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Abstract— Recently the use of lattice reduction (LR) methods
for data detection in multiple-input multiple-output (MIMO)
systems has been proposed in order to achieve full diversity
with suboptimal detection schemes. To this end, several reduction
criteria and algorithms known from lattice theory have been
applied. In this work new insights about the applicability of the
various LR methods to linear and non-linear detection schemes
are developed. In fact, the crucial performance parameters
for linear and non-linear schemes are their associated post-
equalization SNRs. It turns out that Seysens’s LR algorithm
and LLL reduction perform differently with respect to these
post-equalization SNRs, which explains their different error-rate
behavior in context of linear as well as non-linear data detection.

Index Terms— MIMO systems, V-BLAST, spatial multiplexing,
lattice-reduction, data detection, maximum likelihood.

I. INTRODUCTION

In the past ten years the application of multiple antennas at

the transmitter and the receiver has gained considerable inter-

est in the research community. In case of spatial multiplexing

systems the source transmits parallel data streams over the

antennas to increase the spectral efficiency. To estimate the

transmitted data with reasonable complexity several subop-

timal detection schemes have been proposed. Unfortunately,

these common linear and non-linear schemes cannot fully

exploit the diversity that is available in multiple-input multiple-

output (MIMO) fading channels.

In order to improve the performance of these subopti-

mum schemes, the application of lattice reduction (LR) as

a preprocessing method has been proposed [1], [2]. In this

context LR is applied to transform the system model into an

equivalent one with a better conditioned channel matrix prior

to low-complexity detectors using linear equalization (LE) or

successive interference cancellation (SIC). This results in a

significantly improved performance of the corresponding de-

tection scheme. To this end, several reduction algorithms like

the well-known LLL reduction [3] or Seysen’s LR algorithm

[4] have been applied for data detection in MIMO systems,

e.g. [2], [5]–[9]. In fact, LLL reduction even allows LE or SIC

schemes to achieve full diversity [9].
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In this work new insights about the applicability of the

various LR methods to LE and SIC are developed. We argue

that the crucial performance parameters for LE and SIC

are the corresponding post-equalization signal-to-noise ratios

(SNRs) that are achieved with LR. We show that Seysen’s

LR algorithm and LLL reduction perform in general different

with respect to these post-equalization SNRs, which explains

their different error-rate behavior in combination with LE and

SIC detection, respectively. For LE, Seysen’s LR algorithm

(or a dual version of LLL) turns out to be advantageous while

for SIC detection the LLL algorithm is preferable. A general

conclusion from our work is that the LR algorithm should

selected taking the subsequent detector into account.

The paper is organized as follows. In Section II, the MIMO

system model is introduced. The fundamentals of different

LR algorithms are briefly reviewed in Section III. LR-aided

detectors and their corresponding post-equalization SNRs are

discussed and investigated in Section IV. Finally, the error-

rate performance of various LR-aided detectors is analyzed in

Section V and conclusions are provided in Section VI.

II. SYSTEM MODEL

We consider a spatial multiplexing MIMO system with NT

transmit and NR receive antennas operating in a flat-fading

environment. At the transmitter the data is demultiplexed into

NT parallel data streams of equal length, these substreams are

mapped onto M -QAM symbols of the modulation alphabet

A and transmitted over the NT antennas simultaneously.

To describe the MIMO system, one time slot of the time-

discrete complex baseband model is investigated. Let1 s denote

the complex-valued NT×1 transmit signal vector, then the

corresponding NR×1 receive signal vector x is given by

x = Hs + n , (1)

with the NR×NT channel matrix H and the NR×1 noise vector

n. The noise is assumed to be complex Gaussian distributed

with variance σ2
n and the transmit power at each antenna is

normalized to one.

1The hermitian, the inverse and the pseudo-inverse are indicated by (·)H ,
(·)−1 and (·)+. The i-th column and the i-th row of a matrix A are given

by ai and a
(i), respectively.



III. LATTICE REDUCTION

In this section, we briefly review the fundamentals of

various LR algorithms.

A. Basic Principle of Lattice Reduction

By interpreting the columns hℓ of H as a basis and assum-

ing an infinite NT-dimensional transmit signal space s ∈ Z
NT

j

of Gaussian integers, the set of all possible undisturbed receive

signals constructs a lattice

L(H)
∆
=

NT
∑

ℓ=1

hℓZj . (2)

However, the same lattice L(H̃) = L(H) is also generated

by each matrix H̃ = HT, as long as the NT×NT transfor-

mation matrix T stems from the set of unimodular matrices

GLNT
(Zj), i.e. T contains only Gaussian integers and the

determinant is det(T) = ±1 [10].

The general aim of LR is to transform a given basis H into

a new basis H̃ with vectors of shortest length or, similarly, into

a basis consisting of “more orthogonal” basis vectors. Possible

orthogonality measures of H include the condition number, the

orthogonality defect, or the Seysen’s measure (see Section III-

D). For example, if the condition number κ(H)
∆
=σmax/σmin

defined as the ratio of the largest and the smallest singular

value σmax and σmin, respectively, of H is equal to one, then

H is orthogonal. It is well-known, that κ(H) describes the

impact of the channel realization on the noise enhancement in

case of LE (see e.g. [11]). A new basis may achieve a smaller

κ(H) and, consequently, better performance results in the case

of LE, as the impact of noise enhancement is reduced.

B. LLL-Reduction

The original definition of LLL reduction by Lenstra, Lenstra

and Lovász was restricted to real-valued matrices [3] and

extended with respect to complex matrices recently [7]. Within

this paper we focus on its complex-valued version since it

requires less complexity and achieves comparable performance

results. The LLL algorithm is based on the QR decomposition

(QRD) H = QR, where matrix Q ∈ CNR×NT has orthogonal

columns of unit length and R = [rk,ℓ]1≤k,ℓ≤NT
is an upper

triangular matrix. With respect to the QRD H̃ = Q̃R̃ of

the reduced basis, the basis vector h̃ℓ is almost orthogonal

to span{h̃1, . . . , h̃ℓ−1}, if the elements |r̃1,ℓ|, . . . , |r̃ℓ−1,ℓ| of

R̃ are close to zero. Using this observation the LLL algorithm

can be stated as follows.

Definition (LLL-Reduced): A basis H̃ with QRD H̃ =
Q̃R̃ is called LLL-reduced with parameter 1/4 < δ ≤ 1, if

|r̃k,ℓ|≤
1
2 |r̃k,k| for 1≤k< ℓ≤NT (3a)

δ |r̃k−1,k−1|
2≤|r̃k,k|

2+|r̃k−1,k|
2 for k = 2, . . . , NT (3b)

holds.

Starting with H = QR the iterative LLL algorithm yields

a reduced basis H̃ = Q̃R̃ and a corresponding transformation

matrix T. To this end, the algorithm successively performs

so-called size-reductions to meet (3a) and exchanges two

neighboring basis vectors if (3b) is not fulfilled [3], [5].

The beneficial impact of applying the Sorted QR Decom-

position (SQRD) [12] to the computational complexity of

the LLL algorithm was presented in [5], [6]. Furthermore it

was shown, that the consideration of the MMSE criterion by

reducing the extended channel matrix

H
∆
=

[

H

σnINT

]

(4)

leads simultaneously to a strong performance improvement

and further reduction of computational complexity [5].

C. Dual LLL-Reduction

Instead of performing LLL reduction with respect to the

basis H, a reduction of the dual basis

H⋆ ∆
= (H+)H = H(HHH)−1 (5)

was proposed in [9] in order to improve the performance

of LR-aided LE. By applying LLL with respect to the dual

basis the QR decomposition H̃⋆ = Q̃⋆R̃⋆ is achieved. In the

sequel, this reduction will be abbreviated by DLLL and the

corresponding ℓ-th dual basis vector is denoted with h⋆
ℓ . For

MMSE the extended dual matrix H⋆ = (H+)H is reduced.

D. Seysen’s LR Algorithm

The basic principle of Seyen’s LR algorithm [4] lies in the

simultaneous reduction of the basis H and the dual basis H⋆.

To this end, Seysen introduced the following orthogonality

criteria.

Definition (S-Reduced): A basis H is called S-reduced if

S(H) ≤ S(HT) holds for all T ∈ GLNT
(Zj) with Seysen’s

measure S(H) defined by

S(H)
∆
=

NT
∑

ℓ=1

‖hℓ‖
2‖h⋆

ℓ‖
2 . (6)

Thus, for an S-reduced basis, no unimodular transformation

matrix T leads to a further reduction of Seysen’s measure

S(H). We have S(H) ≥ NT and its minimum NT is achieved

if and only if the basis is orthogonal. Common, suboptimum

algorithms perform a successive sequence of elementary col-

umn operations with respect to just two basis vectors, leading

to the so-called S2-reduction (referred to as Seysen’s LR

algorithm or briefly SEY in the sequel) [4]. The application

of SEY for symbol detection and an efficient implementation

of the reduction algorithm have recently been proposed in [8].

Therein it is demonstrated that SEY can find more orthogonal

bases (with respect to various orthogonality measures) than

the LLL algorithm by requiring less basis updates.

IV. LR-AIDED DETECTION SCHEMES AND THEIR

POST-EQUALIZATION SNRS

In the sequel we assume that the reduced basis and trans-

formation matrix have been calculated either by SEY, LLL,

or DLLL. The obtained result is then used for LE or SIC



detection. In the following, we describe these LR-aided Zero-

Forcing (ZF) detectors and discuss the impact of the corre-

sponding post-equalization SNRs on the performance of theses

schemes. However, the argumentation can easily extended

for the SINRs of MMSE detection by consideration of the

extended channel matrix (4).

A. LR-Aided Data Detection

By using the reduced channel matrix H̃ = HT and intro-

ducing z=T−1s, system model (1) can be rewritten as [6]

x = Hs + n = HTT−1s + n = H̃z + n . (7)

The idea behind LR-aided data detection is to consider this

equivalent system model with reduced channel matrix H̃ and

perform the detection with respect to z instead of s. Indeed, if

s ∈ Z
NT

j , we also have z ∈ Z
NT

j since T is unimodular. Thus,

one can first calculate a detection result for z, denoted with ẑ,

and then calculate ŝ = Tẑ, which represents the final detection

result for the original problem. A corresponding block diagram

is shown in Fig. 1. The case of finite constellations is discussed

in detail in [5].

s

n

ẑz
T=H HT

~
x

1-
T

ŝDetector

for z

equivalent system model

Fig. 1. Block diagram of LR-aided data detection.

B. LR-Aided LE

For LR-aided Zero-Forcing (ZF) LE, first z̃ = Gx with

filter matrix

G = H̃+ = (H̃HH̃)−1H̃H (8)

is calculated, where G is given by the pseudo-inverse of

H̃. The hard decision ẑ is then obtained through (usually

unconstrained) componentwise quantization of z̃, i.e. ẑ =
Q{z̃}. The multiplication with H̃+ usually causes less noise

amplification than the multiplication with H+ due to the more

orthogonal columns of H̃. Therefore, a hard decision based

on z̃ is in general more reliable than that based on s̃ = H+x

(corresponding to conventional ZF-LE). As mentioned before,

the extension with respect to the MMSE criterion is directly

achieved by LR of the extended channel matrix H introduced

in (4). As demonstrated in [5], [6] this leads to significant

performance improvements and reduction in complexity.

1) Performance Analysis: To analyze the performance of

LR-aided LE we consider the corresponding post-equalization

SNR of layer ℓ, ℓ = 1, . . . , NT. After ZF equalization, we have

z̃ = z+Gn, which is used to form the hard decision ẑ in the

transformed domain. Evidently, the effective noise of layer ℓ is

complex Gaussian distributed with variance σ2
n‖g

(ℓ)‖2, where

g(ℓ) denotes the ℓ-th row of the filter matrix G. By recalling

the definition of the dual basis (5), we thus have

SNRLE
ℓ

∆
=

1

σ2
n‖g

(ℓ)‖2
=

1

σ2
n‖h

⋆
ℓ‖

2
. (9)

We see that the performance of LE is determined by the

Euclidian lengths of the dual basis vectors (see also [9]).

Furthermore, the overall error probability will be dominated

by the layer ℓ with the minimum SNRLE
ℓ , i.e. the worst layer

(or subchannel). Thus, for LE it is reasonable to determine a

reduced basis where the corresponding longest dual vector is

as short as possible or the minimum SNRLE
ℓ is maximized.

Note that this does not necessarily correspond to the standard

target of LR methods (e.g. to find the shortest basis vector).
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Fig. 2. CDF of squared length of shortest (–) and longest (- -) dual basis
vector for a system with NT = NR = 6 antennas.

Fig. 2 shows the cumulative distribution functions (CDFs)

of the longest and the shortest filter (i.e. dual basis) vectors

of the original and the reduced case for a MIMO system with

NR = NR = 6 antennas. All LR schemes lead to an almost

equivalent reduction of the shortest vector. However, with re-

spect to the performance dominating longest dual basis vector,

SEY and DLLL outperform LLL. For LE, these LR schemes

indeed show better performance results (see Section V).

2) Computational Effort: With respect to computational

complexity it is worth to note that the filter matrix G is already

calculated for DLLL and SEY, as both methods calculate the

reduced dual basis H̃⋆ = GH . As the LLL is executed with

respect to the QR decomposition of H̃, the required pseudo-

inverse can be determined by G = H̃+ = R̃−1Q̃H .

C. LR-Aided SIC

The performance of LE can be improved by applying SIC

(or decision-feedback) techniques based on the QR decompo-

sition H̃ = Q̃R̃. We obtain

z̃ = Q̃Hx = R̃z + ñ, (10)

where ñ = Q̃Hn. Due to the upper triangular form of R̃ the

vector z̃ is partly free of interference and can successively be

detected layer by layer in the sequence ℓ = NT, NT−1, . . . , 1.

In order to estimate zℓ, previous decisions for ẑℓ+1, . . . , ẑNT

weighted by the corresponding coefficients of R̃ are subtracted

from z̃ℓ

ẑℓ = Q

{

1

r̃ℓ,ℓ

(

z̃ℓ −

NT
∑

k=ℓ+1

r̃ℓ,k · ŝk

)}

. (11)



1) Performance Analysis: Assuming correct decisions in

previous layers, the post-equalization SNR at the ℓ-th layer

(respectively, ℓ-th detection step) is proportional to the squared

value of the ℓ-th diagonal element r̃ℓ,ℓ of the upper triangular

matrix R̃. To be more precise, we have

SNRSIC
ℓ = σ−2

n |r̃ℓ,ℓ|
2. (12)

Note that SNRSIC
NT

=SNRLE
NT

and SNRSIC
ℓ 6=SNRLE

ℓ for ℓ<NT

in general for SIC without optimized detection ordering. It is

well known that the first layer in the detection and interference

cancellation procedure (ℓ=NT) dominates the overall perfor-

mance. This is due to the fact that the first detection step

degrades the subsequent decisions through error propagation

(cf. (11)). Consequently, it is reasonable to find a reduced basis

such that SNRSIC
NT

, or equivalently, |r̃NT,NT
|2, is as large as

possible. Evidently, we arrived at an LR performance criterion

for SIC that is in general different from that for LE, where the

minimum SNRLE
ℓ should be as large as possible (see previous

Section). Furthermore, layer ordering approaches [12] have a

similar target, however, by just allowing column permutations.

In fact, permuting columns is the simplest form of changing

the basis of a given lattice and consequently can be regarded

as a part of LR (or LR for SIC can be seen as “extended

layer ordering”). Of course, layer ordering does not improve

the performance of LE.
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Fig. 3. CDF of |r6,6|2 a) without and b) with optimized detection ordering
for a system with NT = NR = 6 antennas.

For a MIMO systems with NT = NR = 6 antennas part

a) of Fig. 3 shows the CDFs of |r6,6|
2 for the different LR

schemes. Obviously, the LLL achieves the best statistic for

|r6,6|
2 and would outperform SEY and DLLL reduction with

respect to error-rate due to the improved first detection step.

As the LLL successively reduces the elements rℓ,ℓ, it directly

leads to larger SNRs in the first detection steps and thereby to

a meaningful detection sequence. In contrast, SEY leads to a

balanced reduction of all basis vectors without any ordering.

Part b) of Fig. 3 shows the CDFs of |r6,6|
2 for different LR

algorithms with optimum layer ordering using the post-sorting

algorithm of [12]. It can be seen that with post-sorting all LR

schemes lead to approximately the same statistic for |r6,6|
2.

Consequently, similar performance results can be expected for

the corresponding LR-aided SIC schemes (see Section V).

2) Computational Effort: In case LLL is used for reduction,

the required QRD is implicitly available. In contrast, for SEY

the corresponding QRD of H̃ has to be calculated afterwards

and leads thereby to an additional computational effort. In case

of DLLL, the QRD of the dual basis H̃⋆ = Q̃⋆R̃⋆ is available.

For SIC detection, one can either calculate the QRD of (H̃⋆)+

or implement SIC with respect to a QL decomposition, where

the matrix with orthogonal columns is given by ((Q̃⋆)+)H

and ((R̃⋆)+)H describes the corresponding lower triangular

matrix. Obviously, both strategies result in a considerable

additional complexity. To summarize, for SIC detection based

on QRD, it is favorable from an implementation point of view

to use the LLL algorithm for LR.

V. PERFORMANCE RESULTS OF LR-AIDED DETECTORS

In the sequel we investigate the bit error-rate (BER) per-

formance of various LR-aided detectors for a MIMO system

with NT = NR = 6 antennas employing 4-QAM modulation.

The SNR is given by Eb/N0 = NR/(log2(M)σ2
n) with Eb

denoting the average energy per information bit arriving at

the receiver.
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Fig. 4. BER versus Eb/N0 performance of common and LR-aided LE
detectors for a MIMO system with NT = NR = 6 antennas employing
4-QAM symbols: ZF (–) and MMSE (- -).

Fig. 4 shows the BER versus Eb/N0 performance of

common and LR-aided LEs. It can be seen that the LR-

aided LEs achieve full diversity (at least for LLL and DLLL

this is proven in [9]) thereby leading to strong performance

improvements compared to the common LE. Furthermore,

the MMSE criterion results in additional performance gains.

When comparing the LR schemes for LE, we can observe that

SEY and DLLL clearly outperform LLL. This performance

difference can be explained by the observations made in

Section IV-B. On average, both SEY and DLLL achieve a

stronger reduction of the longest dual basis vector leading

to an improved worst-case post-equalization SNR. We thus

observe that it is more important to reduce the lengths of the

dual basis vectors (in particular, the length of the longest dual

vector) instead of shortening the original basis (or finding its

shortest basis vector) in the case of LE.
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Fig. 5. BER versus Eb/N0 performance of common and LR-aided SIC
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The BER versus Eb/N0 performance of ordered SIC (OSIC)

and LR-aided conventional SIC detection (without applying

post-sorting after lattice reduction) are shown in Fig. 5.

Obviously, LLL-aided SIC slightly outperforms the other two

LR-aided SIC methods (SEY-SIC and DLLL-SIC). However,

as demonstrated in Fig. 6 these differences disappear if SIC

detection with optimization of the detection order is applied

(cf. Section IV-C).
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Fig. 6. BER versus Eb/N0 performance of common and LR-aided optimally
ordered SIC (OSIC) detectors for a MIMO system with NT = NR = 6
antennas employing 4-QAM symbols: ZF (–) and MMSE (- -).

Thus, from the performance point of view the different LR-

schemes behave almost similar when post-sorting is applied.

However, as discussed in Section IV-C the required QRD

with a good detection sequence is directly obtained by LLL

reduction. Consequently, for SIC detection the application of

LLL is favorable with respect to complexity.

VI. SUMMARY AND CONCLUSIONS

In this paper, we investigated lattice reduction (LR) methods

for data detection in MIMO wireless systems. In particular, we

focused on three LR methods (namely, the LLL algorithm, the

LLL algorithm applied to the dual basis, and Seysen’s algo-

rithm) and two detection approaches (namely, linear equaliza-

tion (LE) and non-linear successive interference cancellation

(SIC)). We argued that the LR performance requirements for

LE and SIC are in general different. For LE the longest basis

vector of the dual basis should be as short as possible and for

SIC the post-equalization SNR of the first layer in the detection

progress should be as large as possible. We demonstrated that

(dual) LLL and Seysen’s algorithm perform differently with

respect to these requirements, which provides an explanation

for their different error performance in combination with LE

and SIC. In case of LE, dual LLL and Seysen’s algorithm

give the best performance. For SIC detection, however, all

investigated LR schemes can achieve comparable performance

results with a slight advantage of LLL. In general, an LR algo-

rithm should selected (or designed) taking the the subsequent

detection strategy into account.
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