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ABSTRACT

In order to combine the advantages of Amplify-Forward (AF)
and Decode-Forward (DF) in relay networks, several strate-
gies have been developed making use of reliability informa-
tion after decoding at the relay. The use of soft-output channel
decoders enables forwarding reliability information for the
decoded bits. This soft information can be forwarded in dif-
ferent ways, e.g. by transmission of the Log Likelihood Ra-
tios (LLRs) normalized to the power constraint. In this paper
transmitting expectation values after decoding, the so-called
Decode-Estimate-Forward (DEF) scheme, will be shown to
be the best choice in terms of the mean squared uncorrelated
error at the receiver. Additionally, it will be shown that LLR
combining is superior to maximum ratio combining at the re-
ceiver as the overall disturbance of the received signal is not
Gaussian in the case of DEF. Furthermore, in the uncoded
case LLR combing also improves the performance in terms
of effective signal-to-noise ratio and bit error rate.

1. INTRODUCTION

Soft information relaying is of increasing interest in relay net-
works. This approach combines the advantages of the classi-
cal relay protocols Amplify-Forward (AF) and Decode-For-
ward (DF) [1]. DF makes use of the discrete alphabet and
of the coding gain in a coded system, but suffers from error
propagation in the case of decoder failure at the relay. AF
ignores the benefits of channel coding and discrete alphabets,
but avoids error propagation and preserves reliability infor-
mation.
The basic idea of soft information relaying is to benefit from
the coding gain while still transmitting reliability information.
When a soft output decoder is applied at the relay, the re-
sulting soft values provide both, coding gain and reliability
information and are therefore used for forwarding. Now the
question arises in which way this information should be trans-
mitted to achieve the best performance at the receiver when
considering power constraints at the relay. For the uncoded
case the optimal way of transmitting soft information in terms
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of the mean squared error (MSE) was derived analytically in
[2] and was called Estimate-Forward (EF). The first approach
for coded systems to transmit soft information after decoding
at the relay was to transmit the log likelihood ratio (LLR) of
each code bit normalized to the power constraint. This ap-
proach called Decode-Amplify-Forward (DAF) was applied
e.g. in [3, 4, 5]. In contrast to this, in [6] so-called soft
bits representing the expectation values of the code bits are
used, but without a motivation or comparative analysis. The
overall disturbance of the signal forwarded by the relay was
assumed to be Gaussian distributed and the Log-Likelihood
Ratios (LLRs) at the receiver were calculated based on this
assumption. However, the exact distribution of these noisy
soft bits was independently derived in [7] and [8] and used
for calculation of LLRs at the receiver.
In this paper the optimality of transmitting the expectation
values in terms of MSE will be extended to the coded case
when assuming a-posteriori probability (APP) decoding at the
relay. The resulting relay function is called Decode-Estimate-
Forward (DEF) and will be compared to classical Decode-
Forward (DF) and Decode-Amplify-Forward (DAF) in terms
of MSE and bit error rate (BER) performance. It will be
shown that transmitting the conditioned expectation values of
the code bits is best in terms of receiver mean squared error
also in the coded case. Furthermore, for EF and DEF the ben-
efit of calculating LLRs based on the exact distribution of the
received signal will be elaborated.
The paper is organized as follows: The system model of the
relay network is introduced in Section 2. In Section 3 the ba-
sic idea of soft relaying is explained and specific relay func-
tions are introduced. The distribution of the received sig-
nal in the case of Decode-Estimate-Forward is derived ana-
lytically in Section 4 and its Gaussian approximation is de-
scribed. Simulation results for different system setups are
shown and discussed in Section 5 before Section 6 gives a
conclusion of the presented work.

2. SYSTEM MODEL

In this paper a general (hybrid) relay network is considered as
shown in Figure 1. We restrict ourselves to a system with one
source S and one destination D. Between these nodes several



relays in serial and/or in parallel exist. It is assumed that there
is no direct transmission from the source to the destination.
The number of serial relays in one path is denoted as Ns and
the number of these paths in parallel as Np. Rp,s denotes the
s-th relay in the p-th hop.
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Fig. 1. Block diagram of a relay network

The source encodes the information bit vector1

b = (b1, b2, ..., bNu
) (1)

with a channel code C and broadcasts

xs =
√

Ps · c (2)

containing the BPSK-modulated code bit sequence c normal-
ized to the transmit power Ps. This signal is transmitted to the
Np relays in the first hop (s = 1). To simplify the derivations,
the channels between all nodes are assumed to be AWGN
channels with noise variance σ2

p,s. The transmit power of
relay Rp,s is denoted as Pp,s. The received signal at relay
Rp,s+1 is then given by

yp,s+1 = xp,s +np,s+1 =

√
Pp,s

√
E {|c̃p,s|2}

c̃p,s +np,s+1 , (3)

with the transmitted signal xp,s containing the estimate c̃p,s

of the code bits normalized to the power constraint. It is as-
sumed that the links in this network do not disturb each other
which can for example be ensured by a TDMA structure. At
the destination all signals transmitted from the relays in the
last hop are combined, e.g. by a maximum ratio combiner
(MRC) before channel decoding is applied. Links are only
considered between successive relays in one path, i.e., form
Rp,s to Rp,s+1. The relaying schemes are not mixed in a net-
work, i.e., all relays use the same relay function.

3. SOFT RELAYING

In the case of classical Decode-Forward (DF), the received
signal is decoded at the relay and the estimate is equal to the
hard decision at the output of the channel decoder. This esti-
mates c̃DF

p,s = ĉp,s are forwarded to the destination

xDF
p,s =

√

Pp,s · ĉp,s . (4)

1Throughout the paper vectors are denoted as bold letters and elements as
italic letters, e.g. b and b. Estimates of bits are identified with a tilde b̃ and
hard estimates by b̂.

If a soft-input-soft-output channel decoder is applied at the re-
lay, reliability information about the information and the code
bits are available. If the decoder is an APP decoder, the re-
sulting soft information can be described by LLRs

L(c|yp,s, C)
∆
= Lp,s(c) = log

(
p(c = +1|yp,s, C)

p(c = −1|yp,s, C)

)

. (5)

In several publications (e.g. [4, 5, 3]) these LLRs are simply
scaled to the transmit power constraint and then forwarded.
This relay function is called Decode-Amplify-Forward (DAF)
[3] and the transmitted signal from Rp,s to the next relay in
this path Rp,s+1 can be written as

xDAF
p,s =

√

Pp,s ·
c̃DAF
p,s

√

E
{
|c̃DAF

p,s |2
}

=

√

Pp,s

E {|Lp,s(c)|2}
· Lp,s(c) . (6)

DAF corresponds to AF in an uncoded system as the for-
warded signal is a linear function of the LLRs. Therefore,
the output of DAF is similar to AF for a signal received over a
channel with increased effective SNR due to decoding. Like-
wise, DF is similar to demodulate-and-forward in the uncoded
case except the additional decoding. Another approach was
derived in [2] for an uncoded system with the aim of minimiz-
ing the residual error at the destination. For this purpose the
source-relay channel and the relay function itself are modeled
as one superchannel as depicted in Figure 2. The equivalent
noise η on this superchannel is defined to be the uncorrelated
error between the code bits and the corresponding estimates
at the relay. By minimizing this noise variance of the over-
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Fig. 2. Definition of a superchannel

all channel including the relay-destination channel we get the
minimum mean squared uncorrelated error (MSUE) and the
corresponding relay function

xp,s =
√

Pp,s ·
c̃p,s

√

E {|c̃p,s|2}
= f (yp,s) = f (yp,s) (7)

is optimal in terms of MSUE at the receiver. The last equality
is only valid in the case of uncoded AWGN (and therefore



memoryless) channels because one bit xp,s of the transmit
signal only depends on one element of the input signal. In a
coded system the relay can make use of the channel code and
the relay function can be extended to

xp,s = f (yp,s, C) . (8)

With channel code (e.g. convolutional code) the channel is
no longer memoryless and the whole receive vector has to be
considered. As shown for uncoded transmission in [2], the
conditional expectation E {c|y} of the transmitted bits mini-
mizes the MSUE at the destination. The only difference be-
tween minimizing MSE and MSUE is a scaling factor and
therefore we will focus on MSE due to simpler derivations. A
detailed discussion of the relation between MSE and MSUE
can be found in [2]. In a coded system the knowledge of the
code can be incorporated in the estimation as an additional
constraint

MSE = E
{

(c̃ − c)
2 |y, C

}

(9)

and the function yielding the minimum MSE can be found by
setting its derivation to zero

∂MSE

∂c̃
= 2E {(c̃ − c) |y, C} !

= 0 (10)

leading to
c̃ = E {c|y, C} . (11)

This conditional expectation in the special case of decoding
at the relay can be expressed in terms of LLRs as

c̃DEF
p,s = E {c|y, C} = tanh (Lp,s(c)/2) (12)

and is called soft bit. The transmit signal for this scheme
called Decode-Estimate-Forward (DEF) becomes the normal-
ized expectation value

xDEF
p,s =

√

Pp,s

c̃DEF
p,s

√

E
{
|c̃DEF

p,s |2
}

=

√

Pp,s

E {|tanh (Lp,s(c)/2) |2} · tanh (Lp,s(c)/2) . (13)

This result is very similar for coded and uncoded systems and
justifies the usage of soft bits for relaying in [6, 7, 8]. Al-
though the bit and frame error rates (BER/FER) are the most
interesting parameters in relay systems, the MSE is consid-
ered here due to the convenient analysis. In case of memo-
ryless Gaussian disturbance of the superchannel the BER is
proportional to the MSE. But the overall error is influenced
or even caused by the relay function and therefore may be
arbitrarily distributed. The BER optimal relay function for
the uncoded case was derived in [9] and came out to be a
LambertW function. This relay function is more compli-
cated because it depends not only on the parameters of the

source-relay channel but also on those of the following chan-
nel. These parameters are in general not known to the re-
lay so additional signaling would be necessary. Furthermore
the normalization to the power constraint is quite complex as
the scaling variable is within the argument of the LambertW
function and cannot be calculated separately. The MSE min-
imizing function used for DEF is quite simple and it will be
shown later that MSE nevertheless seems to be a suitable pa-
rameter for performance.
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In Figure 3 the simulated mean squared uncorrelated error
(MSUE) at the output of one relay in the first hop of different
relay schemes are shown. As a reference the MSUE curves
for uncoded transmission are also depicted. All simulation
results shown in this paper assume equal transmit power and
equal noise variances for all links. It is interesting to see that



MSUE of AF as well as for DAF does not tend to zero for
increasing transmit power. For AF this is due to linear am-
plification of not only the desired signal but also the received
noise which is independent of the input power. For DAF the
noise level is only lowered at high transmit powers by a con-
stant due to the asymptotic coding gain exploited by the de-
coder. For DF and small values of Ps, wrong decisions are
very likely which increase the error variance. On the other
hand, DF eliminates the noise if it is smaller than the decision
threshold and therefore the MSUE tends to zero for increasing
transmit power. EF and DEF also result in a fast decreasing
MSUE and outperform the two other schemes as well for un-
coded and coded systems, respectively, for all values of Ps.
In Figure 4 the MSUE for DF, DAF and DEF is shown for
convolutional codes with different free distances. It can be
seen that the asymptotic value of MSUE for DAF depends on
the free distance of the code which illustrates the asymptotic
SNR gain of convolutional codes. Additionally, the slope of
the MSUE curves for DEF and DF also depends on the free
distance.

4. CHANNEL LLRS FOR DEF

In order to achieve a proper input signal for soft-input de-
coders, LLRs have to be calculated based on the received sig-
nal. As the source sends BPSK signals, the corresponding
LLRs at the input of the relays in the first hop are easily cal-
culated by

Lch(c|yp,s) =
2
√

Pp,s−1

σ2
p,s

· yp,s . (14)

In the case of EF and DEF, the signal transmitted by the re-
lay is not BPSK modulated but continuously distributed in the
range [−1, +1]. Although the equivalent noise of the super-
channel is uncorrelated to the transmit signal, it is not Gaus-
sian distributed anymore. The equivalent error of the super-
channel denoted as η can be written as

ηp,s = yp,s − Ap,sc = xp,s−1 + np,s − Ap,sc

= np,s + (xp,s−1 − Ap,sc)

= np,s − c (Ap,s − c · xp,s−1)
︸ ︷︷ ︸

n̄

(15)

As the second part cn̄ of (15) is not Gaussian distributed, the
total error η is not Gaussian distributed as well. Consequently,
the simple calculation of channel LLRs similar to (14) is not
valid. To calculate true log-likelihood values for these sig-
nals, the distribution of the received signal, i.e. the noisy soft
bits yp,s, is required. The LLRs at the decoder output of the
former relay Rp,s−1 are assumed to be Gaussian distributed
[10]

Lp,s−1(c) =
σ2

a

2
· c + na (16)
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Fig. 5. Conditional PDF of received signal p(yp,s|c = +1)
with (- -) and without (–) Gaussian approximation of n̄, dif-
ferent values of σ2

p,s and σ2
a

with na denoting a Gaussian random variable with zero mean
and variance σ2

a. With this model for the LLRs the conditional
distribution of the soft bits becomes

p(xp,s−1|c = ±1) ∝ p(c̃p,s−1|c = ±1) =
1

√

2πσ2
a

·

exp

(

−
∣
∣2atanh(c̃p,s−1) ∓ σ2

a/2
∣
∣
2

2σ2
a

)

· 2

1 − c̃2
p,s−1

, (17)

which is the transformation of the Gaussian distribution of
the LLRs (16) with the tanh(x/2) function [11]. To deter-
mine the desired distribution of the noisy soft bits yp,s, the
Gaussian distribution of the channel noise

p(np,s) =
1√

2πσp,s

exp

(

−
n2

p,s

2σ2
p,s

)

(18)

and the distribution of the soft bits have to be convolved [7]

p(yp,s|c = ±1) = p(xp,s−1|c = ±1) ∗ p(np,s) . (19)

This convolution cannot be solved in closed form and there-
fore has to be done numerically. Onother approach to cal-
culate this distribution was derived in [8] yielding the same
result. Using (19), the LLRs can be calculated at the destina-
tion

Lch(c|yp,s) = ln

(
p(c = +1|yp,s)

p(c = -1|yp,s)

)

= ln

(
p(yp,s|c = +1)

p(yp,s|c = -1)

)

+ ln

(
p(c = +1)

p(c = -1)

)

, (20)



where the second part represents a-priori information. As
equally likely symbols are assumed this equation simplfies
to

Lch(c|yp,s) = ln

(
p(yp,s|c = +1)

p(yp,s|c = -1)

)

. (21)

In contrast to this derivation, a Gaussian distribution of the to-
tal error ηp,s was assumed in [6]. The code bits are assumed
to be transmitted over an AWGN channel with channel co-
efficient A and noise variance η which consists of the error
introduced by the relay function and the noise np,s added at
the receiver. With this notation the receiver signal can be de-
scribed by

yp,s = xp,s−1 + np,s = A · c + η (22)

where A = |E {xp,s−1|c = ±1} | and

σ2
η = σ2

p,s + E
{
x2

p,s−1

}
− A2 = σ2

p,s + 1 − A2 . (23)

Under this assumption the LLRs are approximated similar to
(14)

Lch,approx.(c|yp,s) =
2A

σ2
p,s + 1− A2

yp,s (24)

Fig. 5 shows the exact (19) and the Gaussian approximated
conditional distributions of the noisy soft bits used for the two
approaches (21) and (24), respectively. The difference be-
tween these distributions becomes obvious especially for low
noise variances. In [7] and [8] the impact of the Gaussian
approximation (24) was already investigated for specific sys-
tems. In the next section this impact will be evaluated to be
quite small for most system setups.

5. SIMULATION RESULTS

First we consider degenerated systems were only one link
with Ns +1 hops (serial system) or two hops but several links
(parallel system) with different number of relays before we
extend the system to a general setup as in Figure 1.

5.1. Coded Serial System (Np = 1)

The effective signal-to-noise ratios (SNR) at the destination
for a serial system with Np = 1 and Ns = 2, 4 and 6 are
shown in Figure 6. This effective SNR is closely related to
the MSUE at the relay[2]. The results verify the assumption
that the conditioned expectation is better than hard decision
or normalized LLRs in terms of effective SNR. At low SNR
the performance of DEF is similar to DAF while at high SNR
it is similar to DF both known to be the best choice for the
corresponding SNR region. At medium SNR (P ≈ 0 dB)
the gain of DEF gets obvious as it clearly outperforms DAF
and DF. The drawback of DAF can be seen when the sig-
nal is relayed several times because normalized LLRs lead
to considerable performance loss especially when the number
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of hops increases. This effect is not surprising as LLRs are
approximately Gaussian distributed with variance depending
on the mean value. Even for a very high reliability, the vari-
ance of the LLRs is in the same order as their mean value,
so that the MSE at the output of the relay for high SNRs at
the input saturates, which could already be seen in Figure
3. The approaches with hard decision (DF) and expectation
value (DEF) perform quite well also for an increasing num-
ber of hops. For these two approaches the MSE at the output
of the relay tends to zero for increasing SNR at the input.
In Figure 7 the corresponding bit error rates for these sys-
tems are depicted. The difference in terms of BER between
DF and DEF is quite small for this system, but the loss of
DAF in comparison to DF and DEF is significant. As men-
tioned before, although minimum MSE does not implicitly
lead to minimum BER it nevertheless seems to be a good hint
towards good BER performance. It was already noticed in



[2] that the BER optimal function for uncoded system is very
similar to the MSE optimal tanh-function. For the results in
Figure 7 the Gaussian approximation was applied (24). For
a serial system this approximation has nearly no influence on
the performance and therefore the results with calculation of
LLR according to (21) are omitted for the serial system.

5.2. Coded Parallel System (Ns = 1)

The effect of LLR mismatch gets significant if several sig-
nals are combined at the destination. In the case of Gaussian
disturbance of the superchannel, the signals are combined in
terms of Maximum Ratio Combining (MRC). This MRC can
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be realized by summation over all input signals weighted by
the corresponding SNR which coincides to the summation of
the receiver LLRs for BPSK signals over AWGN channels.
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As mentioned before, in the case of DEF the Gaussian as-
sumption is not valid and therefore the LLRs are mismatched.
This effect increases if several LLRs are summed up as is the
case of a parallel system. The two combination approaches
are denoted as DEF MRC if the Gaussian assumption was
used and as DEF LLRC (LLR Combining) if the LLRs are
calculated according to (21) and combined afterwards.
In Figure 8 and 9 the effective receiver SNR and the corre-
sponding BER for a parallel system (Ns = 1) and different
number of parallel relays can be seen. If the equivalent super-
channel is assumed to be an AWGN channel, Maximum Ra-
tio Combining (MRC) is applied. The effective SNR of DEF
with MRC is better than that of DF and DAF also in this case.
The SNR improves as the number of parallel hops increases.
In contrast to the serial system the gain due to DEF over DF
is obvious in terms of BER especially for increasing Np. On
the other hand the loss of DAF is smaller. The additional gain
due to LLRC for DEF is significant only in terms of effective
SNR at the destination but the BER performance is quite sim-
ilar to DEF MRC. As mentioned before the improved MSE
does not always correspond to an improved BER as can be
seen here.

5.3. Coded and Uncoded Hybrid System

In the sequel a more general system setup will be considered
according to the structure in Figure 1 containing several re-
lays in parallel and serial. The different effects for DF, DAF
and DEF described in the last two subsections are combined
here in a hybrid system. In Figure 10 the effective SNR of a
system with Np = 3 and Ns = 2 is depicted. In accordance
to the previously observed results, DEF outperforms DF and
DAF also in this hybrid system. This effect is confirmed by
the BER simulation results in Figure 11. The loss of DAF in
comparison to DEF is similar as for the serial case and the
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gain of DEF over DF is nearly the same as for the parallel
setup. So DEF seems to be superior for all network topolo-
gies. Furthermore the benefit of LLR combining according to
(21) in terms of BER is more significant in this hybrid system.
The combined impacts on the overall distortion due to serial
and parallel relays increase the LLR mismatch caused by the
Gaussian assumption.
Interestingly, the loss concerning BER due to this LLR mis-
match is even more significant in uncoded system as can be
seen in Figure 12. In contrast to the SNR in Figure 13 where
the loss of EF MRC is in the range as for DEF MRC in
Figure 10, the BER significantly differs. The BER gain of
DEF LLRC may get more obvious at higher values of P i.e.
smaller values of BER.
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Fig. 13. Effective SNR without decoding at the relay for a
system with Np = 3 and Ns = 2, no channel code

6. CONCLUSION

In this paper an MSE optimal relaying function for coded sys-
tems was derived and discussed. The result is a scaled expec-
tation value which is very similar to the MSE optimal func-
tion for the uncoded case. This scheme was compared to the
classical relaying schemes DF and the scheme suggested in
literature corresponding to AF in the coded case called DAF.
Transmitting the conditioned expectation value of the code
bits was shown to be the best relaying function in terms of
MSE and also superior to other schemes in terms of BER.
MSE and BER performance for different system setups were
considered and analyzed in detail. Furthermore, the impact
of the assumption of Gaussian distributed effective noise was
investigated. This assumption is not valid for the expectation
value used for EF and DEF but is nevertheless often used.
It came out that this assumption slightly degrades the over-
all system performance for all considered system setups. In
other words when taking the actual distribution of the noisy
soft bits into account additional performance improvement is
possible which may be worth the quite complex computations
of the LLRs.
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