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SUMMARY

Layered architectures like the V-BLAST scheme are a promising candidate to exploit the capacity advantages
of multiple antenna systems leading to practical wireless communication schemes with very high data
rates. The combination with orthogonal frequency division multiplexing (OFDM), called MIMO–OFDM,
with per-antenna-coding is one of the most likely implementations of these multilayer architectures in
frequency selective environments. In this paper, we present a novel, computational efficient implementation
of successive interference cancellation (SIC) for coded MIMO–OFDM. It utilises a parallelised version of
the Sorted QR Decomposition (SQRD) to achieve the same optimised detection order for all subcarriers,
in order to exploit the error correction capability of the forward error correction code within the SIC. In
comparison to other schemes known from literature, our approach requires only a fraction of computational
complexity with almost the same performance. Copyright © 2007 John Wiley & Sons, Ltd.

1. INTRODUCTION

In order to realise mobile communication systems with high
spectral efficiency, the application of multiple antennas at
the transmitter and at the receiver side is a very promising
approach. One popular candidate for future practical imple-
mentation is given by the spatial multiplexing architecture
V-BLAST (Vertical Bell Labs Layered Space-Time) pro-
posed in References [1, 2]. It uses a vertically layered coding
structure, where independent blocks (called layers) are
transmitted in parallel from the antennas and, consequently,
a superposition of these layers arrives at the receiver. For the
purpose of estimating the transmitted information, several
receiver implementations have been investigated in the past.
One popular approach is given by successive interference
cancellation (SIC), where the layers are detected step-by-
step and the estimated interference of already detected
layers is successively subtracted from the received signals.
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For this purpose the well-known V-BLAST detection
algorithm requires the repeated calculation of filter matrices
and, thus, a relatively high computational effort [1, 2]. In
order to reduce this complexity, several algorithms have
been presented in the literature, for example [3–5]. Schemes
applying the QR decomposition of the channel matrix have
been investigated in References [6–10] and their adaptation
to MIMO–OFDM is in the scope of this paper.

In frequency selective environments, the intersymbol
interference (ISI) leads to a temporal superposition of
the signals resulting in a two-dimensional equalisation
problem. In order to implement efficient detection
algorithms, the application of orthogonal frequency division
multiplexing (OFDM) seems to be a promising approach,
as the two-dimensional task is parallelised into NC
one-dimensional spatial equalisations, where NC denotes
the number of subcarriers [11, 12]. Due to this benefit,
MIMO–OFDM gained a lot of interest in the research
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domain [13–21] and is currently under investigation as the
physical layer scheme for future wireless communication
systems like the IEEE 802.16 standard, also known as
WiMAX (Worldwide Interoperability for Microwave
Access), and the 3GPP Long Term Evolution (LTE) [22].

In order to gain from frequency diversity, OFDM
schemes have to be used in combination with forward
error correction (FEC) coding. In the investigated MIMO
scheme, coding is applied to each antenna separately to
make use of the error correction capability within the
successive interference cancellation. As this per-antenna-
coding (PAC) requires the same detection order on each
subcarrier, an adopted version of the V-BLAST detection
algorithm was proposed by van Zelst and Schenk [15, 16]
requiring the repeated calculation of pseudo-inverses per
subcarrier. Another approach for defining the detection
order based on capacity terms was given by Kadous [14]. In
this contribution, we present a novel detection scheme with
comparable performance but clearly less computational
complexity. For this purpose, the basic idea of Sorted QR
Decomposition (SQRD) [7–10] is extended to NC parallel
MIMO channels resulting in the same detection order on
each subcarrier.

1.1. Outline of the paper

The remainder of this paper is organised as follows. In
Section 2 the system model is introduced. In order to sim-
plify the derivation of the SIC, we recall linear equalisation
with respect to the zero-forcing (ZF) and the minimum-
mean-square-error (MMSE) criterion for MIMO–OFDM
in Section 3. The two different approaches for ordered
successive interference cancellation known from literature
are presented in Section 4 and our new detection scheme
based on the so-called Parallel-SQRD (P-SQRD) algorithm
is given in Section 5. The computational effort and
the performance analysis are given in Section 6 and 7,
respectively. Concluding remarks can be found in Section 8.

1.2. Notation

Matrices are represented by bold capital letters, where
the element in row α and column β of a matrix A
is indicated by [A]α,β = aα,β. Accordingly, vectors are
denoted by bold lower case letters. The matrix transpose,
Hermitian transpose and Moore-Penrose pseudo-inverse are
denoted by (·)T, (·)H and (·)+, respectively. Furthermore,
Iα represents the α × α identity matrix and 0α,β denotes
the α × β all zero matrix. In order to distinguish between
variables in time and in frequency domain, we indicate
variables in time domain (TD) by the subscript TD, whereas

Figure 1. MIMO–OFDM transmitter with per-antenna-coding.

a labelling for variables in frequency domain (FD) is
generally omitted.

2. SYSTEM DESCRIPTION

We consider a multiple antenna system with NT transmit
and NR receive antennas and apply spatial multiplexing in
a frequency selective environment. The channel is assumed
to be constant over each frame but changes independently
between frames (frequency selective block fading channel).
Throughout the paper we assume perfect knowledge of the
channel state information at the receiver, but no knowledge
at the transmitter.

According to the block diagram in Figure 1, the
information data are demultiplexed at the transmitter into
NT parallel data streams (layers), encoded by a terminated
convolutional encoder and after bitwise interleaving �i

mapped to M-QAM or M-PSK symbols di(n), 1 � i � NT,
1 � n � NC of unit variance using the mapping function
M. After transforming the symbols to time domain by
using the inverse fast Fourier transformation (IFFT),
a guard interval (GI) of length NG is added to form a
cyclic prefix, before the sequence of NC + NG signals
sTD,i(k) is transmitted from each antenna i. With sTD(k) =
[sTD,1(k), . . . , sTD,NT (k)]T denoting the NT transmit signals
at time k and HTD(κ), 0 � κ � NH, representing the NR ×
NT channel matrix taps of the frequency selective channel
of order NH, the NR × 1 receive vector at time k is given by

xTD(k) =
NH∑
κ=0

HTD(κ) sTD(k − κ) + nTD(k). (1)

Here nTD(k) denotes the vector of additive white Gaussian
noise at each receive antenna with covariance matrix
E
{
nTD(k) nH

TD(k′)
} = σ2

nINRδ(k − k′) and δ denoting the
Kronecker delta function. Equation (1) expresses the
superposition of transmitted symbols not only in space but
also in time and, thereby, points out the two-dimensional
equalisation problem.
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At the receiver, the cyclic prefix is removed and the
fast Fourier transform (FFT) is used to perform the
transformation back into frequency domain. As long as
NG � NH holds, the application of the cyclic prefix and
discrete Fourier transform results in NC orthogonal MIMO
systems. With d(n) denoting the NT × 1 vector of modu-
lated symbols on subcarrier 1 � n � NC, the corresponding
received vector in frequency domain is given by

y(n) = H(n)d(n) + n(n) for 1 � n � NC (2)

with the flat MIMO channel matrix for subcarrier n [17]

H(n) =
NH∑
κ=0

HTD(κ) e
−j 2π

NC
(n−1)κ

. (3)

Due to this separation in NC non-frequency selective
parallel MIMO systems, common detection algorithms
using linear equalisation or successive interference
cancellation can be used for each subcarrier without
any modification in case of an uncoded MIMO–OFDM
scheme. For per-antenna-coded schemes, this is only true
for linear equalisation, as described next.

3. LINEAR EQUALISATION

For zero-forcing linear equalisation (LE) the received
vector y(n) of each subcarrier 1 � n � NC is multiplied
by the related ZF filter matrix accomplished by the Moore–
Penrose pseudo-inverse of H(n)

GZF(n) = H+(n) = (
HH(n)H(n)

)−1
HH(n). (4)

The filter output on subcarrier n is then given by

d̃ZF(n) = GZF(n) y(n) = d(n) + H+(n)n(n) (5)

with error-covariance matrix

�ee,ZF(n) = E
{
(d̃ZF(n) − d(n))(d̃ZF(n) − d(n))H}

= σ2
n

(
HH(n)H(n)

)−1
. (6)

Consequently, the signal-to-noise ratio of layer i on
subcarrier n is given by SNRi(n) = 1/[�ee,ZF(n)]i,i.
After calculating the log-likelihood-ratios (L-values) for
each layer by an adequate demodulation D and after
deinterleaving �−1

i , these L-values are fed to the
corresponding decoder and the decoding per layer takes
place as shown in Figure 2.

Figure 2. Linear equalisation for a MIMO–OFDM scheme with
NT = 4 transmit antennas and subsequent decoding per layer.

On the other hand, the MMSE approach minimises the
mean squared error between the transmit vector d(n) and
the output of the linear filter and leads to the filter matrix

GMMSE(n) =
(

HH(n)H(n) + σ2
nINT

)−1
HH(n). (7)

The estimation error of the different layers corresponds to
the main diagonal elements of the error-covariance matrix

�ee,MMSE(n) = σ2
n

(
HH(n)H(n) + σ2

nINT

)−1
(8)

and results in the signal-to-interference-and-noise-ratio
SINRi(n) = 1/[�ee,MMSE(n)]i,i − 1, where the term −1 is
caused by the bias. Within the calculation of the L-values,
this bias can be considered by regarding the equivalent
channel [GMMSE(n)H(n)]i,i for layer i and subcarrier n.

For the description of the SIC schemes in Section 4,
it will be useful to represent the MMSE filter matrix (7)
by GMMSE(n) = �̃ee,MMSE(n)HH(n) with �̃ee,MMSE(n) =
σ−2

n �ee,MMSE(n) denoting the scaled error-covariance
matrix for the MMSE criterion. Likewise, the ZF filter
matrix (4) can be rewritten as GZF(n) = �̃ee,ZF(n)HH(n)
with �̃ee,ZF(n) = σ−2

n �ee,ZF(n).
Notice, that in principle the solution for the linear

equalisation of a coded MIMO–OFDM scheme coincides
to the linear equalisation of an uncoded MIMO–OFDM
system. The only difference consists within the detection
step, as the simple hard decision has to be replaced by the
calculation of the L-values, deinterleaving and decoding.

4. SUCCESSIVE INTERFERENCE
CANCELLATION

It is generally known, that linear equalisation is
outperformed by successive interference cancellation,
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which is often called decision-feedback equalisation (DFE)
in the literature. Thereby, the transmitted symbols of
one subcarrier are not estimated in parallel but one after
another. However, as already detected symbols directly
influence subsequent symbol decisions, the problem of error
propagation arises and it is well known that an optimised
detection order can significantly reduce this effect [9].

Thus, one approach to implement SIC for per-
antenna-coded MIMO–OFDM is given by performing an
independent successive detection with optimised order on
each subcarrier and feeding the corresponding L-values or
hard decisions to the channel decoder afterwards [19, 20].
However, this approach would not exploit the error
correction capability of FEC within the detection process
and, furthermore, the occurring decision errors lead to L-
values of minor quality [23].

To avoid these drawbacks, it is wholesome to utilise
the forward error correction code before removing the
estimated interference within the SIC. Due to the encoding
structure of the PAC MIMO–OFDM system, this requires
the same order of detection on each subcarrier [14–18].
Thus, no separate optimisation is possible for each non-
frequency selective MIMO system, but an optimisation
over all subcarriers has to be performed. Next, the two
approaches published by van Zelst and Schenk [15, 16]
and by Kadous [14] are reviewed. Afterwards, the SIC
detection based on the QR decomposition and the new P-
SQRD algorithm for determining an optimised detection
order are presented in Section 5.

4.1. SINR-optimisation

In order to optimise the detection sequence, van Zelst and
Schenk proposed to run NC parallel V-BLAST algorithms
with an adopted ordering criterion. In the first detection
step, the ZF or MMSE error-covariance matrices �ee(n) are
calculated for each subcarrier, whereas the ν-th diagonal
element [�ee(n)]ν,ν denotes the estimation error on the ν-th
layer of subcarrier n. Afterwards, the diagonal elements of
the error-covariance matrices are summed up

error(ν) = 1

NC

NC∑
n=1

[�ee(n)]ν,ν for 1 � ν � NT (9)

and the layer µ with the smallest overall error, that is with
the largest SINR, is selected as the current target layer for all
subcarriers. Subsequently, the received signals y(n) are fil-
tered with the 1 × NR filter vectors w1(n) = �̃

(µ)
ee (n)HH(n),

where �̃
(µ)
ee (n) denotes the µ-row of the scaled error-

(1) Init: An = HH
n Hn + σ2

nINT for n = 1, . . . , NC

p = 01,NT , I = [1 . . . NT]
(2) for i = 1, . . . , NT

(3) for n = 1, . . . , NC

(4) �̃ee,n = A−1
n

(5) end
(6) for ν = 1, . . . , NT − i + 1

(7) error(ν) = σ2
n

NC

∑NC
n=1[�̃ee,n]ν,ν

(8) end
(9) µ = argminν=1,...,NT−i+1 error(ν)
(10) pi = I(µ) and clear element µ in I
(11) for n = 1, . . . , NC

(12) wi(n) = �̃ee,n(µ, :) HH
n

(13) clear col. µ and row µ in An and col. µ in Hn

(14) end
(15) end

Algorithm 1: SINR-Algorithm for determining the filter vectors wi(n) for
a system with NT transmit, NR receive antennas, and NC subcarriers

covariance matrix �̃ee(n). After parallel to serial conversion
of the filter output signals, the adequate demodulation is
performed. Based on the calculated L-values, channel de-
coding is carried out by Viterbi or BCJR algorithm including
the calculation of the corresponding code bits [15, 16].
Then, these estimated code bits are mapped to QAM/PSK
symbols, the estimated interference is subtracted on each
subcarrier and the columns of the target layer are set to
zero in the NC channel matrices H(n). The detection of the
remaining layers is performed in the same way following
the V-BLAST philosophy. Thus, overall NC(NT − 1)
inverses have to be calculated for determining the
error-covariance matrices leading to a considerable
computational complexity.

The pseudo-code for a convenient implementation of the
SINR approach is given in Algorithm 1, where the grey
highlighted entry in line (1) is only required for the MMSE
implementation. In order to simplify the description, we
make use of the Matlab notation for indicating matrix
elements. To further avoid three-dimensional matrices,
the n-th channel matrix H(n) is denoted by Hn and
corresponding definitions are also used for other matrices.

In order to reduce the computational complexity, the sym-
metric matrices A(n) = HH(n)H(n) + σ2

nINT or A(n) =
HH(n)H(n) are computed for each subcarrier once. After
calculating �̃ee(n) by inverting A(n) in line (4), the layer µ

with the smallest cumulative estimation error is determined
and, finally, the NC filter vectors for that layer µ are
computed in line (12). Afterwards, the µ-th column and the
µ-th row of A(n) as well as the µ-th column of H(n) are can-
celled on each subcarrier. The further steps for calculating

Copyright © 2007 John Wiley & Sons, Ltd. Eur. Trans. Telecomms. 2007; 18:457–466
DOI: 10.1002/ett



LOW COMPLEXITY SIC FOR MIMO–OFDM 461

the ordered list of filter vectors take place in the same
way.‡

4.2. CMOS-optimisation

Another approach to optimise the detection order has been
proposed by Kadous in Reference [14]. Within his capacity
mapping ordering scheme (CMOS) algorithm the averaged
capacity of layer 1 � ν � NT after ZF filtering is calculated

C(ν) = 1

NC

NC∑
n=1

log2 (1 + SNRν(n)) (10)

and the layer with the maximum C(ν) is selected as the
current layer of interest. The actual detection process
corresponds to the SINR approach and for applying the
MMSE criterion, the SINR is used in the expression for the
capacity in Equation (10) instead. Due to the mapping of
the SNR/SINR to the capacity term, this approach requires
slightly more operations than the SINR approach. However,
as demonstrated in Section 7, this approach outperforms the
SINR approach with respect to bit error rates due to the more
meaningful optimisation criterion.

5. QR-BASED SUCCESSIVE INTERFERENCE
CANCELLATION

Instead of performing the SIC by repeatedly calculating
filter matrices, we propose to use the QR decompositions
of the channel matrices H(n) instead. For that purpose,
we recall the general approach for single-carrier systems
and extend the corresponding detection process to multi-
carrier systems. Afterwards, the P-SQRD algorithm and the
corresponding pseudo-code are introduced.

5.1. Approach for single-carrier systems

As shown in several publications, successive interference
cancellation for non-frequency selective multilayer systems
can be restated in terms of the QR decomposition of the
channel matrix H = QR, where the NR × NT matrix Q

‡ It is also possible to calculate the error-covariance matrices recursively
using the Sherman-Morrison formula [3] or Greville’s algorithm
[4]. Another approach for limiting the complexity using Cholesky
decomposition was presented in Reference [5]. However, the adaptation
of the SINR-algorithm given in References [15, 16] with respect to these
recursive schemes is not within the scope of this paper. Thus, we will focus
on the published SIC schemes for multi-carrier systems for comparison
reason.

has orthogonal columns with unit norm and the NT × NT
matrix R is upper triangular. The adaptation of the detection
order is achieved by permuting the columns of H, that
is by factorising the matrix Hperm = HP = QR with P
denoting the corresponding permutation matrix§ [6–10]. An
efficient solution for calculating this factorisation with an
optimised detection sequence is given by the Sorted QR
Decomposition [7, 8], which determines the permutation
matrix within the QR decomposition. For the adaptation to
the MMSE criterion, the extended channel matrix H and the
extended receive vector y

H =
[

H

σnINT

]
and y =

[
y

0NT,1

]
(11)

are defined [6] and the sorted decomposition

Hperm =
[

HP

σnINT

]
= Q R (12)

has to be calculated [9, 10].

5.2. Approach for multi-carrier systems

Adopting this idea to MIMO–OFDM, but ignoring the
adaption of the detection order for the moment, the QR
decompositions

H(n) = Q(n) R(n) for 1 � n � NC (13)

for all channel matrices H(n) have to be calculated. Again,
the extension with respect to the MMSE criterion is
achieved by the decomposition of the extended MMSE
channel matrices defined in Equation (11), that is by H(n) =
Q(n) R(n). Then, each received vector y(n) is filtered by
QH(n) (when adopting the MMSE criterion y(n) is filtered

by QH(n) [9, 10]) and due to the upper triangular form of
R(n) the NT-th layer of each filter output signal

d̃(n) = QH(n) y(n) = R(n)d(n) + ñ(n) (14)

is free of interference with ñ(n) = QH(n) n(n) denoting
the noise term at the filter output. After performing the
demodulation, the L-values are deinterleaved and fed to the

§ A square matrix P is called a permutation matrix, if in each row and
each column of P exactly one element is equal to one and all remaining
elements are equal to zero. The multiplication AP yields a permutation of
the columns of A, whereas PA results in a permutation of the rows.
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Figure 3. Successive interference cancellation for a MIMO–
OFDM scheme with NT = 4 transmit antennas.

channel decoder, as shown in Figure 3. Using the interleaved
code bits for remodulation, the estimated interference is
cancelled out within the block interference cancellation
(IC) and the successive interference cancellation of the
remaining layers is performed in the same way.

From Equation (14) it is obvious, that the SINR on layer
i and subcarrier n is proportional to |ri,i(n)|2 under the
assumption of perfect symbol decisions in the previous
decision steps. Due to the detection sequence from layer
NT, NT − 1, . . . , 1 it would be optimal to permute the
channel matrices H(n) in such a way, that the absolute
value of the diagonal elements |ri,i(n)| are large in the
lower part of R(n), that is for the first detection steps.
In order to incorporate this optimisation of the detection
order, we consequently have to replace Equation (13) by QR
decompositions of permuted channel matrices. However, as
the encoding is performed over all subcarriers within the
PAC MIMO–OFDM system, the order of detection has to
be the same on each subcarrier. Thus, we have to perform
the decompositions on all subcarriers with respect to one
global permutation matrix P

H(n)P = Q(n) R(n) for 1 � n � NC. (15)

Of course the question arises, how to find this global
permutation matrix P in an efficient way? In order to solve
this problem, an extended version of our SQRD algorithm
is proposed in the next subsection.

5.3. Parallel Sorted QR Decomposition

The general task is to calculate the NC QR decompositions
and to inherently find the global permutation matrix P.
In order to find P, it is necessary to perform the NC QR
factorisations in parallel. In the first step of the new Parallel
Sorted QR Decomposition (P-SQRD), the squared column

norm of each layer over all subcarriers is calculated

b(i) =
NR∑
j=1

NC∑
n=1

|hj,i(n)|2 =
NR∑
j=1

NH∑
κ=0

|hTD,j,i(κ)|2 (16)

and equals the squared norm of all fading coefficients
hTD,j,i(κ) in time domain belonging to transmit antenna i.
Following the philosophy of SQRD, the layer with minimum
norm is determined and permuted to the first position on
each subcarrier. Subsequently, each H(n) is orthogonalised
with respect to the according column vector and the norm in
Equation (16) is updated, in order to denote only that part
of each column vector orthogonal to the already spanned
orthonormal basis. In the second step again, the layer
with minimum norm is selected, the other columns are
orthogonalised with respect to this layer and the norm is
again updated. The decomposition of the remaining layers
takes place in the same manner. Basically, the NC parallel
QR decompositions are extended by a global permutation of
the channel matrices H(n), where the sequence optimisation
is done contrary to the detection sequence, that is in the
first decomposition step, the layer to be detected last is
determined.

As already mentioned, the MMSE solution is found
by decomposition of the corresponding extended channel
matrix H(n). However, instead of calculating the column
norms of H(n) according to Equation (16), it is less complex
to just add the accumulated noise terms yielding

b(i) =
NR∑
j=1

NH∑
κ=0

|hTD,j,i(κ)|2 + σ2
n NC. (17)

The pseudo-code‖ of the P-SQRD is given in Algorithm 2,
where the grey highlighted entries are again only required
for the MMSE implementation. By comparing the pseudo-
code to the corresponding calculation of NC unsorted
QR decompositions, only few additional operations are
required, leading only to a marginal computational
overhead [23].

Instead of optimising the detection order with respect
to the SINR per layer, it is also possible to adapt the P-
SQRD algorithm with respect to the achieved capacity in
the high SNR region. For SNRν(n) � 1, the capacity term

‖ The algorithm is given as an extension of the Modified Gram-Schmidt
orthogonalisation. However, similar expressions can also be achieved using
Householder reflexion or Givens rotation for QR decomposition [23].
Furthermore, p denotes a permutation vector with P = INT (:, p).

Copyright © 2007 John Wiley & Sons, Ltd. Eur. Trans. Telecomms. 2007; 18:457–466
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(1) Init: Rn = 0, Qn = [HT
n σnINT ]T for n = 1, . . . , NC

p = [1 . . . NT]
(2) for i = 1, . . . , NT

(3) b(i) = ∑NC
n=1 ‖Qn(1 : NR, i)‖2 + σ2

nNC

(4) end
(5) for i = 1, . . . , NT

(6) µ = argminν=i,...,NT b(ν)
(7) Exchange columns i and i + µ − 1 in p and b
(8) for n = 1, . . . , NC

(9) Exchange columns i and i + µ − 1 in Rn and
in the first NR + i − 1 rows of Qn

(10) Rn(i, i) := ‖Qn(1 : NR + i, i)‖
(11) Qn(1 : NR + i, i) := Qn(1 : NR + i, i)/Rn(i, i)
(12) for ν = i + 1, . . . , NT

(13) Rn(i, ν) := QH
n (1 : NR + i − 1, i)
·Qn(1 : NR + i − 1, ν)

(14) Qn(1 : NR + i, ν) := Qn(1 : NR + i, ν)
−Rn(i, ν)Qn(1 : NR + i, i)

(15) b(ν) := b(ν) − |Rn(i, ν)|2
(16) end
(17) end
(18) end

Algorithm 2: P-SQRD-Algorithm for a system with NT transmit and NR
receive antennas and NC subcarriers (grey labeled entries are only required
for the MMSE solution)

in Equation (10) can be approximated by

C(ν) ≈ 1

NC

NC∑
n=1

log2 (SNRν(n)) = 1

NC
log2

NC∏
n=1

SNRν(n)

(18)

and, as the logarithm is a monotonic function, the layer µ

that minimises Equation (18) corresponds to

µ = min
ν

C (ν) = min
ν

(
NC∏
n=1

|rν,ν(n)|2
)

(19)

with SNRν(n) ∼ |rν,ν(n)|2. In order to apply the SQRD
philosophy, we have to minimise in each decomposition
step the capacity, that is we have to determine the layer
that leads to the minimum product of squared diagonal
elements. In contrast to Algorithm 2, the sum of the
channel coefficients per subcarrier has to be replaced by the
corresponding product of these coefficients. However, as
shown by simulation results, this additional computational
overhead does not lead to an improved performance and,
thus, this second variant is not considered in the following
due to the larger computational costs.

6. COMPUTATIONAL COMPLEXITY

Next, the computational complexity of the SINR, the
CMOS and the P-SQRD approach with respect to complex
floating point operations (flops)F are investigated. In order
to achieve simple terms depending only on the system
configuration, we count one complex addition as one flop
and a complex multiplication as three flops. All other
operations, for example addition and multiplication with
respect to real numbers, division, square root, logarithm are
traced back to this complexity measure [23].

The SINR approach with respect to the zero-forcing
criterion requires the calculation of the matrices A(n) for
each subcarrier once and in each step i, the calculation
of NC inverses of the symmetric matrices of dimension
(NT − i + 1) × (NT − i + 1) in line (4), the summation of
the errors over all subcarriers n per layer ν and finally the
calculation of NC filter vectors. According to Algorithm 1
this requires

F ZF
SINR = O

((
5

6
N4

T + 23

6
N3

T + 4NRN2
T

)
NC

)
(20)

operations. For the corresponding MMSE solution only
NCNT real additions of σ2

n on the main diagonal of A(n)
are necessary in addition. The CMOS approach differs form
the SINR approach in the fact, that capacity terms are used
for optimising the detection order, requiring a mapping
of the SNR/SINR values to the corresponding capacities.
The overhead is given by ( 5

4N2
T + 5

4NT − 5
2 )NC flops.

The necessary steps for the detection process (including
filtering of the received signals, subtracting the estimated
interference and quantisation, but ignoring the effort for
channel decoding) requires approximately

FSIC = (8NT − 4) NRNC (21)

floating point operations leading to an overall complexity
for the SINR-SIC detection FSINR−SIC = FZF

SINR + FSIC.
In contrast, the P-SQRD-SIC mainly consists of NC

QR decompositions and some additional operations for
defining the decomposition sequence and therewith the
detection order. Using a detailed complexity consideration
of Algorithm 2, the complexity for the P-SQRD algorithm
with respect to the zero-forcing criterion requires

FZF
P−SQRD = O

((
4NRN2

T + 1

4
N2

T − 3

2
NRNT

)
NC

)
(22)
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Figure 4. Number of floating point operations F for SINR-SIC,
CMOS-SIC, P-SQRD-SIC and QRD-SIC detection with respect
to the ZF (–) and the MMSE (- -) criterion of a MIMO–OFDM
system with NT = NR antennas and NC = 128 subcarriers.

flops and for the MMSE criterion the cost is given by

FMMSE
P−SQRD

= O
((

4

3
N3

T +
(

4NR − 5

4

)
N2

T − 3

2
NRNT

)
NC

)
.

(23)

The actual successive detection process requires addi-
tionally (2N2

T + (4NR − 2)NT)NC operations. Comparing
Equation (22) with Equation (20), a strong reduction with
respect to computational cost becomes obvious.

Figure 4 shows for a varying, but equal number of
transmit and receive antennas NT = NR, the required
number of flops for SINR-SIC, CMOS-SIC, P-SQRD-SIC
and a QR-based SIC without adapting the detection order
in case of the ZF and the MMSE implementation with
NC = 128 subcarriers. As the SINR and CMOS approach
require almost the same operations for ZF and MMSE
implementation, the corresponding lines overlay. However,
the figure visualises the strong decrease in computational
complexity achieved by our new approach. As an example,
for a system with NT = NR = 4 antennas, the P-SQRD-
SIC with respect to the ZF criterion requires approximately
0.39 · FZF

SINR−SIC flops and consequently, leads to a strong
reduction in computational cost. Furthermore it becomes
obvious, that the P-SQRD-SIC requires only a marginal
overhead in comparison to an unsorted QR-based SIC
detection.

Figure 5. BER of LE and SIC with respect to ZF (–) or MMSE
(- -) criterion for a MIMO–OFDM system with NT = NR = 4
antennas, channel order NH = 5, NC = 128 subcarriers, guard
interval of length NG = 5, 4-QAM symbols and terminated [7, 5]8

convolutional code.

7. PERFORMANCE ANALYSIS

In this section, we investigate the bit error rates (BERs)
for a per-antenna-coded MIMO–OFDM system with NT =
NR = 4 antennas. We assume uncorrelated SISO channels
of order NH = 5 with a constant power delay profile,
that is the variance of all fading coefficients is equal to
1/(NH + 1). Furthermore, each OFDM symbol contains a
cyclic prefix of length NG = 5 and all NC = 128 subcarriers
are used for signal transmission. For the simulations, perfect
estimation of the channel coefficients and the noise variance
is assumed. The loss due to the guard interval is considered
in the Eb/N0.

In Figure 5, the BERs for different detection schemes
with respect to the ZF- and the MMSE-criterion are shown
when the terminated [7, 5]8 convolutional code and 4-
QAM modulation is applied on each substream. Obviously,
the sorted SIC schemes achieve substantial performance
improvements in comparison to linear equalisation and
successive detection without ordering. The results for
P-SQRD-SIC, SINR-SIC and CMOS-SIC are comparable,
with minor advantages for the later ones in case of
the MMSE criterion. However, this small performance
impairment of the P-SQRD approach comes with a strong
reduction in computational complexity.

In Figure 6, the BERs for a system with 16-QAM
modulation and the terminated [133, 171]8 convolutional
code of constraint length 7 are shown. Again, only a small
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Figure 6. BER of LE and SIC with respect ZF (–) or MMSE
(- -) criterion of a MIMO–OFDM system with NT = NR = 4
antennas, channel order NH = 5, NC = 128 subcarriers, guard
interval of length NG = 5, 16-QAM and terminated [133, 171]8

convolutional code.

difference in performance can be observed between the
different ordering criterion. These results demonstrate that
it is important to optimise the detection order, whereas the
choosen optimisation criterion has only a minor impact
to the performance. This points out the potential of the
proposed P-SQRD approach for schemes with high spectral
efficiencies.

8. SUMMARY AND CONCLUSIONS

Within this paper we proposed a new detection scheme for
coded MIMO–OFDM systems by introducing an extended
version of the SQRD algorithm. The Parallel Sorted QR
Decomposition (P-SQRD) algorithm achieves an adapted
detection ordering within the QR decompositions of the
NC channel matrices and can be implemented with respect
to the zero-forcing and the minimum-mean-square-error
criterion. We presented simulation results for different
scenarios and analytically demonstrated the computational
advantage of the P-SQRD algorithm. We were able to show,
that this new algorithm achieves comparable performance
results to the schemes from literature, but with less
computational complexity. Thus, a feasible implementation
for MIMO–OFDM for future wireless local area networks
is given.

In order to further reduce the complexity for systems
with large number of subcarriers, the principle of P-

SQRD was recently extended in Reference [24] to the
interpolation based scheme presented in Reference [25].
Therefore, the P-SQRD is applied only on a number of
subcarriers and afterwards, the QR decompositions for
the remaining subcarriers are calculated by interpolation.
Depending on the system configuration, this leads to a
further significant complexity reduction, but yielding the
same performance results. Finally, the concept of P-SQRD
can also be used for MIMO receivers using frequency
domain equalisation, leading again to an efficient detection
scheme with optimised detection order [23].
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