivalent to
enabling generalization to unseen data points, see Chapter 2.
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To summarize the pros and cons of offline learning, we lower complexity
at the cost of accuracy since we avoid the potentially wasteful online
learning procedure. Since we only train once with great effort, we are
even able to compensate a bit of the accuracy loss. After training, we
only use CMDNet with its parameters θ optimized for the whole input
statistics for inference at run time.

2. Starting point initialization. To evaluate the effectiveness of the
CMDNet compared to other approaches, there is another reason, be-
sides Reason 1, why investigating the training progress/convergence is
not very conclusive. It is the so-called starting point initialization (see
Chapter 2) relevant in ML practice: When using variants of SGD for
numerical optimization of, e.g., DNNs, we need to choose a starting
point for parameters θ. This weight initialization in ML is not triv-
ial. Usually, for DNNs, the weights are assumed to follow a certain
probability distribution, e.g., Glorot Uniform, and randomly selected
according to it. To investigate the relationship between accuracy and
the number of training iterations, a single exemplary training run
would be insufficient to capture the full range of statistical deviations
arising from different initial starting points. This means that curves
showing the accuracy vs. the number of training iterations should
always be averaged w.r.t. these starting weight distributions.
Since in our case we use a model-based approach instead of DNNs,
we cannot rely on these default DNN weight distributions. Further,
the choice of starting points heavily impacts training stability and
convergence, and is hence crucial. In [BBD21], we thus sketched
reasonable heuristics for a choice of the step size δ and the softmax
temperature τ , both summarized in θ. These choices itself without any
training allow for high detection accuracy which is not necessarily true
for other initializations as shown in Fig. 3.7. Hence, we used starting
points computed according to (3.35) and (3.36).
Now, using always the same starting point implies training would
proceed similarly and tend towards the same optimum from run to run
in contrast to usual DNN training. We could observe this behavior in
our simulations making the results reproducible [Bec23]. This means
that the accuracy after the training process highly depends on the
chosen starting point. In the extreme case, we could directly choose
parameters being an optimum and no training would be required.
Training progress could illustrate in a flat (noisy) curve not revealing
further insights about CMDNet. Thus, we avoided illustration attempts
of the training progress in [BBD21]. Interestingly, such progress is
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Table A.2: DNN architecture for online MIMO detection.

Component Layer Dimension
Input Received signal NRx

ResNetBlock 1 Rectified Linear Unit (ReLU) Nh = 512
Residual Connection Nh = 512

ResNetBlock 2 ReLU Nh = 512
Residual Connection Nh = 512
... Nh = 512

ResNetBlock NL
... Nh = 512

NT× Classifier Softmax M = 2

already contained in rudiments in [BBD21] in Fig. 3.7: There, the
BER performance before and after training is shown. Note that,
in Appendix A.3.2, in contrast, we deal with the practical value of
the training progress in depth, i.e., we show that visualization of
the validation loss serves as a quick tool to assess whether training
converges for the selected hyperparameters.

Following these two reasons, we opted against adding the online training
separately as a new topic into [BBD21], and elaborate more deeply on the
differences of offline training compared to online training.

First Online Learning Analysis

In the aftermath of the publication, however, we make a simple analysis
of online learning or training to illuminate this blind spot of [BBD21]. We
assume both CMDNetbin with NL = 64 and a specific DNN to be trained for
a channel matrix realization H and then to be used within the coherence time.
Afterwards, the current state of parameters θ is used as a starting point for
training according to the next realization H. The SNR level is also fixed
with σ2

n leaving only an amortization in (3.27) across received signals y. As a
starting point of CMDNet’s parameters, we exploit the optimized parameters
θ105 from Fig. 3.4 and Fig. 3.7, and trained for Ne = 102 iterations per
realization with batch size Nb = 500.

For design of the specific online-learning DNN, we use a simple Residual
Network (ResNet) DNN detector [HZRS16b] shown in Tab. A.2 with NL
He-uniform-initialized ReLU layers of width Nh with a final softmax layer
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Figure A.8: BER curves of online-trained CMDNet and ResNet DNN in a 32×32
MIMO system with QPSK modulation. Effective system dimension
is 64 × 64.

of width M = 2 for each of NT transmit signals for classification. A residual
connection between each current and previous layer improves the expressive
power. If the input and layer dimensions do not match, we introduce a
linear layer between input and first residual connection of width Nh. We
choose width Nh = 512 and depth NL such that performance is maximum
for the respective number of training iterations Ne, while limiting DNN size
to speed up training time. For Ne = 102 and 103, we thus select NL = 2.
For Ne = 105, we have NL = 6. The number of H training realizations is
103, 102, and 10, respectively.

The results of the considered online training scenario are shown in Fig. A.8.
When it comes to CMDNet, online training results in only slightly better
average BER performance with this configuration. The ResNet DNN detector
is able to match Minimum Mean Square Error (MMSE) detector performance
after Ne = 103 iterations. However, the gap between SD and DNN BER
curves remains significant even with online training for high values of Ne =
105. In this case, training on an Nvidia Titan RTX takes 700 s per realization,
also significantly higher by a factor of 70 than the 10 s of CMDNet. This
hints towards that it is a considerably greater effort to train a small DNN
to high accuracy compared to a deep CMDNet.

In conclusion, the offline- and model-based design of ML algorithms like
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CMDNet seems to be most promising, highlighting our contribution and
justifying our restriction to offline learning in [BBD21]. However, a deeper
scientific analysis of online training would require further investigations with
novel scope. For example, evaluating CMDNet online requires reasonable
assumptions for the online scenario like a statistical model for the change
of the channel similar to [KAHF20]. Further, an evaluation adds only little
value without comparing it to other light-weight approaches like MMNet.
Therefore, we think that it remains to further research to find out about
CMDNet’s true online learning capability.

A.3.7 Robustness Against Various Mismatches
In the review process, the question arose whether CMDNet is robust against
mismatches. Mismatch — which can also be considered as overfitting (see
Chapter 2) — can only occur if CMDNet is trained for specific realizations
or statistics different from those encountered in use. Since we follow the
offline learning strategy (3.27) with amortization, we can choose a broad
range of, e.g., channel, realizations for training that reflect all deployment
statistics and thus partly avoid mismatch.

Now, we explain in detail what this means for different kinds of mismatches:

1. SNR mismatch: First, we point to Sec. 3.5.1 where we state that we
train our algorithm CMDNet offline uniformly over a broad SNR range
of Eb/N0 ∈ [4, 27] dB. This means that we avoid mismatch by design
using offline learning also known as amortized inference. Since we use
a huge interval being much larger than the actual working point SNR
region, mismatch outside of it is not really of relevance in practice. In
Fig. 3.4, mismatch is indeed already illustrated: We see that CMDNet
also performs well below 4 dB outside the training interval.

2. Modulation mismatch: From (3.14) and (3.32), we note that the
modulation defines the architecture of CMDNet by construction of m
or output q(x|y,θ), respectively. Hence, it is not possible to analyze
mismatch w.r.t. modulation since the number of classes/the architec-
ture changes. Indeed, we could use parameters θ optimized for, e.g.,
BPSK, and apply those to the architecture for, e.g., 16-Quadrature
Amplitude Modulation (QAM), as long as the number of layers NL
is the same. For this example, we observe a slightly worse accuracy
compared to DetNet in simulations, and it indeed works to some extent.
In general, it makes more sense to optimize a low number of parameters
to an intended scenario and to use it there.
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3. MIMO configuration mismatch: The same reasoning as for modu-
lation mismatch also applies to investigation of MIMO configuration
mismatch. This means the dimensions of the MIMO system change
and thus the architecture (and maybe also the number of layers NL or
parameters θ) of the algorithm.

• If we only extract parameters of a 32 × 32 system and apply them
to a 8 × 8 system, both with NL = 64, we see slightly improved
accuracy w.r.t. original θ with NL = 16 from Fig. 3.5. We explain
this behavior by the larger layer and parameter number: CMDNet
with NL = 64 is more expressive. Although the layer number is
different and does not allow for drawing a precise conclusion, it
seems we are able to apply θ evaluated for one system to another
with different dimensions.

• In contrast to modulation mismatch, we could optimize our algo-
rithm for a 32×32 system and apply the exactly same architecture
to a 8 × 8 system by setting all not needed entries in y, H and
x to 0. But the implicit presumption in algorithm design that
every user is active would be violated.

• At this point, multi-user detection approaches where also the
number of active users is determined suggests itself, and we enter
the new scope of compressive sensing theory. As one interesting
idea for future research to introduce multi-user detection, we
could set one class to 0 (which means inactive) and optimize
CMDNet for one or different prior probabilities of being inactive.

• The idea raises new questions going beyond the scope of this
thesis: For now, we assumed equal prior symbol probabilities α
and optimized for these statistics of x. What happens if the α
are not equal but differ according to certain statistics? Is then
amortization of CMDNet’s parameters θ across the statistics of
α a valid strategy? Or does it make more sense to determine one
different parameter set for each α online or offline? Furthermore,
does it make sense to add the α (maybe untied across multiple
layers) to the set of trainable parameters for performance im-
provements after optimization? From a conceptual point of view,
there is no reason to us why weighting of symbols different from
the true α should be beneficial. Further, first experiments showed
that the latter idea does not come with any performance benefits
and makes training even instable.

4. Channel correlation mismatch: In contrast to the latter two
scenarios, the architecture does not change but only the channel input
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statistics. For example, we could hence simply use CMDNet with
parameters θ trained for Gaussian i.i.d. channels p(H) and apply it
to the One-Ring model from Sec. 3.5.5 described in Appendix A.2.2.
After simulation of this scenario, we observe better detection accuracy
with these mismatched θmismatch over the whole SNR region from
Fig. A.9. At first glance, this comes to us as a big surprise since
training according to the correct channel model should enable tight
adaptation. Taking a closer look, we are able to explain this behavior:

• First, we note that we use Gaussian statistics in both the i.i.d.
and the One-Ring model. The difference lies in adding correlation
according to the One-Ring model between the columns in H. In
fact, this mostly changes condition number of the matrices H and
seems only to require little retraining of parameters.

• Second, we note that we optimize soft outputs w.r.t. cross-entropy
also shown in Fig. A.9. Although their quality correlates with
detection accuracy, these could be worse compared to CMDNet
with correctly trained θ. Below Eb/N0 = 6 dB, the measure of
cross-entropy is indeed higher in contrast to accuracy indicating
a worse soft output quality compared to correctly trained CMD-
Net (and lower above 6 dB). As errors in the low SNR region
occur more often, the cross-entropy loss is usually dominated by
this region and hence parameters are optimized to perform well
there. This causes biasing of CMDNet’s soft output and detection
accuracy towards performing well at low SNRs. In correlated
channels, errors are more frequent in the low SNR region than
in i.i.d. channels which explains the observed behavior. In fact,
these observations explain why we used a wide training SNR
interval of Eb/N0 ∈ [4, 27]: to improve accuracy also for high
SNR. Further, this means we could use original parameters θ for
low and mismatched θmismatch for high SNR.

• Basically, all explanations boil down to different weighting of SNR
regions according to error frequency which results in respective
soft output measures. Note that we can achieve this different
weighting also using the MSE instead of the Cross-Entropy (CE)
loss as described in Appendix A.3.3.

A.4 Extensions to CMDNet
Besides the surprisingly good performance of CMDNet in MIMO systems
considering its low complexity, we also became aware of some limitations in
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Figure A.9: BER curves and cross-entropy for CMDNet with mismatched pa-
rameters optimized for a i.i.d. Gaussian channel model when applied
to a correlated 64 × 32 MIMO system with QPSK modulation. The
correlation matrices were generated according to a One-Ring model
with 20◦ angular spread and 120◦ cell sector. Effective system di-
mension is 128 × 64 and for iterative algorithms Nit = NL = 64.

the numerical evaluation. This has stimulated multiple ideas to improve the
default structure. In this section, we briefly present these ideas and show
first numerical results.

Furthermore, we note that CMDNet has been so far applied to the example
of a linear Gaussian MIMO channel. But thanks to its generic nature,
CMDNet may also be applied to non-linear detection problems of other
model-based research domains. We note that a deeper analysis falls outside
the scope of this thesis.

A.4.1 Parallel CMD
One drawback of CMD and CMDNet is that it requires solving a non-
convex optimization problem, i.e., the relaxed MAP problem (3.12c), being
Nondeterministic Polynomial time (NP) hard. Therefore, we followed a
steepest gradient descent approach to compute a computationally tractable
solution. This means only convergence to a local solution is guaranteed.
Since the Gaussian approximation of the interference terms becomes more
accurate with increasing massive MIMO system dimensions, we conjecture
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that the original problem can be replaced by a convex one with high fidelity.
Hence, CMD’s local solution may often coincide with the global one. Indeed,
the numerical evaluation in Chapter 3 shows that performance is excellent
in high dimensional systems, e.g., 32 × 32, but deteriorates in conventional
small MIMO systems, e.g., 8 × 8. The latter is also true for higher-order
modulation, e.g., 16-QAM, where a larger number of classes has to be
detected.

To overcome trapping in a local optimum, we follow an idea from opti-
mization theory: the combination of grid search with local optimization into
multi-start strategies [Rao19]. Hence, our basic idea is to evaluate CMD for
multiple starting points of gradient descent to increase the probability of
finding the global optimum. In Fig. A.10, we show this approach in detail.
Owing to its parallel structure, we call it Parallel Concrete MAP Detection
(CMDpar). It can be summarized as follows:

1. We use multiple (NP) branches of CMDNet (each with different pa-
rameters θi and starting point G(0)

i ).

2. We choose the result which minimizes the objective function
L
(︂

G(NL), τ
(NL)
i

)︂
from (3.12c).

3. We include the starting points G(0)
i of CMDNet in the trainable

parameters θ. By default, we define G(0)
0 = 0 to include default CMD

as one branch.

4. We train CMDpar w.r.t. x̃ or στ(NL)
(︁
G(NL))︁ according to the corre-

sponding loss function MSE or cross-entropy, respectively.

In contrast to heuristic gradient descent starting point initialization of CMD
with, e.g., randomization, note that we optimize the starting points G(0)

i

as part of the trainable parameters θ to increase detection accuracy. In
Fig. A.11, we show first numerical results of the BER performance and
cross-entropy of binary CMDpar with NL = 16 layers and NP = 3 branches
trained for Ne = 300, 000 iterations assuming the following starting point
initialization including the default G(0)

0 = 0. For better interpretability, we
first heuristically choose the starting point in terms of x̃(0)

i as
{︂

x̃(0)
0 , x̃(0)

1 , x̃(0)
2

}︂
= {0,+0.5 · 1,−0.5 · 1} (A.43)

such that, by inverting (3.17e) or (A.10e), i.e.,

s(0)
i = 2τ · tanh−1

(︂
x̃(0)
i

)︂
− ln (1/α− 1) , (A.44)
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Figure A.10: Algorithmic structure of the parallel extension to CMDNet: CMD-
par. Trainable parameters are shown in red.
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Figure A.11: BER curve and cross-entropy of CMDpar in a 32 × 32 MIMO
system with modulation. Effective system dimension is 64 × 64.

and assuming default α = [0.5, 0.5] and τ = 1, we arrive at

{︂
s(0)

0 , s(0)
1 , s(0)

2

}︂
= {0, ln(3) · 1,− ln(3) · 1} . (A.45)

In fact, we observe that accuracy of CMDpar is actually similar to one
branch, i.e., to default CMDNet trained for Ne = 100, 000. The reason may
lie in the learned parameters s(0)

i : Their values are quite small in the order
of 10−4-10−2 and symmetric around 0. This means numerical optimization
ends in the non-diverse but equal point s(0)

i = 0. However, the other learned
parameters step size δ and softmax temperature τ differ per branch which
suggests each branch of CMDpar to compute a different output. Considering
the cross-entropy, a measure of soft output quality (see Fig. A.11 (b)), this
may be the reason for an improvement of soft outputs. In particular in the
high SNR region, CMDpar beats default CMDNet since there interference
removal is crucial and hence a parallel structure following different hypotheses
similar to MAP detection may be beneficial. In conclusion, although being
a promising idea, CMDpar does not allow for learning of different gradient
descent starting points without fine-tuning of the training process. However,
we note that further investigations are required to evaluate its full potential.
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Figure A.12: BER curves of various detection methods in a correlated 64 × 32
MIMO system with QPSK modulation. The correlation matrices
were generated according to a One-Ring model with 10◦ angular
spread and 120◦ cell sector. Effective system dimension is 128 × 64
and for iterative algorithms Nit = NL = 64.

A.4.2 HyperCMD
Besides small MIMO systems and higher-order modulation, also detection
in spatially correlated channels (see Appendix A.2.2) typical for the up-
link of massive MIMO systems may be challenging. As an example, we
give Fig. A.12: We observe that the BER performance of learning-based
approaches degrades significantly in the high SNR region, assuming a local
scattering model for channel correlation with a small angular spread of
φ∆ = 10◦ typical for flat rural areas. In contrast, MMSE Ordered Successive
Interference Cancellation (MOSIC) is robust for correlated channel matrices
H with low condition numbers since it cancels symbol interference accord-
ing to a SNR ordering of every row based on a Sorted QR Decomposition
(SQRD). The reason for robustness of the SDR technique may lie in the close
approximation of the original objective function. Nevertheless, CMDNet
proves to be superior to other learning-based approaches DetNet and OAMP-
Net especially in the high SNR region. This is surprising since CMDNet
has lower complexity and is optimized over a wide range of different user
positions and hence correlation matrices. Unlike the i.i.d. Gaussian channel
case, CMDNet is not amortized over a single but a wide range of channel
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statistics.
It becomes clear from Fig. A.14 that the accuracy of learning-based

approaches is limited in the high SNR region when it comes to massive
MIMO models with channel correlation. As noted in [KAHF20], this effect
is much more evident in practical correlated channels and detection requires
a more sophisticated approach such as the well-suited heuristic MOSIC.
Therefore, the authors of [KAHF20] proposed MMNet, a low complex model-
based DNN, to make online training and thus fast and tight adaptation to
new channel matrix realizations feasible, alleviating the need to consider
channel statistics in algorithm design.

Since online training, e.g., by variants of SGD, is in general wasteful
and relies on specific assumptions such as a long coherence time, the au-
thors from [GAH20] introduce the concept of hypernetworks [BHV+16;
HDL16; ZSBL19] to the overall design of MMNet and call this approach
Hypernetwork-based MIMO Detection (HyperMIMO). Hypernetworks were
first used in the context of image recognition [BHV+16]. It is an additional
DNN usually trained for a limited number of input samples to compute
optimized parameters of a DNN-based detector. Its aim is generalization, i.e.,
to predict the parameters of a DNN given a new input sample. By this
means, it is able to recognize other objects of the same class, e.g., a dog,
without the need for retraining.

Our idea is to apply the concept of hypernetworks to CMDNet. This
means:

1. We use the default structure of CMDNet.

2. We introduce a hypernetwork with hyperparameters ψ to compute
parameters θ = f

(︁
H, σ2

n|ψ
)︁

of CMDNet for each channel matrix and
noise variance input.

3. We optimize the hyperparameters ψ of the hypernetwork w.r.t. x̃ or
στ(NL)(G(NL)) according to the corresponding loss function MSE or
cross-entropy, respectively.

We name this approach Hypernetwork-based Concrete MAP detection (Hy-
perCMD) and depict its structure in Fig. A.13. Further, we note that the
design and training of a hypernetwork is not trivial: The main bottleneck of
the concept was identified in [BHV+16] to be the quadratic size of the output
space since the weight matrices of a DNN is now parameterized by an input
vector. In this special case, we further have a channel matrix H as input
which is thus also of quadratic size. For example, HyperMIMO therefore uses
a more elaborated design leveraging factorized linear layers, weight sharing
and QR Decomposition (QRD) to lower the number of inputs as well as
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outputs and consequently parameters. Hence, the size of the hypernetwork
f
(︁
H, σ2

n|ψ
)︁

and the number of its hyperparameters ψ is reduced. Further,
it is trained for fixed channel statistic to ensure training convergence.

Numerical evaluation of HyperCMD in a 32 × 32 MIMO system for
fixed i.i.d. Gaussian channel statistic supports these findings. In Fig. A.14,
we show the results with two different hypernetwork architectures θ ={︁
τ (0), . . . , τ (Nit), δ(0), . . . , δ(Nit−1)}︁ ∈ R(2Nit+1)×1 = f(H, σ2

n|ψ) of Hyper-
CMD:

1. Hypernetwork f1(σ2
n|ψ) has only noise standard deviation σn as input.

In experiments, we observed that using the noise variance σ2
n instead

leads only to minor differences. Thus, we use σn as in [GAH20] since it
has smaller input range making DNN training easier. We define each
element of θ or the function f1 to be a one-layer Neural Network (NN),
with width Nh and ReLU function (see Appendix C) as non-linearity
ρrelu (·), applied element-wise to allow for close function approximation
of every mapping from noise variance to θ:

τ (j) =
⃓⃓
wT

2j · ρrelu (w1j · σn + b1j) + b2j
⃓⃓−1 (A.46a)

δ(k) =w̃T
2k · ρrelu

(︁
w̃1k · σn + b̃1k

)︁
+ b̃2k (A.46b)

ψ =
{︁

w1j , w̃1k,w2j , w̃2k,b1j , b̃1k ∈ RNh×1, b2j , b̃2k ∈ R
}︁

(A.46c)
∀ j ∈ 0 . . . Nit , k ∈ 0 . . . Nit − 1 .

This means all parameters are computed independently. As the starting
point, we choose weights as w1j = w̃1k = w2j = w̃2k = 0.01 · 1 and
biases as b1j = b̃1k = 0 with width Nh = 6, whereas we set b(0)

2j = τ
(j)
0

and b̃(0)
2j = δ

(j)
0 to the default parameter starting point θ0 from (3.35) in

Sec. 3.5.1. In total, only a low number of |ψ| = (3Nh +1) · (2Nit +1) =
627 hyperparameters has to be optimized assuming a layer number
Nit = NL = 16.

2. Hypernetwork f2(H, σ2
n|ψ) takes both noise standard deviation σn and

vectorized channel matrix vec (H) as input. It consists of two dense,
fully-connected layers with Exponential Linear Unit (ELU) activation
function ρelu (·) (see Appendix C) and a last linear layer:

v1 =ρelu

⎛
⎝W1 ·

⎡
⎣ σn

vec (H)

⎤
⎦+ b1

⎞
⎠ (A.47a)

v2 =ρelu (W2 · v1 + b2) (A.47b)
v3 =W3 · v2 + b3 (A.47c)
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H, σ2
n

θ = f
(︁
H, σ2

n|ψ
)︁

G(0)
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∂G
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G(1)
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Figure A.13: Algorithmic structure of CMDNet with hypernetwork extension:
HyperCMD. Parameters shown in blue are computed by the hy-
pernetwork with trainable hyperparameters in red.
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[︂
1/τ (0) . . . 1/τ (Nit)

]︂T
= [|v3,1| . . . |v3,Nit+1|]T (A.47d)

[︂
δ(0) . . . δ(Nit−1)

]︂T
= [v3,Nit+2 . . . v3,2Nit+1]T . (A.47e)

In contrast to Hypernetwork f1(σ2
n|ψ), all inputs are processed jointly

in one DNN. The hyperparameters have the following dimensions:

ψ =
{︁

W1 ∈ RN
(1)
h ×NT·NR+1,W2 ∈ RN

(2)
h ×N(1)

h ,

W3 ∈ R2Nit+1×N(2)
h ,b1 ∈ RN

(1)
h ×1,b2 ∈ RN

(2)
h ×1,

b3 ∈ R2Nit+1×1}︁ . (A.47f)

For l = 1, . . . , 3, we initialize biases to bl = 0 and weights Wl ∈
RN

(l+1)
h ×N(l)

h by sampling according to the Glorot Uniform Initializa-
tion (2.80) from [GB10] known to speed up training convergence (see
Chapter 2).
Note that this hypernetwork is dense and has a large input dimension
resulting in a large number of hyperparameters. Consequently, efficient
training of f2(H, σ2

n|ψ) is difficult, and we restrict to investigation in
a smaller 8 × 8 MIMO system. We choose the width of the two hidden
layers of the hypernetwork to be N (1)

h = NT ·NR +1 = 16 ·16+1 = 257
and N

(2)
h = 75 like in [GAH20]. Further, we use Nit = 16 CMDNet

layers so that the output dimension results to 2Nit + 1 = 33. In this
configuration, Hypernetwork f2(H, σ2

n|ψ) has already |ψ| = 88, 164
hyperparameters to be optimized decreasing convergence speed. We
account for this fact by increasing the number of training iterations
to Ne = 3 · 106, each with a batch size of Nb = 500, and make
training stable by reducing the learning rate of the optimizer Adam
from ϵ = 10−3 to 10−4.

Comparing CMDNet and HyperCMD 1 with small hypernetwork f1(σ2
n|ψ)

for NL = 16 layers and a 32 × 32 MIMO system in Fig. A.14 (a), we observe
a slight improvement (≤ 0.5 dB) in detection accuracy from Eb/N0 = 8 dB
to 14 dB. This means HyperCMD is able to compute optimized parameters
for each noise variance or SNR. The observation is in accordance with
our findings from Sec. 3.5.3 and Fig. 3.7 that CMDNet benefits from an
optimized parametrization θ conditioned on σ2

n for the low and high SNR
region, respectively.

If we now apply HyperCMD 2 with expressive hypernetwork f2(H, σ2
n|ψ),

whose input is extended by channel matrix realizations H, to a 8 × 8 MIMO
system (see Fig. A.14 (b)), the improvements are still minor and focused



236 Appendix A CMDNet Extensions

4 6 8 10 12 14 16 18 2010−6

10−5

10−4

10−3

10−2

10−1

Eb/N0 [dB]

B
ER

(a) 32 × 32

SD
OAMPNet
NL=64
CMDNetbin
HyperCMDbin
θ = f1(σ2

n|ψ)

4 6 8 10 12 14 16 18 20 22 2410−4

10−3

10−2

10−1

Eb/N0 [dB]

(b) 8 × 8

SD
SDR
CMDNetbin
HyperCMDbin
θ = f2(H, σ2

n|ψ)
Θ = f3(H, σ2

n|ψ)

Figure A.14: BER curve of HyperCMD in a (a) 32 × 32 and (b) 8 × 8 MIMO
system with QPSK modulation. Layer number is NL = 16 and
effective system dimension is (a) 64 × 64 and (b) 16 × 16.

on the high SNR region ≥ 12 dB where CMDNet’s error floor begins. This
means adding channel matrices as additional information for computation of
CMDNet’s parameters does not come with the gain in accuracy we expected.

The reason may lie in various factors:

1. In contrast to HyperMIMO, only 2 scalars, i.e., δ(j) and 1/τ (j), are
multiplied per layer for computation of all symbol entries in (3.14)
and (3.17). Indeed, unfolding CMD with untying of scalars per layer
and not into vectors or matrices makes sense if we optimize/amortize
over a channel statistic p(H), e.g., an i.i.d. Gaussian channel, and not
a realization H since the channel acts the same on all transmit symbols
being received with power 1 on average. But if we now compute
optimized step sizes and softmax temperatures with and for each
realization H, we need a separate and/or combined weighting of symbol
entries to gain any benefit. Thus, untying of the scalar parameters δ(j)

and 1/τ (j) to vectors (or even matrices) being multiplied element-wise
in (3.14) or (3.17) may be necessary to make the concept work and
allow for larger accuracy improvements. However, this comes at the
drawback of an increase in the number of parameters θ by a factor of
at least NT (for untying into vectors), a larger hypernetwork output
and hence a larger number of hyperparameters ψ.
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For first numerical experiments (see Fig. A.14 (b)), we modified Hyper-
network 2 to compute untied element-wise multiplied vectors (collected
in a matrix Θ = f3(H, σ2

n|ψ)) and adjusted the hidden layer size
N

(2)
h = 392 to half of the sum of input and output dimension. Unfortu-

nately, we do not observe any accuracy gains after Ne = 106 training
iterations with standard parametrization w.r.t. both CMDNet and
HyperCMD with scalars.

2. Furthermore, overfitting or space and time costs could make learning
such a regressor (in particular with untied vectors) infeasible or require
more training iterations. Employing QRD to lower the number of
parameters by approximately a half to NT(NT + 1)/2 did not yield
any remarkable improvements in training convergence or speed in our
experiments.

3. Maybe, success simply necessitates use of another training parametriza-
tion with different batch size or optimizer. The huge number of hy-
perparameters makes it difficult to pinpoint the exact reason for only
minor improvements.

At this point, we note that numerical results indicate that HyperMIMO
from [GAH20] achieves similar accuracy to an online trained MMNet. But
it was only evaluated for a small 12 × 6 massive MIMO system and local
scattering model with fixed user positions and Gaussian-distributed angles. If
application of hypernetworks in large massive MIMO systems is possible and
leads to a worthwhile accuracy complexity trade-off, remains an open research
question. For example, online training of a small number of parameters of
CMDNet could be of lower complexity at inference run time than HyperCMD.

A.5 Chapter Summary
In this chapter, we provided detailed explanations including AMP’s non-
optimality and an illustrative explanation of the non-convexity of the relaxed
objective function. In particular, for the guiding example of the model-
based approach CMDNet addressing an algorithm deficit instead of a model
deficit, we discussed different training aspects such as the influence of
hyperparameter choices in the context of established ML practices. The key
results are manifold:

• We provided the complete derivation of binary CMD, and proved that
CMD and binary CMD are different algorithms for BSPK symbols.
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• We introduced the cross-entropy loss as a measure of soft information
to enable deeper investigations.

• We contributed that the main benefit of validation loss, i.e., tracking
the generalization to unseen data points, transforms into being a less
noisy observation of the current training progress when using infinite
model-based generated data.

• We found that using the MSE loss in CMDNet optimization instead —
similarly to related data-driven MIMO detection approaches — leads
to comparable performance, primarily due to a different SNR weighting
that results in excellent BER in high-SNR regions. This outcome is
somewhat surprising, as this practice is not well-grounded in theory, yet
it helps explain the empirical success of these methods. The multi-loss
does not seem to be suited for model-based approaches, as it tends to
limit maximum performance rather than enhance it.

• We investigated the influence of training parameters such as the op-
timization algorithm, batch size and number of layers. In particular,
we figured out that Adam — known to generalize worse than SGD —
indeed performs comparable using an infinite model-generated data.

• We clarified why we exploit offline training from both theory and
practice: It lowers complexity at the cost of accuracy by optimizing
over a whole range of input statistics. This avoids the need for online
retraining and enables extensive training to high accuracy before
deployment.

• We revealed that CMDNet heavily reacts to starting weight initializa-
tions requiring heuristics different from standard DNN practice. In
combination with the offline training philosophy, we showed that evalu-
ation of CMDNet’s training convergence compared to other approaches
is not conclusive without further assumptions.

• A simple online learning analysis reveals that a default low-complex
DNN does not lead to competitive performance with reasonable training
complexity and that CMDNet performance only increases to a small
extent. A deeper analysis is required.

• We explained that a mismatch of CMDNet parameters can be consid-
ered as overfitting. Surprisingly, in all considered scenarios, overall
detection accuracy becomes comparable or even superior, indicating
CMDNet’s robustness against various mismatches.
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• Finally, we proposed two extensions of CMDNet: CMDpar and Hyper-
CMD. The former is motivated by the non-convexity of the optimization
problem tackled by extending CMDNet by parallel processing branches
with different starting points akin to a multi-start strategy. In the
latter, we utilize the concept of hypernetworks to predict optimized
parameters of CMDNet for each channel and noise variance realization.
First simulation results show small improvements not justifying the
extension’s higher complexity. It remains to future research to clarify
the full potential of CMDpar and HyperCMD.

In conclusion, the main contribution is that we shed new light on ML practices
in the context of communications design and resulting changes with model-
based approaches. A common problem remains the large hyperparameter
space that may be tackled with a more efficient random search.





Appendix B

Semantic Communications
Extensions

B.1 Overview
In this chapter, we extend our investigations on semantic communication
systems from [BBD23; BBD24], corresponding to Chapter 4 and Chapter 5,
respectively, by aspects that were cut or have fallen short. This includes
philosophical extensions, a comparison of the two semantic system mod-
els from Chapter 4 and [BSW+23] in light of the literature, SINFONY
design considerations and its competitiveness compared to classic digital
communications designs. Furthermore, we incorporate ideas that have been
published in [BBD23]’s former version [BBD22], including how semantics can
be exploited in conventional digital designs and the example of floating-point
transmission. Lastly, we reflect deeper on RL-SINFONY.

B.2 Extended Analysis on SINFONY
In this section, we expand our analysis of SINFONY by exploring philo-
sophical aspects of semantics, comparing system models from Chapter 4
and [BSW+23], and presenting new simulation results that compare SIN-
FONY with non-overall semantic communication system designs and assess-
ing the design choices made for SINFONY.
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B.2.1 Philosophical Extensions
If we consider human semantics, it becomes difficult to describe the actual
meaning in terms of mathematical modeling. In case of image classification,
we need to make use of labeled datasets, i.e., samples, as noted in Chapter 4,
to include human-based semantics as usually done in the domain of ML.

If we go one step further, we realize that the human brain itself is an
information processing system that recognizes these images and extracts
the relevant information. The human being is part of the society (with its
own goals), nature and ultimately the whole universe. These aspects are not
included in Shannon’s theory and philosophers still try to combine them in
a unified theory of information [Flo09; Hof13].

Søren Brier states in [Bri08; Bri13]: “Modern systems thinking views
nature as containing multilevel, multidimensional hierarchies of interrelated
clusters, which together form a heterogeneous general hierarchy of processual
structures: a ‘heterarchy’. Levels emerge through emergent processes when
new holons appear through higher-level organization. [. . . ] Meaning is
generated through the entire heterarchy [. . . ]”. Holon is something that
functions both as an independent, self-sufficient unit and as an integral
component of a larger whole [Koe68]. For example, in biology, a cell is a
holon, and in society, the human is a holon. This means the term meaning is
closely related to the phenomenon of emergence and connects to organization
in the universe.

Recently, a new interdisciplinary theory of emergence was proposed
in [RGL+24], where Shannon’s information theory plays a critical role
in understanding how macroscopic processes emerge from microscopic dy-
namics. A key concept is informational closure, which quantifies the extent
to which a macroscopic process can predict its future states without needing
information from its underlying microscopic processes. This is formalized
using Shannon’s Mutual Information (MI), which measures how much infor-
mation the macro-scale retains about its future, independent of microscale
data. By integrating information-theoretic concepts like MI with principles
from automata theory and computational mechanics, the theory establishes
a unified framework for reasoning about the emergence of self-contained
macroscopic behaviors in complex systems.

Given this more philosophical or interdisciplinary view, we conclude
that Shannon’s information theory can be seen as a key ingredient for
also understanding and designing semantic communication systems from a
broader perspective, especially when it comes to mathematical modeling or
ML.
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Semantic Hierarchical Levels

We emphasize that semantics can be incorporated at progressively increasing
levels of complexity, forming a hierarchy of semantic layers. This concept is
explained in Chapter 4 and illustrated in Sec. 4.5.2 with an example based
on sensors and power plant control. Another technical example is as follows:
At the first semantic layer, a RV z1 might represent the floating-point values
of continuous variables processed by a digital processing unit, as shown in
the numerical example of [BSW+23] or in Appendix B.4. Here, the bits s
carry specific meanings, with some contributing more significantly to the
target variable z1 through a function z1 = f (s). Beyond this initial layer, a
second semantic layer could interpret z1, for instance, by classifying images
or sensor data z2. This layering process can continue up to the overall task
z3, such as power plant control. This hierarchical structure enables the
addition or removal of context as needed, making the system optimizable
with respect to the variables z1, z2, z3, . . . , zi at different semantic levels.
In the context of task-oriented communication, this implies that individual
subtasks may contribute to a broader, overarching goal.

Additionally, these semantic layers can represent both microscopic and
macroscopic processes, as in the phenomenon of emergence, bridging semantic
communication with the findings in [RGL+24]. A deeper exploration of this
connection is reserved for future work.

B.2.2 Alternative Semantic System Model
In this section, we shed light on why Chapter 4 and [BSW+23] include
different views on semantic RVs.

In [BSW+23], the semantic RV m ∈ MNm×1
m from domain Mm of dimen-

sion Nm represents messages of a factor node describing key distribution
parameters of the exploration RV s to be exchanged between neighboring
agents. We optimize communications via the InfoMax principle to preserve
as much information as possible in the received signal about the factor
node message m. Notably, by doing so, we can provide a probabilistic
estimate, i.e., the approximate posterior qφ(m|y). Since the message passing
algorithm can make use of the probabilistic input including the uncertainty
of the communication channel, this can be seen as a step towards a semantic
design, i.e., communication-aware exploration and exploration-aware com-
munication. As pointed out in [BSW+23], the design considerations can
also be applied to semantics-agnostic settings. These can be seen as Joint
Source-Channel Coding (JSCC) of m backed by semantic communication
research [GQA+23].

In contrast, in Chapter 4, we use a different system model. We clearly



244 Appendix B Semantic Communications Extensions

A: Technical Level

B: Semantic Level

C: Effectiveness Level

Semantic Communications
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Figure B.1: Three levels of semantic communications according to Weaver.

differentiate between the semantic RV z and the observation or source s, e.g.,
corresponding to the meaning of an image and the observation of that
image, respectively. We aim to reconstruct the semantic RV z from the
observation s with SINFONY based on the InfoMax principle. Transferred
to the scenario in [BSW+23], this would mean that we see the semantic
RV m now as an observation s and aim to extract its meaning z for the
computations inside the message passing algorithm to enable more efficient
communication. Differentiating between observation and semantics, we
can clearly or explicitly define semantics leading to a more complete and
consistent view.

Taking a look at a visualization of the three levels by Weaver depicted
in Fig. B.1 from [BBD+11a; BBD+11b] and adopting the view from Chap-
ter 4, we notice that the approach of [BSW+23] only operates after the
semantic encoder on observation s and tailors the receiver output w.r.t. s
to the semantic decoder. However, SINFONY from Chapter 4 also sees the
semantically encoded message or observation s but then combines receiver
and semantic decoder into one joint semantic receiver to reconstruct the
semantic RV z directly.

Recalling that we propose multiple hierarchical semantic levels — beyond
just Levels B and C — note that with SINFONY, communication does not
necessarily terminate at the effectiveness level. Instead, it may operate at
even higher semantic levels, which can themselves be followed by further
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Figure B.2: Classification error rate of SINFONY with different kinds of opti-
mized Tx/Rx modules and central image processing with digital
image transmission on the CIFAR10 validation dataset as a function
of normalized SNR.

abstractions.
As a concluding remark, in the scheme of Fig. B.1, one possible approach

is to assume the technical level including transceiver and physical channel
to be given. In [BBD+11a; BBD+11b], this is referred to as the semantic
channel. Based on a standard communication system described by pdf
p(ŝ|s), we could optimize the semantic encoder and decoder for a semantic
transmission of z. We elaborate further on this idea in Appendix B.3.

B.2.3 SINFONY vs. Classic Design on CIFAR10
In [BBD23] or Chapter 4, we compared the performance of semantic com-
munication, specifically SINFONY, with that of a classic digital design.
However, the evaluation was limited to the MNIST dataset. Now, we aim to
provide a more detailed analysis by evaluating the comparison for the more
complex CIFAR10 dataset.

The results on the CIFAR10 validation dataset in Fig. B.2 show that the
performance gap between SINFONY and the digital image transmission
(Digital comm.) becomes even larger, with a difference of roughly 25 dB
compared to the MNIST scenario (see Fig. 4.7 in Sec. 4.6.4). Note that
Digital comm. classifies the entire digitally transmitted image s at once,
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allowing it to extract features along the image edges, unlike the distributed
processing used in SINFONY. As a result, it outperforms other approaches
at high SNR. However, this advantage may not apply to other scenarios: for
example, joint feature processing of two images from different perspectives
may not offer any performance benefits. Neglecting this technical aspect,
even SINFONY with digital transmission of features r (SINFONY – Classic
digital comm.) performs 10 dB better. This demonstrates the inefficiency of
the classic design (Digital comm.).

Most notably, SINFONY outperforms SINFONY – Analog semantic AE
by 5 dB. The latter approach refers to SINFONY trained for perfect commu-
nication links and paired with Transmitter (Tx) and Receiver (Rx) modules
consisting of an analog semantic AutoEncoder (AE), optimized for feature
transmission of r [BBD23]. The advantage of a semantic overall design,
where all components are jointly optimized w.r.t. the semantic RV z, be-
comes even more apparent compared to the MNIST scenario (see Fig. 4.7 in
Sec. 4.6.4). We conclude that a semantic design is now also well-motivated
from numerical experiments.

B.2.4 Alternative SINFONY Designs
In [BBD23] or Chapter 4, we investigated one particular SINFONY design:
We assumed a uniformly distributed training SNR SNRtrain ∈ [−6, 4] dB
and that all received signals are processed by the same Rx module. Further,
Tx and Rx modules were assumed to consist of one intermediate ReLU layer.

Now, we aim to shed light regarding our design choice by comparing to
different parametrizations shown in Fig. B.3. With SNRtrain ∈ [6, 16] dB,
we can clearly observe that performance degrades at low SNR. This is no
surprise considering that SINFONY cannot learn to protect the features
during transmission effectively observing only little noise during training.
However, at high SNR, accuracy improves slightly.

We also modify the Rx module such that all received signals are processed
by independent ReLU layers — rather than shared ones — before being com-
bined by the GlobalAvgPool2D layer. As an alternative, we also experiment
with processing all signals jointly by one ReLU layer of width Nw = 4 ·NTx
equaling the total length of all received signals. Whereas the difference in
performance of both approaches seems negligible, we can observe a 2 dB
gap at low SNR compared to the standard SINFONY design with shared
Rx modules. Making the receive layers more flexible could account for the
difference in the four image patches and hence improve overall performance
and efficiency. Overall, however, the benefit is minor and thus motivates the
design choice of shared Rx modules based on image and channel assumptions
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Figure B.3: Classification error rate of different SINFONY designs, i.e., different
training SNR, Rx module design, and number of Tx/Rx layers, on
MNIST as a function of SNR.

(see Chapter 4).
When using multiple, i.e., two or three, Tx/Rx layers, performance does

not improve but degrades. At this point, we can only make the assumption
that training for more than Ne = 20 epochs is required which can be expected
with a deeper architecture. Maybe, simply a different hyperparameter setup
would suffice.

B.3 Semantic Communication in a Classic De-
sign

Including various details of an application, i.e., the semantics, into the
communication problem would challenge the conventional communication
system design of, e.g., the most recent mobile communication standard 5G.
Based on Fig. B.4, we will explain if it is possible to include the semantics
in classic digital communications design and where the pitfalls lie.

In today’s conventional systems, the semantics or task still plays a minor
role since source encoding completely decouples the application context from
the communication system. A first step towards a semantic design have
been requirement profiles as they address the communications needs of an
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Figure B.4: Conventional digital communication system design and introduction
of semantics.

application such as data rate, latency, and power in a more general sense.
However, services or Quality of Service like in 5G seem to be a crude interface
to reflect its requirements.

First, the source signal s is encoded by the source encoder for redundancy
reduction, encoded with a channel code for error protection and finally
modulated for transmission through a channel. All these steps are reversed
with respective separated functional blocks at the receiver side. Separation
into single blocks is usually preferred since optimization of all blocks together
was too difficult/complex in the past. Assuming probabilistic models with
factorization between these blocks at the receiver, we arrive at message
passing schemes enabling the flow of soft information, e.g., between equalizer
q(x|y) and channel decoder q(b|x). Message passing is indicated by the
integral/summation operation to obtain q(s|y).

In particular, Shannon proved with the separation theorem that separate
source and channel coding is optimal for large block-lengths and point-
to-point transmission [GRV03]. As a result, source coding (also known
as data compression) and channel coding mainly have been investigated
independently in the last decades. However, the theorem does not hold
for short block lengths or multi-point communication and optimal source-
channel communication does not necessarily imply that coding must be used
at all [GRV03].
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Famous examples of generic source codes include Huffman codes and
Lempel-Ziv compression minimizing redundancy for a sequence of i.i.d. source
signals and ergodic sources, respectively. Besides, many application-specific
compression techniques have been developed for image, video, audio, voice
and language transmission. Human perception is exploited for compression
including formats such as mpeg, mp3 and vorbis [PB15]. For channel coding,
the recent main breakthroughs in the development of powerful codes reaching
the Shannon limit have been Turbo, Low-Density Parity-Check (LDPC) and
Polar codes.

Now, we explain the major drawback of the conventional communications
design when it comes to semantics: As noted in Sec. 4.5.2, it only accounts
for the entropy H (s) of the observation s but not the entropy H (z) of the
semantic RV z behind. Further, we assume H (z) ≤ H (s), meaning that the
actual semantic uncertainty or information content is less than or equal to
the source entropy H (s). For example, for lossless semantic transmission
according to the source-channel separation theorem [CT06, Th. 7.13.1], the
product of channel coding rate RC and channel capacity C must exceed the
product of source coding rate RS and source entropy:

H (z) ≤ H (s) ≤ RS · H (s) ≤ RC · C ≤ C . (B.1)

This implies that a channel code with a higher, more bandwidth-efficient
rate RC would be sufficient for transmitting z, even though the reception
of s might become lossy. However, reducing RC · C below RS · H (s) is
problematic because errors cannot be tolerated by design: Most source
coding standards use VLC such as Huffman coding, which makes them highly
sensitive to errors during decoding [ZPZ+12]. Specifically, decoding errors
can result in incorrect bit sequence lengths after source decoding, rendering
the communication system’s output meaningless in terms of semantic output.
Therefore, channel decoders are usually designed to achieve a low Frame
Error Rate (FER), i.e., these only allow hard decisions to be propagated.
The last point implies that there is usually an “information barrier” between
channel and source decoders as indicated in Fig. B.4: Uncertainty, which is
equivalent to Shannon information, cannot be propagated to higher layers for
use by the application. This limitation makes designing a semantic receiver,
given a standard transmitter and with or without standard receiver blocks
(as discussed in Appendix B.4), very challenging in practice.

Further, powerful channel codes oftentimes have waterfall regions which
amplifies the “cliff effect” [BKG19]: Either channel capacity is above the
code rate and transmission is nearly deterministic or the link fails. This
means that multiple codes with rates adapted for certain SNR regions are
required and the complexity of the communication system grows.
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A second weak point of the conventional design is that the required large
block lengths for source and channel coding as well as the interleavers
for statistical decoupling of the processed symbols or bits, e.g., between
channel decoder and equalizer, add a huge amount of latency. We note
that interleavers are required since standard decoders and equalizers are not
designed for non-i.i.d. input data with memory.

To overcome these two major design flaws w.r.t. semantics, we conclude
that it is crucial to remove the block-wise structure at transmitter and
receiver. For example, we can achieve this by means of

1. Joint Source-Channel Coding (JSCC). Recent work considers AEs for
this task and has shown performance improvements at low SNR for
language, speech and image transmission [FRG18; BKG19; XQLJ21].

2. the SINFONY approach that we outline in Chapter 4.

With both approaches and exploiting analog transmit signals, a trade-off
between source and channel coding is enabled at the transmitter. This
translates into smooth transitions without waterfall regions as observed
in the numerical results of Chapter 4. Further, we lower complexity since
multiple codes with respective rates for specific SNR regions are not needed.

Another approach to enable standard-compatible semantic transmission is
the use of a proxy network [HWG+25]. In this method, a proxy network is
first trained to mimic conventional, non-differentiable communication blocks
including source and channel coding — the technical level A in Fig. B.1.
This differentiable proxy network is then used to train a semantic encoder
and decoder for image transmission. The result is improved bandwidth
efficiency while maintaining performance comparable to AE-based JSCC.
A major drawback of this approach is that the latency of the conventional
communication system is inherited and further increased by the semantic
AE.

B.4 Floating-point Number Transmission
In [BSW+23], we demonstrated in a first investigation that by just adapting
the receiver to account for semantics in a simple digital transmission scheme
for multi-agent exploration, we can achieve a notable performance gain
w.r.t. the semantic metric. From a general point of view, it is the example
of floating-point number transmission with subsequent computations on a
digital system. Note that it is rather a numerical toy example and introduces
context on a very abstract level compared to the example of distributed
image classification from [BBD23] or Chapter 4.
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Here, we revisit this example and amend it by additional investigations.
In particular, it was shown in [BSW+23] that also classic problems like
unequal error protection that are very close to the technical level can be
tackled in the proposed semantic framework. Since the world model is
created for interpretation by machines, we deal with model-driven semantics.
Referring to Fig. 4.1, an application generates a continuous data value z ∈ R,
which is processed as discrete floating-point number and represented as bits
s ∈ {0, 1}Nbit×1, on digital hardware.

Semantic Source: More precisely, one floating-point value consists of a
signed bit, significand and exponent bits that contribute through a weighted
sum of the function z = f (s) defined in the standard [IEE19]. This means
each bit of the float has a different meaning and is of different importance
for our task of reconstructing z. However, relying on digital error-free
transmission, each bit would be considered equally important. As a result,
there is room for non-perfect and thus more efficient transmission of bit
sequences as long as their meaning remains close, e.g., z = 1.53 and ẑ = 1.54.
With semantic space in the real-valued domain and without any further
detailed knowledge about the higher-level task, it is reasonable to assume
that our receiver estimates ẑ should be close to the true transmit value z in
the MSE sense.

Here, we investigate a more general numerical example compared to
the distributed full waveform inversion from [BSW+23]. We assume the
semantic RV z to be Gaussian-distributed instead of using statistics of a
given dataset. Further, we assume NaN as well as ±inf values do not occur.
For computational tractability, we consider 8-bit floating-point numbers
(minifloats) with one signed bit, 4 exponent and 3 significand bits.

Transmission Model: Since we want to focus on the key aspect of
introducing semantics into the communications design at the receiver side,
we use a simple abstraction of the digital transmission system neglecting
details, i.e., modern communication protocols with, e.g., strong LDPC or
Polar codes: We assume an uncoded Binary Phase Shift Keying (BPSK)
transmission of the bits s of each floating point number over an Additive
White Gaussian Noise (AWGN) channel p(y|x) with noise variance σ2

n to
a receiver.

Approaches: We examine the following approaches for the final decision
or estimation of ẑ, based on either the posterior p(z|y) computed via Bayes’
theorem (2.3), or the variational posterior qφ(z|y):
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• MAP detection: Optimal for error-free transmission of bit sequences
s, since error rate is minimized. Most likely value z is selected based
on p(z|y).

• Mean estimator: Optimal for estimation of semantics z in the MSE
sense based on p(z|y).

• Single-bit detector: As usually assumed in classic digital communi-
cations, every bit is considered stochastically independent, i.e., p(s) ≈∏︁Nbit
i=1 p(si), and detected separately. We assume that the prior proba-

bility p(si) of every single-bit si is known. Subsequently, we estimate
ẑ = f (s).

• Analog transmission: Analog transmission of z over the AWGN
channel is used as a reference curve. We assume Nbit power-normalized
channel uses with subsequent averaging for a fair comparison.

• DNN estimator: For approximate estimation, we set the mean of
a Gaussian approximate posterior qφ(z|y) to a small Rx DNN shown
in Tab. B.1. We take the mean, i.e., the output of the DNN, as the
estimate ẑ.

• SINFONY: Moving beyond receiver design of [BSW+23], we can also
parametrize the encoder pθ(y|s) by a DNN and optimize the resulting
semantic transceiver, e.g., SINFONY, via (4.9). Our selected structure
is shown in Tab. B.1. Note that normalization of the encoder output
across the batch is required to constrain the output power to one.

Training Details: Following the InfoMax principle, we optimize the DNN-
based approaches by minimizing the cross-entropy (2.60), which is equivalent
to the MSE loss for Gaussian approximate posteriors, as shown in (2.62).
Thus, we trained the DNN-based approaches with MSE loss for Ne = 10, 000
iterations with the stochastic gradient descent variant Adam and a batch size
of Nb = 1000, performing 10 steps per iteration. To optimize the receiver
over a wider SNR range, we choose the SNR to be uniformly distributed
within SNRtrain ∈ [6, 16] dB where SNR = 1/σ2

n with noise variance σ2
n. We

initialize ReLU layers with uniform distribution according to He and all
other layers according to Glorot [HZRS15].

Numerical Results: In Fig. B.5, we show the Normalized MSE (NMSE)
performance of the investigated approaches from [BSW+23] and SINFONY
for Gaussian-distributed semantic RVs as a function of SNR.
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Table B.1: DNN-based transmitter and receiver for semantic communications
design with floating-point numbers.

Component Layer Dimension

Input float8 Nbit

Tx ReLU 2Nbit

ReLU 2Nbit

Linear 2Nbit

Normalization (dim.) Nbit

Channel AWGN Nbit

Rx ReLU 2Nbit

ReLU 2Nbit

Linear 1
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Figure B.5: NMSE as a function of SNR for different semantic and semantic-
agnostic transceiver approaches and 8-bit floating-point resolution.
We assume uncoded digital BPSK transmission over an AWGN chan-
nel.
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We observe the same qualitative behavior as in the example of distributed
full waveform inversion: The classic approach with subsequent z = f (s) is
again clearly inferior in the considered SNR range. Note that we correct
NaN and ±inf to the most probable bits based on the individual bit priors
p(si). Most notably, the semantic low-complex DNN estimator for receiver
design performs very close to the optimal receiver, i.e., the mean estimator,
at low SNR.

If we also optimize the encoder, we are able to surpass the NMSE of the
classic receivers in the low SNR regime. The DNN transceiver can utilize the
bandwidth, i.e., the Nbit channel uses, more efficiently by performing lossy
compression, transmitting the more important bits with higher reliability
while disregarding bits that contribute less to z. For high SNR, both DNN
receiver estimator and transceiver are not able to increase the precision
arbitrarily. We think that this drawback can be overcome by training at
higher SNR or incorporating the noise variance as an additional input to
the DNN design.

We conclude that even with semantic knowledge on a low hierarchical level
(see Appendix B.2.1) about the floating-point structure, a semantic design
yields tremendous gains and can be realized with manageable effort, e.g., by
low-complex DNNs.

B.5 Reflections on RL-SINFONY
In [BBD24] or Chapter 5, we exploit the SPG to enable training of SINFONY
for unknown or non-differentiable channels and iteratively optimize separated
transmitter and receiver designs.

Non-differentiable Semantic Reward

Another challenge in semantic communication is the non-differentiability
of the semantic objective function or reward L(s, ŝ), as with BiLingual
Evaluation Understudy (BLEU), or its computational intractability, as
with Bidirectional Encoder Representations from Transformers (BERT).
This challenge can be tackled by using the SPG, leading to the important
insight that RL-SINFONY can also be used to train semantic communication
systems with a non-differentiable objective L(s, ŝ) that measures the semantic
similarity [LLC+22]. In this case, the gradient of the objective function
L(s, ŝ) w.r.t. the decoder q(s|y) needs to be approximated in the same way
as the channel gradient in [BBD24]. For example, if s is discrete, a softmax
policy q(s|y) is introduced at the receiver side to enable exploration by
sampling the objective function. In this setup, the decoder q(s|y) executes
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the stochastic policy, whereas this task was handled by the encoder pθ(x|s)
in [BBD24]. It is also worth noting that both policies can be combined for
greater flexibility.

Slow Training Convergence

Further, the problem of slow convergence becomes apparent from the
numerical results on the CIFAR10 dataset from Chapter 5. We note that
we use a higher exploration variance σ2

exp = 0.15 compared to previous
works [AH19a; LLC+22] with values of 0.0225 and 0.01, respectively, and
larger batch sizes (Nb = 512 with SGD and Nb = 500 with Adam) to reduce
estimator variance in our numerical experiments. However, further tuning
of σ2

exp is not expected to solve the slow convergence problem. Moreover,
we used a relatively small number of channel uses per agent (NTx = 16),
but among 4 agents, this number grows to 64, resulting in a large output
space. Instead of tuning model parameters, we thus suggested exploring
variance-reduction techniques in future work [GBB04; PBC+18; Sim18a;
Li20].

Note that, analogous to the mean x̄ = µθ(s), also the exploration variance
σ2

exp can be parametrized by a DNN with parameters θσexp to potentially
accelerate convergence. There are two design options: Either one DNN with
shared parameters θ or two independent DNNs with independent parameters
θ = [θx̄,θσexp ]T are used.

One specific idea to increase convergence with large output spaces is the
DDPG [SLH+14]: Besides the deterministic policy or actor x̄ = x = µθ(s), a
DNN critic Q(x) is introduced that approximates/estimates the cumulated
reward function, e.g., the relation between source and target, since the
true action-value function is not known/differentiable. In our scenario,
this means we could estimate channel and receiver by training the critic
Qφ(x) = − ln qφ(z|x) and optimize our actor or encoder x = µθ(s) according
to this estimate. This lowers variance similar to the reparametrization
trick but requires that each time the receiver is updated, also the critic
is updated [AH19a]. How much this scheme could increase or decrease
convergence speed in our scenario is an open question also worth to be
investigated in future work.

However, we note that the use of critics often implies a bias unless strict
compatibility conditions are met [WRD+18]. These are rarely fulfilled in
practice. In contrast, the SPG is unbiased but suffers from high variance.
This translates into being less sample efficient but more stable.
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B.6 Chapter Summary
In this chapter, we elaborated on key aspects of semantic communication
more deeply. These include:

• We deepen the philosophical considerations about semantics and mean-
ing by a more interdisciplinary view that highlights that meaning is
closely related to organization, i.e., emergence, in the universe. Even
here Shannon’s information theory is applied for understanding. Fur-
ther, we introduce semantic hierarchical levels as a replacement for
Weaver’s semantic and effectiveness level.

• We explain the difference between the system models of Chapter 4
and [BSW+23]. SINFONY transmits the semantics behind an ob-
servation explicitly defined. In [BSW+23], the messages in a Factor
Graph (FG) are exchanged and to be transmitted one-to-one: With
probabilistic models, we are able to include the uncertainty of the
communication channel to provide a probabilistic estimate. This esti-
mate closely connects to the message passing algorithm in a semantic
sense making exploration communications-aware and communications
exploration-aware.

• We extend the simulative comparison between semantic communication
and a classic digital design based on the exemplary dataset of CIFAR10.
The normalized SNR gap is even larger compared to the MNIST
example. Most notably, SINFONY trained w.r.t. the communication
channel can outperform SINFONY with an analog semantic AE for
channel protection of its features. An overall semantic communication
design proves itself to be more effective for more challenging datasets.

• We show performance results of alternative SINFONY designs justifying
our default design choice. In particular, using a separate Rx module
for each received signal, improves performance but only slightly.

• We reflect on why it is difficult to introduce semantics in a classic
digital communication system and which efforts have already been
done into this direction. Hard source decoding of VLC source codes
increases latency and establishes an information barrier beyond which
it is difficult to propagate soft information making a graceful degrada-
tion difficult. This leads to the key insight to remove the block-wise
structure reflecting the semantics-tailored design, e.g., JSCC or SIN-
FONY.
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• We look at the numerical example from [BSW+23] from the different
perspective of transmission of floating-point numbers. Based on a more
general example, we show that the key insights of semantic performance
improvements are valid.

• Lastly, we note that the SPG can also be used to train RL-SINFONY
with a non-differentiable objective function measuring semantic similar-
ity. Further, we elaborate on the problem of slow training convergence
and present ideas to overcome this problem, e.g., parametrization
of the exploration variance or introduction of the powerful DDPG
approach [SLH+14].





Appendix C

Important Activation
Functions

In this appendix, we complement Chapter 2 by the most important Deep
Neural Network (DNN) activation functions and mathematical relations.

Softmax
For classification problems, the softmax function is a crucial final layer of
a discriminative model since it provides probability outputs in the interval
[0, 1] [Sim18a]:

σ (x) = ex

M∑︁
k=1

exk
. (C.1)

Note that in the notation used in this thesis, the exponential function is
applied element-wise. The softmax normalizes the sum of the outputs to
1 representing posterior probabilities for each class. In Chapter 3, it was
used for a probabilistic continuous relaxation of discrete Random Variables
(RVs) including the prior probabilities α and the softmax temperature τ
controlling the tightness of the relaxation:

στ (x) = e(ln(α)+x)/τ

M∑︁
k=1

e(ln(αk)+xk)/τ
. (C.2)
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Sigmoid
The sigmoid function is another activation function oftentimes used in
Machine Learning (ML) literature. It converts the input to a real number
within the interval [0, 1] and can be seen as the special case of the softmax
function when only two classes are present. Then, it outputs the probability
of one of these classes:

ρ (x) = 1
1 + e−x (C.3a)

= tanh(x/2) + 1
2 (C.3b)

ρ′ (x) = ρ (x) · (1 − ρ (x)) (C.3c)
= ρ (x) − ρ2 (x) (C.3d)

= 1
4 · (1 − tanh2(x/2)) . (C.3e)

The complimentary probability gives the probability for the other class.
When driven into saturation in a DNN, it is known to decrease training
speed [HZRS16a].

Tanh
A common alternative to the sigmoid function is the tanh function. Note
that the output is nothing but a scaled and shifted sigmoid output:

f(x) = tanh(x) (C.4a)
= 2 · ρ (2x) − 1 (C.4b)

f ′(x) = 1 − tanh2(x) (C.4c)
= 2 · ρ′ (2x) (C.4d)

f(−x)2 = (−f(x))2 (C.4e)
= f(x)2

. (C.4f)

It is hence restricted to an output interval [−1, 1] and basically shares the
same properties as the sigmoid activation function.
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ReLU
The Rectified Linear Unit (ReLU) is an activation function often encountered
in ML literature and defined as:

ρrelu (x) = max (0, x) (C.5a)

=
{︄
x, x > 0
0, x ≤ 0 .

(C.5b)

Its introduction is considered to be a breakthrough in optimization of DNNs:
Before 2006, DNNs with, e.g., at that time standard sigmoid activation
functions, were considered intractable to optimize until [HOT06] proposed
an unsupervised pre-training procedure to make supervised training feasible.
In 2011, it was shown in [GBB11] that using ReLU as a non-linearity enables
fast supervised training of DNNs, avoiding the need for such unsupervised pre-
training. Basically, ReLUs, combined with advances in dedicated training on
Graphics Processing Units (GPUs), paved the way for recent breakthroughs
in ML and lie at the core of nearly all DNN applications today. Benefits
include sparse activations, better gradient propagation compared to the
sigmoid function, efficient computation with addition and multiplication,
and scale-invariance [HZRS16a]. Drawbacks include non-differentiability at
zero, non-negativity, unboundedness and that some neural units may be
pushed into inactive states.

ELU
Numerous advancements and modifications to the ReLU have been proposed
since its introduction. One example is the Exponential Linear Unit (ELU)
introduced in [CUH16], which allows negative values in contrast to the
ReLU, and thus a small, positive gradient when the unit is not active.
This modification allows pushing mean unit activations closer to zero and
eventually for faster training and better generalization performance. It is
defined as

ρelu (x) =
{︄
x, x > 0
a · (ex − 1), x ≤ 0 ,

(C.6)

where a ≥ 0 is a hyperparameter to be tuned.
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AE . . . . . . . . . AutoEncoder
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AMP . . . . . . . Approximate Message Passing
ASK . . . . . . . . Amplitude Shift Keying
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CE . . . . . . . . . Cross-Entropy
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CMDpar . . . . . Parallel Concrete MAP Detection
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DL . . . . . . . . . Deep Learning
DNN . . . . . . . Deep Neural Network
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HDM . . . . . . . Human Decision-Making
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HyperCMD . . . . Hypernetwork-based Concrete MAP detection
HyperMIMO . . . Hypernetwork-based MIMO Detection

I . . . . . . . . . . Information
i.i.d. . . . . . . . . independent and identically distributed
IB . . . . . . . . . Information Bottleneck
InfoMax . . . . . . Information Maximization
IO . . . . . . . . . Individual Optimal

JSCC . . . . . . . Joint Source-Channel Coding

KL . . . . . . . . . Kullback–Leibler

LAMA . . . . . . . LArge MIMO Approximate message passing
LDPC . . . . . . . Low-Density Parity-Check



Acronyms 265

LLM . . . . . . . . Large Language Model
LLR . . . . . . . . Log-Likelihood Ratio
LOS . . . . . . . . Line-Of-Sight
LS . . . . . . . . . Least Squares

M . . . . . . . . . Moment
MAC . . . . . . . Multiple Access Channel
MAP . . . . . . . Maximum A Posteriori
MaxL . . . . . . . Maximum Likelihood
MC . . . . . . . . Monte Carlo
MF . . . . . . . . Matched Filter
MFVI . . . . . . . Mean-Field Variational Inference
MI . . . . . . . . . Mutual Information
MILBO . . . . . . MI Lower BOund
MIMO . . . . . . . Multiple Input Multiple Output
ML . . . . . . . . . Machine Learning
MM . . . . . . . . Majorization Minimization
MMNet . . . . . . Massive MIMO Network
MMSE . . . . . . Minimum Mean Square Error
MOP . . . . . . . Multiplicative OPeration
MOSIC . . . . . . MMSE Ordered Successive Interference Cancellation
MSE . . . . . . . . Mean Square Error

NLP . . . . . . . . Natural Language Processing
NMSE . . . . . . . Normalized MSE
NN . . . . . . . . Neural Network
NP . . . . . . . . . Nondeterministic Polynomial time

OAMP . . . . . . Orthogonal Approximate Message Passing
OAMPNet . . . . OAMP Network

pdf . . . . . . . . . probability density function
PIC . . . . . . . . Parallel Interference Cancellation
pmf . . . . . . . . probability mass function
PSK . . . . . . . . Phase Shift Keying
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QPSK . . . . . . . Quadrature Phase Shift Keying
QRD . . . . . . . . QR Decomposition

ReLU . . . . . . . Rectified Linear Unit
res. un. . . . . . . residual unit
ResNet . . . . . . Residual Network
RGB . . . . . . . . Red Green Blue
RL . . . . . . . . . Reinforcement Learning
RL-SINFONY . . Reinforcement Learning-based SINFONY
RV . . . . . . . . . Random Variable
Rx . . . . . . . . . Receiver

s.t. . . . . . . . . . subject to
SD . . . . . . . . . Sphere Detector
SDR . . . . . . . . SemiDefinite Relaxation
SDRadio . . . . . Software Defined Radio
SER . . . . . . . . Symbol Error Rate
SGD . . . . . . . . Stochastic Gradient Descent
SIC . . . . . . . . Successive Interference Cancellation
SINFONY . . . . . Semantic INFOrmation TraNsmission and RecoverY
SNR . . . . . . . . Signal-to-Noise Ratio
SotA . . . . . . . . State of the Art
SPG . . . . . . . . Stochastic Policy Gradient
SQRD . . . . . . . Sorted QR Decomposition

Tx . . . . . . . . . Transmitter

UE . . . . . . . . . User Equipment
ULA . . . . . . . . Uniform Linear Array

VAE . . . . . . . . Variational AutoEncoder
VI . . . . . . . . . Variational Inference
VLC . . . . . . . . Variable-Length Codes

w.r.t. . . . . . . . with respect to

ZF . . . . . . . . . Zero Forcing



List of Symbols

Functions and Operators
|·| . . . . . . . Absolute value
[·] . . . . . . . Iverson bracket
lim
·→·

· . . . . . Limes

∥·∥ . . . . . . Norm operator
∏︁

·
. . . . . . Product

∑︁
·

. . . . . . Summation

arg max
·

. . . Argument of the maximum

arg min
·

. . . Argument of the minimum

Df (· ∥ ·) . . . f -divergence
diag {·} . . . . Diagonal matrix operator
DKL (· ∥ ·) . . KL divergence
E·[·] . . . . . Expectation of a random variable
f(·) . . . . . . General function
I (·) . . . . . . Mutual information
one-hot . . . . One-hot function
rank (·) . . . . Rank of a matrix
sign (·) . . . . Sign function
sim(·, ·) . . . . Similarity measure
vec (·) . . . . . Vectorization operator

General and Calligraphic Symbols
0 . . . . . . . Zero matrix
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1 . . . . . . . All-ones matrix, matrix of ones
A . . . . . . . Accuracy measure / Placeholder set
C . . . . . . . Complex-valued domain
D . . . . . . . Dataset, training set
DBatch . . . . Mini-batch set
DHK . . . . . Exemplar dataset or GCM knowledge base
DP . . . . . . Pilot set
DT . . . . . . Training set
DTest . . . . . Test set
DVal . . . . . Validation set

Ĥ· (·) . . . . . Empirical entropy
H (·) . . . . . Entropy, cross-entropy
L . . . . . . . Loss function

LSPG
θ . . . . . SPG objective function

LCE
θ,φ . . . . . Cross-entropy loss

LELBO
θ,φ . . . . ELBO loss

M . . . . . . Domain/Set
N . . . . . . Normal/Gaussian distribution
NC . . . . . . Circularly-symmetric Gaussian distribution
O(·) . . . . . Big-O Operator
Q· {·} . . . . . Quantizer function
R . . . . . . . Real-valued domain
U . . . . . . . Uniform distribution
Z . . . . . . . Domain of integers

Greek Symbols
α . . . . . . . Prior probabilities of symbol vector
β . . . . . . . Lagrange multiplier
γ . . . . . . . GCM similarity decay constant
δ . . . . . . . Gradient step size/Dirac delta function
ϵ . . . . . . . Learning rate/Random angle deviation
ζ . . . . . . . Total path gain
η . . . . . . . Spectral efficiency
Θ . . . . . . Parameter matrix
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θ . . . . . . . Parameter vector, encoder parameters
θP . . . . . . Presentation parameters vector
ϑ . . . . . . . Variational parameters vector
λ . . . . . . . Wavelength
µ . . . . . . . Mean
ν . . . . . . . Semantics presentation
ρ (·) . . . . . . Activation/Sigmoid function
ρrelu (·) . . . . ReLU function
Σ . . . . . . . Covariance matrix
σ . . . . . . . Standard deviation
σexp . . . . . Exploration/perturbation standard deviation
σn . . . . . . Noise standard deviation
στ (·) . . . . . Softmax function (with optional softmax temperature)
σφ . . . . . . Angular standard deviation
τ . . . . . . . Softmax temperature
ϕ . . . . . . . Input features of a GLM
φ̃ . . . . . . . Angle of arrival of a single path
φ . . . . . . . Angle of user equipment
φ . . . . . . . Variational distribution parameter vector
φcell . . . . . Cell sector
φ∆ . . . . . . Angular spread
φG . . . . . . GCM parameter vector
φnat . . . . . Exponential family natural parameters
ψ . . . . . . . Hyperparameter vector

Roman Symbols
A . . . . . . . Placeholder matrix/Spatial sampling matrix
a . . . . . . . Placeholder variable
a . . . . . . . Placeholder variable realization
a . . . . . . . Placeholder vector
a . . . . . . . Placeholder vector realization
B . . . . . . . Bandwidth
b . . . . . . . Bit vector/Bias vector of neural network
C . . . . . . . Channel capacity
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D . . . . . . . Distance in multiples of wavelength
D . . . . . . . Matrix with zero diagonal elements
d . . . . . . . Distance in m
G . . . . . . Gumbel variables matrix
g . . . . . . . Multivariate Gumbel variable
H . . . . . . Channel matrix
I . . . . . . . Identity matrix
IC . . . . . . Mutual information constraint
L . . . . . . . Objective function
M . . . . . . Cardinality of discrete set, number of classes
m . . . . . . Discrete set vector/Semantic variables in swarm exploration
N . . . . . . Number of samples
n . . . . . . . Noise vector
Nb . . . . . . Number of batches, batch size
Nbit . . . . . Number of bits of a floating point number
Nc . . . . . . Number of image color dimensions
Ne . . . . . . Number of training iterations/epochs
Ne,rx . . . . . Number of fine-tuning training iterations / receiver epochs
NFeat . . . . . Number of features
Nh . . . . . . Number of neurons in one layer / layer width
Nit . . . . . . Number of iterations
NL . . . . . . Number of layers, DNN depth
NP . . . . . . Number of parallel CMD branches
Npath . . . . . Number of multipath components
Npilot . . . . . Number of training examples / dataset size
NR . . . . . . Number of receive antennas
NRx . . . . . Channel output dimension
NT . . . . . . Number of transmit antennas
Ntrain . . . . . Number of training examples / dataset size
NTx . . . . . . Transmitter dimension
Nw . . . . . . Receiver dimension/layer width
Nx . . . . . . Number of image pixels in x-dimension
Ny . . . . . . Number of image pixels in y-dimension
p . . . . . . . Probability distribution/mass function
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Q . . . . . . . DDPG critic
q . . . . . . . Approximating distribution
r . . . . . . . Features
RC . . . . . . Channel coding rate
Rh . . . . . . Correlation matrix of channel response
RS . . . . . . Source coding rate
s . . . . . . . Sensed observation/Source/Logistic/Exploration RVs
W . . . . . . Weight matrix
w . . . . . . . Weights
x̂ . . . . . . . Estimated symbols
x̃ . . . . . . . Symbol function
x̄ . . . . . . . Encoder/Transmit output with exploration noise
x . . . . . . . Transmit symbol/Target variable vector
ỹ . . . . . . . Total observation vector
y . . . . . . . Observation/Receive vector
z̃ . . . . . . . Semantic estimate (after semantic communication decision)
ẑ . . . . . . . Semantic estimate (after human decision)
z̃ . . . . . . . Concrete variable vector
z . . . . . . . Semantic random variable/One-hot vector
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