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Abstract: Distributed MIMO technology has gained significant attention in industry
and academia recently, due to its ability to increase capacity drastically and its inherent
attribute of scalability for wireless mesh networks. In this paper we briefly overview
the concept of distributed MIMO and investigate the end-to-end ergodic channel ca-
pacity of a distributed MIMO multi-hop network. By formulating the resource alloca-
tion problem as a concave optimization problem, we are able to obtain the solution of
optimal power and bandwidth allocation in a very efficient way.

1 Introduction

In this paper an end-to-end scenario in a wireless multi-hopnetwork is considered, where
a source communicates with the destination via a number of relays. In order to avoid in-
terference between the relaying hops, orthogonal access schemes like frequency-division
multiple access (FDMA) or time-division multiple access (TDMA) are usually used. How-
ever, it can be shown that both access schemes achieve the same capacities [2], so that only
FDMA will be considered for simplicity. At each relaying node the decode-and-forward
relaying protocol is applied, where the data will be first detected and decoded completely,
then re-encoded and transmitted to the next relaying nodes [3]. Recently, it was shown that
the channel capacity of a wireless mesh network can drastically be increased by applying
MIMO techniques with respect to spatially separated relaying nodes [1]. To this end, sev-
eral relays are used to form a virtual antenna array (VAA). The end-to-end connection is
therefore accomplished through a number of topologically imposed VAAs.

Since the data will be transmitted to the destination through a number of hops, an op-
timal resource allocation strategy should assign fractional power and bandwidth to each
hop such that the end-to-end capacity is maximized. In this paper the end-to-end ergodic
capacity for a distributed MIMO multi-hop network will be studied. With respect to an ap-
proximated expression of the ergodic capacity, we will derive the optimal resource (power
and bandwidth) allocation strategy for a given distributedMIMO multi-hop network. This



strategy is shown to be of low complexity and to achieve near-maximum end-to-end er-
godic capacity.

The remainder of the paper is organized as follows. In Section 2 the concept of distributed
MIMO scheme is briefly overviewed. A concave optimization problem for maximizing
the end-to-end capacity is formulated in Section 3. Some results are presented in Section
4. Finally, conclusions are given in Section 5.

2 Distributed MIMO Multi-hop Networks

A system model of a distributed MIMO multi-hop network is depicted in Figure 1, where a
source node communicates with a destination node via a number of relaying nodes. Some
spatially separated relaying nodes are formed into virtualantenna arrays (VAAs), which
allows to increase capacity by applying space-time processing techniques, e.g space-time
block codes [1]. For the further investigation a fixed network topology is assumed, i.e. the
task of combining nodes to a VAA is not considered. As the datais transmitted from the
source node through a number of VAAs to the destination node,such a network is referred
to as a distributed MIMO multi-hop network. Note that there is no receive cooperation but
only transmit cooperation between the relaying nodes of oneVAA. In other words, each
node inkth VAA receives signals transmitted by the nodes in the(k − 1)th VAA, where
the signals are space-time encoded cooperatively. Thus, the transmission can be modeled
as a multiple-input single output (MISO) scheme. Note that thekth VAA serves as receive
antenna array at thekth hop while as transmit antenna array at the(k + 1)th hop.
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Figure 1: System model of distributed MIMO multi-hop networks

We summarize the encoding, relaying and decoding process for a given distributed MIMO
network topology shortly as follows,

• Source node: Broadcasts the data to the nodes of the first VAA with bandwidth
fractionα1 and power fractionβ1.

• Relaying nodes at the kth hop: The data is decoded at each node at thekth VAA
and re-encoded according to a given space-time code of length T with bandwidth



fractionαk (FDMA) and power fractionβk. All transmit nodes of one VAA use
same bandwidth and transmission power.

• Destination node: Finally, the data is space-time decoded.

To produce a mathematical representation of the distributed MIMO multi-hop system, letk
index the hop,tk, rk denote the number of the transmit nodes and the receive nodeswithin
thekth hop, respectively. LetXk ∈ Ctk×T denote the space-time encoded signal matrix
from thetk nodes in thekth hop, then the received signal at thejth nodeyk,j ∈ C1×T

can be represented by the equation

yk,j =

√

γkβkP

tk
hk,jXk + nk,j , (1)

wherenk,j ∼ NC(0, N0) ∈ C1×T is the Gaussian noise vector,P is the total power
available for the network andN0 is the power spectral density of the noise. The complex
channel realization from the transmit nodes to thejth receive node within thekth hop is
denoted ashk,j ∈ C

1×tk . The elements ofhk,j obey the same uncorrelated Rayleigh
fading statistics, i.e. complex zero-mean circular symmetric Gaussian distribution with
variance1. The pathloss at thekth hop is given byγk = ( 1

dk
)ǫ, wheredk is the distance

between the transmit nodes and the receive nodes at thekth hop andǫ denotes the pathloss
exponent within range of2 to 5 for most wireless channels.

According to the relaying process discussed above, the optimization problem to maximize
the end-to-end ergodic capacityCe2e results in finding the optimal bandwidth fraction
α∗ = [α∗

1, . . . , α
∗
K ]T and power fractionβ∗ = [β∗

1 , . . . , β∗
K ]T whereα∗

k, β∗
k ∈ [0, 1], k =

1, . . . , K that satisfy
(α∗, β∗) = arg max

α, β

Ce2e(α, β). (2)

Note that the Shannon capacity forms an upper bound and is therefore a useful measure-
ment of the performance of the distributed MIMO multi-hop system.

3 Maximization of End-to-end Channel Capacity

The ergodic capacity of a MIMO channel was elegantly derivedby Telatar [4]. The Shan-
non capacity of a MISO system according to (1) can be expressed as

Ck,j = αkW Ehk,j

{

log2

(

1 + hk,jh
H
k,j

βkPγk

αktkWN0

)}

, (3)

whereW denotes the total bandwidth of the system. The ergodic capacity of thekth hop is
dictated by the worst MISO channelCk = min

j
(Ck,1, . . . , Ck,j , . . . , Ck,rk

). It is assumed

that the relaying nodes belonging to the same VAA are spatially sufficiently close as to
justify a common pathlossγk. Hence, each MISO system within the same hop has the
same ergodic capacity, so thatCk = Ck,j , ∀ j.



Usinglog2(1 + x) ≈ √
x [5], the MISO channel capacity (3) can be approximated by

Ck,j ≈
√

βkPαkWγk

tkN0
Ehk,j

{√

hk,jh
H
k,j

}

=

√

βkPαkWγk

tkN0

Γ(tk + 1/2)

Γ(tk)
(4)

wherehk,jh
H
k,j is a gamma distributed random variable with2tk degrees of freedom. It

is well-known thatEhk,j

{√

hk,jh
H
k,j

}

= Γ(tk+1/2)
Γ(tk) holds [5], whereΓ(·) denotes the

complete Gamma function. We now check the concavity of (4) inthe joint arguments, the
power fractionβk and bandwidth fractionαk. For simplicity we describe (4) as

Ck =

√

βkPαkWγk

tkN0

Γ(tk + 1/2)

Γ(tk)
=

√

αkβk · A (5)

whereA =
√

PWγk

tkN0

Γ(tk+1/2)
Γ(tk) . So that, the first-order partial derivatives, second-order

partial derivatives and second-order mixed derivatives ofCk with respect toαk, βk are
given as follows
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(6)

To show the concavity of theCk, we note that (forαk > 0, βk > 0) the Hessian matrix is

∇2Ck(αk, βk) =

[

−A
4
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4
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(7)

hence,Ck is proven to be jointly concave in the power factionβk and band fractionαk.

Due to decode-and-forward relaying protocol, the destination node can decode the signals
correctly if and only if the signals are correctly decoded ateach hop. Thus, the end-to-end
ergodic capacityCe2e is determined by the smallest capacityCk [1]

Ce2e = min
k

(C1, . . . , Ck, . . . , CK). (8)



Furthermore, themin function is concave and nondecreasing. According to the theory of
the concavity of a composition function [6], a composition functionf(x) = h(g(x)) is
concave ifh is concave and nondecreasing, andg is concave. Here,f is Ce2e, h is the min
function,g is Ck. Clearly,Ce2e is jointly concave in(α, β). Then, a concave optimization
problem for maximizing the end-to-end channel capacity canbe formulated as follows

maximize Ce2e = min
k

(C1, . . . , Ck, . . . , CK)

subject to
K

∑

k=1

βk = 1 and
K

∑

k=1

αk = 1.
(9)

With the total power and total bandwidth constraints, increasing any one capacityCk in-
evitably reduces the others. The minimum is therefore maximized if all capacitiesCk, ∀ k
are equated, i.e.C1 = C2 = · · · = CK . By using the constraints in (9) and the approxi-
mation (4) a simple expression of the optimal bandwidth and power fraction follows

αk = βk =

√

dǫ
kGk

∑K
m=1

√

dǫ
mGm

, (10)

whereGm = Γ(tm)
√

tm

Γ(tm+1/2) is introduced for convenience. It can be shown thatGk ≈ 1

holds [7] and consequently a suboptimal but simpler solution of the power and bandwidth
fraction can be obtained

αk = βk ≈
√

dǫ
k

∑K
m=1

√

dǫ
m

, (11)

which only depends on the distancesdk.

4 Results

In order to analyze the proposed optimization strategy, a distributed MIMO multi-hop sys-
tem consisting of5 hops with[1, 2, 3, 4, 5, 1] denoting the number of nodes per VAA is
investigated. The distances between the hops are[1, 1, 2, 2, 1] km. Figure 2 shows the
ergodic capacity for different resource allocation strategies. We can see that the opti-
mized power and bandwidth allocation according to (10) for the distributed MIMO system
clearly outperforms the equal power and bandwidth allocation (αk = βk = 1

K , ∀ k), the
traditional SISO multi-hop transmission (tk = rk = 1, ∀ k) and the direct transmission
(the source node communicates with destination node directly without any relaying nodes).
Note that even the suboptimal solution based on (11) achieves near-optimum performance.

Table 1 shows the optimal power and bandwidth fraction according to the closed form
solution (10). The same results can also be achieved by applying common optimization
tools for (9). We can see, that hops with large distance require more power and bandwidth
than others.
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Figure 2: Ergodic channel capacity of a distributed MIMO multi-hop network for different resource
allocation strategies. Network topology:5 hops with nodes assignment[1, 2, 3, 4, 5, 1] per VAA
and distanced = [1, 1, 2, 2, 1] km, pathloss exponentǫ = 3.

Hop 1. Hop 2. Hop 3. Hop 4. Hop 5. Hop
Distance 1 km 1 km 2 km 2 km 1 km
Fractionsαk = βk 0.1263 0.1189 0.3250 0.3175 0.1124

Table 1: Power and band fraction according to (10).

5 Conclusion

In this paper we have briefly introduced the concept of distributed MIMO schemes, which
allows the application of MIMO capacity enhancement techniques over spatially adjacent
nodes. A concave optimization problem has been formulated for optimal resource al-
location to maximize the end-to-end capacity of distributed MIMO multi-hop networks.
Finally, we demonstrate that the optimal resource allocation strategy leads to a strong in-
crease in ergodic capacities.
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