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ABSTRACT Destingtion 3 1
¥ ! 3. commodity

In this paper, we present a near-optimum resource allotati ¢ ' y ; !

strategy for distributed multiple-input-multiple-outpuulti- { ! o otinationZ

ple hops multiple commodities OFDMA wireless networks 1 ! 7 fl ! . » 1
The novel per-hop-optimization strategy aims to reduce tt : ! ! : e 24 & > ‘
total transmission power of the network while meeting th : | ! ! } B — L iD@é:l
individual end-to-end outage probability constraint oflea ; comméd; | ik 4 x .

commodity, i.e. for each link of the network. It utilizes the  Sow : TN ! oy
Greedy edge-coloring algorithm to determine reused ortha L commadi i — TA
onal subbands for overlapping hops and allows a distribut: SuurcdD VAA ~ VAA

implementation per hop. In comparison to other bandwidth

aIIocatior_1 strategies like equal or_dynamic bgndwidth e Fig. 1. Distributed MIMO multi-hop multi-commodity trans-
commodity, our Per-Hop_-Bar!dW|dth-AIIoc§\t|on (PHBA) ap- mission with3 commodities.

proach uses the bandwidth in a near-optimum way and re-

duces the total transmission power significantly.

for a distributed MIMOsingle-commaoditysingle-link) trans-
1. INTRODUCTION mission scheme. In [7] the authors have derived throughput-

maximizing resource-allocation strategies for varioussse
Recently, it has been shown that the channel capacity of @etwork configurations. In both papers a fixed total poRer
wireless mesh network can be drastically increased by apphgonsumed in the whole network is assumed. Instead, similar
ing multiple-input-multiple-output (MIMO) techniques thi  to [8] we focus on resource allocation strategies with more
respect to spatially separated relaying nodes [1]. Thes#éM| practical meanings, i.e. minimize the total power consump-
techniques are a natural extension to the concept of virtudion while meeting an end-to-end QoS constraint. To this end
antenna arrays (VAAs) [2] and are named distributed MIMO We derive resource allocation strategies fomati-commodity
Fig.1 shows its application in wireless multi-hop multirem-  (multi-link) case under an individual e2e outage probapili
odity communications, wher®sources communicate with ~ constraint for each commodity and carry a comparative study
destinations via a various number of relaying VAAs. While of different bandwidth allocation strategies. We will farm
the MIMO techniques that are applied to improve single linklate the optimization problem and analyze different baritwi
performance are well understood (e.g. [3],[4]), the agplic allocation concepts, e.g., equal, dynamic and per-hophlvan
tion of distributed MIMO in wireless mesh networks [5][6] dth-allocation. Itwill be shown that our novel PHBA strayeg
is still an open and challenging task. Particularly, Qyalit €xploits network resources in a near-optimum way. Partic-
of-Service (QoS) constraints like link reliability, delayata  ularly, the strategy is investigated for the wireless batkh
rate and also the power assignment per node are all entangl@gtworks, where each base station is placed in the middle of
through the performance (capacity or outage probabilify) o2 cell. However, it is also applicable to any wireless meshed
the distributed MIMO scheme. networks in principle, e.g., wireless sensor networks or ad

In [1] Dohler et al. have developed a resource allocatiolOC networks.

approach to maximize the end-to-end (e2e) ergodic capacity The aim of this paper is to develop a resource allocation



strategy, thus, for the further investigation a given fixetd-n about100 — 150 dB greater than that of the received signals.
work topology is assumed. In particular, the task of formingMoreover, the relaying protocol Decode-and-Forward (D&F)
the VAAs or searching of optimal routing path is not within at each relaying node is applied [9].

the scope of this paper. Furthermore, we focus on the multi- The information is broadcasted from the source to the first
commodity case, where a number of source-destination paikAA at the first time slot over the entire frequency banid
(commodities or links) are active in the network. As depicte At the first VAA, each node decodes the received information
in Fig. 1, some nodes serve for more than one commoditieseparately, i.e., there is no information exchange betieen

In order to separate the commodities, we will apply differ-relaying nodes. Then they re-encode the decoded informatio
ent orthogonal frequency division multiple access (OFDMA)"cooperatively” according to a space-time code word, where
schemes, namely equal bandwidth, dynamic bandwidth, anghch node uses only a spatial fraction of the space-time code

per-hop-bandwidth-allocation, which will be discussed
tail in the following sections. Such a network is often reder
to as a distributed MIMO-OFDMA network.

word. At the second time slot, the first VAA transmits the
information to the second VAA over the entire frequency band
W. Each node of the second VAA decodes the information

The remainder of the paper is organized as follows. Irseparately, re-encodes, and retransmits it to the next VAA i
Section 2 the system model of the distributed MIMO multi-the same manner as in the first time slot. The information is
hop multi-commodity transmission scheme is introduceca: Thtransmitted from one VAA to another VAA until it reaches
mathematical description of the end-to-end outage prdibabi the destination, where we assume each time slot has the same
and an approximated form will be given in Section 3. Two re-duration.
source allocation problems for distributed MIMO multi-hop Due to the spatially disposed relaying nodes, the distances
multi-commodity systems will be formulated in Section 4, petween the nodes within two VAAs are different, which leads
namely equal bandwidth, dynamic bandwidth. In Section Jo different pathloss for the subchannels. We refer to such
the novel per-hop-bandwidth-allocation (PHBA) strategy i network as amsymmetrimetwork. Mention that if one VAA
proposed, which is shown to use the bandwidth in an efficient far away from another VAA, due to the strong pathloss both
way. Finally, simulation results and conclusions will beegi  VAAs can transmit information at the same time slot without
in Section 6 and 7, respectively. interference. Such network is often referred to as a disteith
MIMO multi-hop network. As described above, the nodes
within the same VAA decode the information separately but
re-encode the information with respect to the same spage-ti
code word. To this end, the transmission within one hop can

2. SYSTEM DESCRIPTION

1. Hop 2. Hop K Hop be modeled as multiple-input single output (MISO) systems,
N =0 as highlighted for th&nd hop in Fig. 2.
~ < —wmiso ! S 7| O‘ In order to describe the MISO system, werdeindex the
/ O| : ! L commodity, M is the number of commoditieg; index the
O P E % =20-———0Q  hop,K,, denotes the number of hops in theh commodity,
Some\: Oj : | : Vnesﬁnation tm.k» T'm k. denote th_e number of trans_mit nodes gnd receive
- \ O‘? > 0O nodes at théth hop in themth commodity, respectively. For
[ =Y simplicity we consider a pathloss model, where the power at-
LVAA 2.VAA (K-1)VAA tenuationy,, x = 1/dy, ; ; ; is proportional to the distance,

whered,, i ; ; denotes the distance between ittetransmit

. o . node and the thgth receive node at theth hop ancdk is the
Fig. 2. System model of a distributed MIMO multi-hop 4ihioss exponent within range Bfto 5 for most wireless
single-commodity transmission. channels. We defin8,,, , € C!»+*Tm.x as the space-time
_ ) ) _encoded signal with length;, , from thet,, , nodes at the

A multi-commodity system is constructed by several singlegy, hop. The received signgi,, ,; € C'*Tmr at thejth

commodity systems. In order to explain the overall systeMyge at thesth VAA with different pathlosses and different
the functionality of single commaodity is considered first in yy3nsmission power level is given by

detail. As shown in Fig. 2, the source node desires to commu-
nicate with the destination node vi&— 1 dedicated relaying
VAAs in K hops. Note that we limit to one antenna element
per node and the general case is straightforward. We COoRyjth the diagonal matrix

sider a time-slotted transmission scheme, i.e., timerdiva
. Pm k,1 Pm,k,tm k
A i = diag x0T dgi )
m,k,1,j M,k tm k]

Ym,k,j = hm,k,j . Am,k : Sm,k + Ny k5, (1)

multiple-access (TDMA) between hops. Due to the half-dxple
constraint, one node can’t transmit and receive signals si-
multaneously because the power of the transmitted siggals i



wheren,, . ; ~ Nc(0, Ng) € C'*Tm.r denotes the Gaus- andoFy(—X!, x,,, 1 ;) denotes the complex hypergeomet-
sian noise vector with power spectral densify andP,,, ,;  ric function. Due to the complex form of the hypergeometric
is the transmission power of thith node at théith VAA. The  function, it is difficult to achieve a simple and closed form
channel from the,, ; transmit nodes to thgth receive node for (3). In order to simplify further analysis and achieve a
within the kth hop is expressed as,, ,, ; € C'*'=.x_ Itsel- near-optimum solution to our optimization problem, an ap-
ementsh,,  ; ; obey the same uncorrelated Rayleigh fadingproximation to the outage probability will be used for fugth
statistics, i.e. complex zero-mean circular symmetric $5au investigations. The accuracy of this approximation witiaal
sian distribution with variance. be evaluated.

As the definition for a single-commodity communication
is_ done, it can be exte_nd_ed to the multi-commodities case i5.2. Approximationsfor outage probability
Fig. 1. In order to avoid interference between commodities,
each commodity should share the entire frequency bandwidtAS shown in [13] a linear combination of independgfwari-

The bandwidth fraction for thith hop of thenth commodity ~ ables can be approximated by a gamma variable. This tech-
is denoted byy,,, . nique has been widely used in statistics to determine the pdf

of a weighted sum of? variables [14][15]. In the literature,
a linear combination of independeqt variable with various

3. OUTAGE PROBABILITY weights is approximated by a gamma variable with arithmetic

3.1. Exact form for outage probability mean
. . . tm . k
According to the capacity of a MIMO channel exposed in [4], ~ 1 <= Pk
the capacity of each MISO link described above is given by Ko, j ~ GaMM t ke Z; T ®)

C.k,j =0m, ;W logy

tmk
1 N Ponkesil P ki g |2
1 9 9 3 19
( T W N, 2 T

i=1 m,k,i,j

bution approximately.
Motivated by the gamma approximation with arithmetic
mean, we introduce an approximation with geometric mean

) where~ means the random variable obeys the Gamma distri-
2)

whereq,, ; denotes the bandwidth fraction of the link. Since
the channel capacity,, i ; is a random variable with respect
to the fading channdi,,, . ;, it is particularly meaningful to
consider its statistical distribution, namely the outagebp-
bility. The outage probability is the probability that thrarns-
mission rateR is higher than the channel capacity, »;,  With this result, the outage probability (3) can be approxi-
when the decoding error rate (e.g., BER, SER, FER) caninated by

be made arbitrarily small. Hence, for a system with , W

trn,k

~ Prn i
Xy ~ Gammal to e, k| [ 52255 . (6)

€ ..
i=1  m,k,i,j

bandwidth and information bit ratB, the outage probability bk tom i
can expressed as Poutm.rj ~ Pr| ™t ] P > kil
e i=1 dinykyi-j i=1 o
PouLm,k,j =Pr (R > Cm,k,j) (3) - CoT
_ R __ __ R __
=Pr (Xm,k,j < (20mT — 1)am,kWN0) , < (20ms — 1)am,kWNo>
whereX,, x; = Zfzf dfm'“ | k.i.5]? 1S the linear com-
m,k,i,j
bination of independeng? (i.e., exponential distributed) vari- - _r
ables{hy, . ;|* with various weight®,,, x.; /d¢, . ; .. Closed-  — py S nisl? < (2°mr " — 1)am W No 7
form expressions for the probability density function (ADF =1 v tom, '
with respect to the random variable,, 5 ; in terms of the
hypergeometric function are derived in [10][11][12], Ty k.Geo
H?m,lk d;nk” . V(tm-,kvxin,k,Geo)
1= m, ki tm,k—1 1 - —
p(xm,k,j) = W ’ xm,kk.,j ’ OFO(_E axm,k,j)v F(tm.,k)
. . _ (4)  wherey(-,-) is the incomplete Gamma function, ah¢) is
with the diagonal matrix the complete Gamma function. Similarly, the approximation
P P (5) can also be used
Y= diag{ dgm" 1 yree ,dgm" oL } Comparing (3) with (7), the gamma approximation trans-
m,k,1,j mkte,g fers the asymmetric transmission structure to a symmeidse ¢



approximately. Note that the less the difference between thcase. Although both approximations perform worse at asym-
weights of the linear combination, the more accurate the apmetric cases, the approximation with geometric mean is stil
proximation. For a symmetric case both approximation${5)( the better one. As we remarked in the figures, the exact out-

lead to same result due to age probability is upper bounded by the approximation with
geometric mean (the worst case) and lower bounded by the
1 ek Pon ki . Pon ki Pon ki approximation with arithmetic mean. Therefore, it is reaso
vy J— m,k vy J— vy . . . .
P e ’ € e - (8  able to choose the approximation with geometric mean as the
mk 21 Ymoki,g i=1 mukig m,k,i,j

measurement of the outage probability.

In order to evaluate the accuracy of the Gamma approx- N
imations, we consider an asymmettic< 1 MISO system, 3.3. Theend-to-end outage probability

Where_ two case will be examined. In the f|r§t case -the NOM the sequel the e2e outage probability of each commaodity is
negative weightsP,,, 1. ;/d¢ are almost similar, i.e., a

i j makam’s_ v the relative sat investigated. Similar to the assumption made in [7][8] te de
?hear-syr?]rt'r;; fe ca;ee 1S glvgn. tlhncetr?n yth N rs a Ilvte$ IO scribe an e2e error rate, we assume the e2e connection is not
€ welg ki) ¢rathér than the absolute value ; , outage, i.e., a packet from the source is received cdyrect

mk,i,jo

of the weights are important for the approximation, the N0t the destination, only when each hop is not in outage. In
malized vector

other words, the packet is correctly received at each nedpyi

(Prnkyi/ Ay i > Vi o node. The e2e outage probability is therefore given by
e =1,221
1nhﬁ7%nk¢/d;%hﬁjvvw 11,2, 2, 1], 9) N
is used, i.e., the weights are within roughly3adB difference. Pesern =1 — H (1 — Poutm.t) 1)

. . . k=1
In the second case the weights are of great difference, i.e., «
a strongly asymmetric case is considered. The normalized T L
vector is =1- H I=11= H (1 = Poutm,k.5)
k=1 j=1
(P ki) dr g i g0 Vil
min(ﬂ; . ‘/md’é L Vi) =11,8,1, 8], (10) By inserting (7) into (11), we achieve the approximation
ok S kg for the end-to-end outage probability of an asymmetric dis-
i.e., the weights are roughly withindB difference. tributed MIMO multi-hop network
o1 a) near-symmetric case 02 b) strongly asymmetric case Pezem ~1_ ﬁ Tﬁc <1 B fy(thc, ‘r;n.,k.,Geo)) ' (12)
Geometric mean approximation—- Geometric mean approximation—s i k=1 j=1 F(tm,k)
0.08[Exact outage (simulation) / Exact outage (simulation)
é |Arithmetric mean approximation zl 0-150rithmetric mean approxim 4. OPTIMIZATION PROBLEM
E 0.06, 13
[} ; ©
£ £t The general power and bandwidth allocation problem can be
g0t g formaluted as a optimization problem, which aims to mini-
S o S 005 mize the total power of the whole network while meeting the
' end-to-end outage probability requiremeptper commodity
% 02 0.4 s % 55 07 o5 os M Ky tmk

Xoge = Xmic = minimize » > " " Pk
m k [

Fig. 3. Exact and approximated outage probability 4ox 1

MISO system in case of (a) near-symmetric and (b) strongly St Pezem < €m, Vm (13)
asymmetric. Z Pk, < Ppe Vn
(m,k,i) € EX{n}
Fig. 3 shows both approximations (5)(6) and the exact F0tmop, Vm, k) = 0.

outage probability obtained by Monte-Carlo simulationsri

Fig. 3(a) we can observe for the near-symmetric that for love,, represents the maximum allowed e2e outage probability
outage probability the approximation with geometric mean i of the mth commodity, E+{n} denotes the set dfn, k, i)
better than the approximation with arithmetic mean. No#e th triples, where theith node in the network serves for trans-
low outage probabilities are of more concern than high outmission andP'®* represents the corresponding power con-
age probabilities in practical systems. Fig. 3(b) shows thstraint. We define the functiofi(-) as the equal constraint
performance of the approximations in a strongly asymmetrito describe different bandwidth allocation strategiesemh



am i IS the bandwidth fraction assigned to thth commod- a) Optimal Outage vs. Rate b). Optimal Outage vs. Bandwidth
i 10

ity at the kth hop. Note that it is difficult to find an optimal ~1. Hop 0 1. Hop
power and bandwidth allocation solution of the optimizatioé . iy Egg \; . iy :gg
problem (13), since the issues like scheduling, routindp pé g 4. Hop g 4. Hop
searching are involved. Hence, some simple bandwidth al T =Rl = > fop
cation strategies will be introduced. z >
Simple solutions to avoid mutual interference between ¢ g 4 § 4
modities are unique bandwidth allocations per commodh; a
i.e., am = ami, Vk. We have two simple strategies , ont§ g
is so called equal bandwidth allocation that each commod . ©
. . 0
use an equal fraction of the total bandwidth. Tifemecomes 2 T X10160 2 fand () . © X10160
Ay = i7 vVm (equal bandwidth) (14)  Fig. 4. Optimal outage probability per hop vs. rate and band-
M width for a single-commodity casé%ze1 < 10%
Alternatively, we can optimize the bandwidth fractiang by
only satisfying the following equation, 5. PER HOP BANDWIDTH ALLOCATION (PHBA)
M 5.1. Greedy-edge-coloringalgorithm
Z am =1 (dynamic bandwidth) (15) Before we discuss our approach in detail, we first introduce

m=t the standard Greedy-edge-coloring algorithm shortly.[T8
. Greedy-edge-coloring algorithm is originally used to gssi
Nc_)te thqt (13) can be proven to be convex for typical OPeTdlors to a graph so that adjacent edges in the graph are dif-
ation points of networks [16] and can consequently be effi: ' .
) N ferently colored. We apply the algorithm to determine or-
ciently solved by standard optimization tools [17]. Howeve . ' : .
for | ber of ditied/ the bandwidth fracti thogonal bandwidth allocations for overlapping hops in our
or farge number of commodit € bandwi raction approach. Since we use a TDMA transmission scheme, a case
., Is small and each commodity only gets a little of the band-

! o . illustrated in Fig. 5 may happen in a multi-commodity trans-
width for transmission. As a result, the power consumption 9 y happ vy

fh work will d tically i hi th q mission that the hops éfcommodities are overlapped, where
otthe network will dramatically Increase to achieve the-end,, instance, thé&th hop of thelst commodity connects with
to-end outage probability requirement. Both bandwidtb-all .
. . X : the 3rd hop of the2nd commaodity and théth hop of the5th
cation strategies don't fully exploit the network perfomea

. . . ... commodity. According to the graphic theorem [18], the figure
[16]. Instead, a erx@e band\{wdth allocation to commco;htl can be interpreted as a graph witedges.
per hop can fully utilize the inherent nature of a multi-hop Bv using the Greedy coloring alaorithm. the araph can
network. In order to use the bandwidth more efficiently, we y 9 y g alg ' grap

will propose a novel resource allocation strategy, namely p be colored bys different colors, i.e., green, red, blue. In
hop-bandwidth-allocation (PHBA). other words, it means that the total bandwidth has to be-parti

tioned intoL = 3 orthogonal parts, denoted as, as, a3
Before presenting the approach, we investigate the optigith 25—213 oy = 1. From the figure it can be seen that
mal power allocation for a single commodity case, which cafhe 1st, 3rd commodities, thend, 4th commodities use the
be derived from (13) b/ = 1. Fig. 4 shows the optimal same band bandwidth, respectively. We observe that using th
outage probability per hop versus bandwidth and data rate iGreedy edge-coloring algorithm can furthermore improee th
a single-commodity case. The distributed MIMO multi-hop efficiency of the bandwidth usage comparing to the equal and
network consists of(; = 5 hops with([l, 2, 3, 3, 3, 1] de-  dynamic bandwidth allocation, where for theecommodities
noting the number of the nodes per VAA. The distance begase the total bandwidth is divided infoorthogonal parts.
tween two neighboring basg-staﬂons is assumed tohk® By ysing the Greedy edge-coloring algorithm reuse of the
and the pathloss exponentds= 3. The end-to-end outage pangwidth is achieved, since the total bandwidth is onlyipar
probability Peze) is required to be smaller than%. Ateach  tioned into3 parts. For convenience, we define a vedigr

time slot, each transmit node uses the entire frequency.bangy gescribe the mapping relationship betwegn; anda;. It
After solving the optimization problem, we observe the in-is represented as,, , = ® I "

teresting result that the optimal outage probability pgy res

mains unchange_zd versusthe Qatg rate and b.andwidtlh if the €28 o — ayg, g7 O = P37 =1, 0, 0]
outage probability constraint is fixed. Keeping this in mind
this result motivates our resource allocation strateg fiis-
tributed MIMO multi-commodity communication. a3 T Q54 = @54 =0, 0, 1].

mk o, e, ar

ay — o3, gz Poz=dy3 =10, 1, 0] (16)



so that the optimal power allocation &, , ; is ob-
tained. According to (7), the outage probability con-
straint per hop of each commaodity can be calculated,
Postmix = Emi> VM, VE.

o] m,k>’

e Step 2: Determin@,, ;, by the Greedy edge-coloring
algorithm. For overlapping hops the bandwidth should
be shared between the commodities, otherwise the trans-
mission can use the entire frequency band,a:g,.;, =
1.

e Step 3: Solve the optimization problem per hop for the
given outage probability constraia, ,,

O @) @) O O O M tm.k
(m, k) s minimizing > 5 > * P i
a1 o Qg m.oi
subject toPoyt m,x < e:n,k
max
Fig. 5. Edge-coloring algorithm for & commodities case. Z Prmki < P (18)
(m, k) denotes théth hop of themth commodity. (m.kyi) € BT {n}
e = P [an, ..., ar]”,
.. . L
5.2. Per hop optimization Z a = 1.
After separating bandwidth by the Greedy edge-coloring al- =1

gorithm, our novel approach will be discussed in detail. The

; o _ The near-optimal resource allocation can now be ob-
idea of the per-hop-optimization approach is twofold:

tained, i.e., the power allocatigR;, , ;, and the band-
e Instead of a unique bandwidth allocation to commodi- width allocationa, ;..

ties, we allow for a flexible allocation per hop. Only the For the next hops of all commodities, goto Step 2 and 3 again.

overlapping hops between commodities need to shar. . e
the bandwidth, other hops are allowed to use the entirehe algorithm ends wh(_an the opt|m|zat|o.n problem (18) for
Il hops of all commodities has been applied.

bandwidth. Furthermore, the reusage of the bandwidth
for the overlapping hops can be accomplished by using

the Greedy-edge-coloring algorithm, then the equation 6. PERFORMANCE ANALYSIS
constraintf(-) in (13) become$_ | oy = 1 with the _ . . .
mapping relatiomy,, = ®p, x-[a1, - - , )7, where Inthis section we provide some numerical results to show the

L denotes the number of required bandwidth fractionsPerformance of our approach in a wireless backhaul network.
We assume that there isMHz bandwidth available to the
e Since the optimal outage probability per hop remainshetwork and all commodities share this bandwidth. We con-
unchanged versus the data rate and bandwidth if thgider4 commaodities active in the network, as illustrated in
e2e outage probability is upper bounded, we can deFig. 6. Each commaodity has its individual distributed MIMO
compose the multi-hop optimization problem into permulti-hop structure with different number of hops, diffete
hop optimization problems. source and destination nodes, and end-to-end outage proba-
bility requirements, namely%, 1%, 10%, 5%, respectively.
The power of thermal noisd is assumed to be 174 dBm
e Step 1: Solve the optimization problem for each com-according the standards of Universal Mobile Telecommunica
modity separately assuming full bandwidth per com-tions System (UMTS).
modity, Fig. 7 shows the total power consumption of the network
versus data rate frorh Mbps to 10 Mbps. It can be seen

We summarize the algorithm as follows,

o Emitme that the dynamic bandwidth allocation strategy consunsss le
minimizing Z Z Prm ki power than the equal bandwidth allocation due to the freedom
ki (17)  of differing bandwidth fractions. However, the PHBA out-
subject t0Pe2e/m < em, performs the dynamic and equal bandwidth allocation strate

=1 gies significantly and achieves nearly the performance of a
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Fig. 6. Distributed MIMO multi-hop multi-commaodity trans- Fig. 8. Distributed MIMO multi-hop multi-commodity trans-
mission (4 commodities) with the e2e outage constrdifits  mission (21 commodities) with different e2e outage con-
1%, 10%, 5%, respectively.x denotes sources is destina-  straints.x denotes source, is destination. Each commodity
tion. Each commodity is differently colored. is differently colored.
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Fig. 7. Total power vs. rate fot commodities with the e2e Fig. 9. Total power vs. rate fazl commodities with different
outage constraints%, 1%, 10%, 5%. e2e outage constraints.

full bandwidth allocation per commodity. Note that the full 7. SUMMARY
bandwidth allocation is only an artificial and unreachallssc
that each commodity can use the full bandwidth without anyn this paper we have studied the principles of distributed
interference. It serves as a lower bound for total power conMIMO multi-hop scheme and its applications in wireless back
sumption. haul networks. Motivated by the resource allocation strat-
The performance of the PHBA in a fully occupied net-egy to maximize the end-to-end ergodic capacity, we have
work is evaluated next. As depicted in Fig. 8, there 2re introduced a strategy based on minimizing the total trans-
commodities active in the network at the same time. Eachnission power while satisfying the end-to-end outage prob-
commodity has its individual arbitrary end-to-end outagsop ~ ability requirement for the multi-commodity case. The epti
ability requirement. The network setup as shown is randomlynization problems of resource allocationasymmetriadis-
chosen. Fig. 9 shows the total power consumption with differtributed MIMO multi-hop networks were investigated, where
ent resource allocation strategies. It is obvious that these a Gamma approximation with respect to geometric mean was
bandwidth allocation is not suitable for a large number oforoposed for simplicity.
commaodities, since it leads to an enormous power consump- Moreover, the multi-commodity transmission of distritalite
tion. In contrast, our novel approach PHBA can support théMIMO multi-hop scheme has been considered, which is re-
network with reasonable total power to provide the requirederred as a distributed MIMO-OFDMA network. The equal
QoS for the commodities. and dynamic bandwidth allocation between commodities were



investigated. We proposed a novel approach of resource allo[8] R. Manohar and A. Scaglione, “Power Optimal Rout-

cati

on for the distributed MIMO-OFDMA network, i.e. Per-

Hop-Bandwidth-Allocation, to overcome the problem of enor
mous power consumption in the wireless networks with a
large number of commaodities and improve the efficiency of

the bandwidth. In the proposed algorithm, the bandwidth is [0l
shared between commodities in a near-optimum way, i.e., if

a relaying node is used by only one commodity, then full
bandwidth will be allocated to the node; if a node is shared

by commaodities, then the bandwidth is shared between comy ]
modities. We show that by using the proposed algorithm, the

total power consumption of the network is significantly re-
duced. The novel algorithm achieves 098f, power gain
compared to the equal bandwidth allocation.

For the distributed and cooperative communications, marfyt 1]

research issues still need to be discovered and analyzed, e.

dyn

amic forming a VAA based on channel conditions, non-

ergodic fading channel, complexity of transceives, and dy-

namic scheduling,
mesh network, etc.
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