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ABSTRACT

Spatial Multiplexing is a very popular approach to exploit the
capacity advantage of multiple antenna systems and the com-
bination with OFDM is a very promising approach to realize
practical implementations also for wideband systems. In this
paper we present a novel, computational efficient realization
of successive interference cancellation for per-antenna-coded
MIMO-OFDM systems with a large number of carriers. It
utilizes a parallelized version of the SQRD algorithm only
on a limited number of carriers in order to achieve the same
detection order for all subcarriers. Afterwards, the QR de-
compositions for the remaining carriers are calculated by in-
terpolation. Depending on the system configuration this leads
to a significant complexity reduction in comparison to other
schemes known from literature, but yielding comparable per-
formance results.

1. INTRODUCTION

The utilization of OFDM in wideband multilayer MIMO sys-
tems can be used to significantly reduce the receiver com-
plexity. Thereby MIMO-OFDM can be expected to be one of
the first commercially used implementation of the V-BLAST
multilayer architecture. In order to make use of the frequency
diversity and the benefits of successive interference cancel-
lation (SIC), forward error correction (FEC) coding has to
be applied to each antenna separately (per-antenna-coding,
PAC). However, this requires the sameoptimizeddetection
order on each subcarrier. For the QR-based SIC the authors
presented in [1, 2] a modified version of the SQRD algorithm
[3, 4], where the so called P-SQRD (Parallel Sorted QR De-
composition) yield the Gram-Schmidt orthogonalizations for
the channel matrices on all subcarriers with the same opti-
mized detection order.

Recently, interpolation based detection algorithms have
been introduced for MIMO-OFDM systems by Borgmann and
Bölcskei [5] and Cescato et al. [6]. The idea of these ap-
proaches bases on the oversampling of the frequency response
when applying the FFT. They propose in [6] to calculate QR

decompositions only for a limited number of subcarriersn
and to determine the matricesQ(n) andR(n) for the remain-
ing carriers by interpolation, before executing SIC detection.
Thereby, the computational cost for QR decompositions is re-
duced, yielding a reduction in overall complexity for suffi-
ciently large number of subcarriers. Within this contribution
we make use of their interpolation based QR decomposition
in combination with our P-SQRD algorithm to achieve a SIC
with optimized detection order.

Outline of the Paper:In Section 2 we define the trans-
fer function of the MIMO system and introduce the system
model. The fundamentals of SIC detection for MIMO-OFDM
systems are reviewed in Section 3 and basics about Laurent
polynomials and their interpolation are presented in Section 4.
Afterwards, the interpolation based detection and the combi-
nation with the P-SQRD algorithm are explained in Section 5.
The computational complexity and performance results are
investigated in Section 6 and Section 7, respectively. The ma-
jor results are than summarized in the final Section 8.

Notation:Matrices are represented by bold capital letters,
where the element in rowα and columnβ of a matrixA is
indicated by[A]α,β = aα,β . Accordingly, vectors are de-
noted by small capital letters, whereaβ anda(α) represent
theβ-th column and theα-th row ofA. The matrix transpose
and hermitian transpose are denoted by(·)T and(·)H , respec-
tively. Furthermore,Iα represents theα × α identity matrix
and0α,β denotes theα × β all zero matrix. The Kronecker
product is given by⊗ and|N | represents the cardinality of a
setN . In order to distinguish between variables in time and in
frequency domain, we indicate variables in time domain (TD)
by an indexTD whereas a labeling for variables in frequency
domain (FD) is omitted.

2. SYSTEM DESCRIPTION

2.1. MIMO Transfer Function

We consider a multiple antenna system withNT transmit and
NR ≥ NT receive antennas in a frequency selective block
fading environment, i.e. the channel is assumed to be constant



over a frame, but changes independently between frames. The
frequency selective channel of orderNH between all transmit
and all receive antennas can be described by theNH+1 coeffi-
cient matricesHTD(ℓ) ∈ CNR×NT , 0 ≤ ℓ ≤ NH, containing
the delayed fading gains between the antennas. The corre-
sponding transfer function of the MIMO channel is given by

H
(

ejΩ
)

=

NH
∑

ℓ=0

HTD(ℓ) e−jΩℓ (1)

and is a polynomial matrix of degreeNH in e−jΩ with the
normalized frequency0 ≤ Ω < 2π. By sampling this trans-
fer functionH(ejΩ) at NC equidistant sampling frequencies
Ωn = 2πn/NC, 0 ≤ n ≤ NC − 1, the channel matrices

H(n) := H
(

ejΩn

)

=

NH
∑

ℓ=0

HTD(ℓ) e−jΩnℓ (2)

at discrete carrier frequencies are obtained. In generalNC ≫
NH holds and consequently the transfer functionH(ejΩ) is
highly oversampled. Indeed, onlyNH + 1 carriersH(n) are
required to calculate all otherH(n) by interpolation, because
H(ejΩ) is a Laurent polynominal matrix of degreeNH [6].

2.2. MIMO-OFDM
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Fig. 1. MIMO-OFDM transmitter with per-antenna-coding

The transmitter of the investigated per-antenna-coded
MIMO-OFDM system is shown in Fig. 1. According to this
block diagram the information data is demultiplexed at the
transmitter intoNT parallel data streams (layers), encoded by
a convolutional encoder and after bitwise interleaving mapped
toM -QAM or M -PSK symbolsdi(n), 1 ≤ i ≤ NT, 0 ≤ n ≤
NC−1. After transforming the symbols to time domain by us-
ing the inverse fast fourier transform (IFFT), a guard interval
(GI) of lengthNG is added in form of a cyclic prefix before
the sequence ofNC+NG signalssTD,i(k) is transmitted from
each antennai. With sTD(k) = [sTD,1(k), . . . , sTD,NT(k)]T

denoting theNT transmit signals at time instantk the received
vector is given by

xTD(k) =

NH
∑

ℓ=0

HTD(ℓ) sTD(k − ℓ) + nTD(k) . (3)

The vectornTD(k) denotes the additive white Gaussian noise
at each receive antenna at sampling timek with covariance
matrix E{nTD(k)nH

TD(k)} = σ2
nINR . The relation (3) ex-

presses the superposition of transmitted symbols not only in
space but also in time direction and thereby points out the two
dimensional equalization problem.

At the receiver the cyclic prefix is removed and the fast
fourier transform (FFT) is used to perform the transforma-
tion back into frequency domain. As long asNG ≥ NH

holds, the application of the cyclic prefix and discrete fourier
transform results inNC orthogonal MIMO systems. With
d(n) = [d1(n), . . . , dNT(n)]T denoting theNT×1 vector of
modulated symbols on carrier0 ≤ n ≤ NC − 1 andH(n)
representing the flat MIMO channel for carriern defined in
(2), the corresponding received vector in frequency domainis
given by [1]

y(n) = H(n)d(n) + n(n) for 0 ≤ n ≤ NC − 1 . (4)

3. SUCCESSIVE INTERFERENCE CANCELLATION

3.1. Principle of SIC for uncoded MIMO-OFDM

Due to (4), the MIMO-OFDM scheme is separated intoNC

orthogonal non-frequency selective MIMO systems and thus
common detection algorithms can be used on each carrier sep-
arately in case of anuncodedsystem. In order to perform suc-
cessive interference cancellation (SIC) on subcarriern, the
channel matrixH(n) is decomposed into theNR×NT ma-
trix Q(n) with orthonormal columns and theNT×NT upper
triangular matrixR(n) by QR decomposition. By omitting
the index of the carriern for convenience, thei-th column of
Q(n) and thei-th row ofR(n) are given by

qi =
ui

√

uH
i · ui

=
ui

ri,i

and r(i) = qH
i · H (5)

with the vector

ui = hi −
i−1
∑

j=1

rj,i qj (6)

denoting the component ofhi orthogonal to the space spanned
byq1, . . . ,qi−1. It is worth to note, that all diagonal elements
ri,i are positive, real numbers and consequently the decompo-
sition (5) is unique.

It is well-known, that the order of detection has a deep
impact on the performance of the SIC and should therefore
be optimized [7]. With respect to the QR decomposition this
optimization can be achieved by permuting the columns of
H(n) leading to different decompositions. WithP(n) denot-
ing an optimized permutation matrix for carriern, the QR de-
composition is than given byH(n)P(n) = Q(n)R(n). An
efficient algorithm to compute on optimized (not necessary
the optimum) permutation is given by the Sorted QR Decom-
position (SQRD) presented in [3]. After calculating the QR



decomposition ofH(n)P(n) the received signaly(n) is fil-
tered byQH(n) and due to the upper triangular form ofR(n)
theNT-th layer of each filter output signal

d̃(n) = QH(n)y(n) = R(n)d(n) + ñ(n) (7)

is free of interference. Following the quantization of thissig-
nal, the estimated interference is cancelled out from the other
filter output signals and the successive interference cancella-
tion of the remaining layers is performed [3].

The adaptation to the MMSE criterion is achieved by defin-
ing theextendedchannel matrixH(n) and theextendedre-
ceive vectory(n) for carriern through [8]

H(n) =

[

H(n)
σnINT

]

and y(n) =

[

y(n)
0NT,1

]

. (8)

With the QR decompositionH(n)P(n) = Q(n)R(n) the

filter output signal is than given bỹd(n) = QH(n)y(n) [4].

3.2. SIC for MIMO-OFDM with PAC

It is well-known, that encoding over frequency is necessaryin
OFDM systems to exploit frequency diversity. Furthermore,
it is favorable to implement the FEC on each antenna sepa-
rately, as the error correction capability of the code can than
be used to reduce the problem of error propagation within the
SIC. However, successive detection of such a PAC MIMO-
OFDM system requires the same detection sequence on each
carrier [1] and consequently no separate optimization is pos-
sible for each non-frequency selective MIMO system, but an
optimization over all carriers has to be performed.

In [9, 10] van Zelst and Schenk proposed an optimization
scheme as an extension of the V-BLAST algorithm and an
approach using capacity terms was presented by Kadous in
[11]. In [1, 2] the authors presented the P-SQRD algorithm,
which achieves the QR decompositionH(n)P = Q(n)R(n)
for each permuted channel matrixH(n)P with thesameper-
mutation matrixP for all carriers. Within this algorithm we
apply the basic philosophy of SQRD to theNC parallel QR
decompositions of the matricesH(n) in such a way, that in
each step the orthogonalization is performed with respect to
that transmit antenna with minimum column norm orthogonal
to the already spanned space. The complexity of the P-SQRD
corresponds to the complexity ofNC QR decompositions and
a minor additional overhead. In contrast to the schemes pre-
sented in [9, 10, 11] this leads to a strong reduction in com-
plexity with only minor performance degradation [1, 2].

When the P-SQRD calculation of the PAC MIMO-OFDM
system is done, the filter output signals (7) are calculated
yielding an interference free signal on theNT-th layer of
d̃(n). After demodulation the Log-Likelihood-Ratios (LLR)
are deinterleaved and fed to the corresponding channel de-
coder. Using the interleaved code bits for remodulation, the

estimated interference is canceled out and the successive in-
terference cancelation of the remaining layers is performed.
The block diagram of the receiver is depicted in Fig. 2.
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Fig. 2. Successive interference cancellation for a MIMO-
OFDM scheme withNT = 4 transmit antennas

Instead of calculating the QR decomposition for all car-
riers n ∈ N = {0, 1, . . . , NC − 1}, our aim in this paper
is to perform this calculation only forn ∈ P ⊂ N with
|P| ≪ |N | subcarriers and to calculate the remaining coef-
ficients ofQ(n) andR(n) for carriersn ∈ I = N \P by in-
terpolation. In order understand the necessary algebraic steps,
the basics about interpolation of so-called Laurent polynomi-
als are given in the next section. Afterwards the presented
results are applied to the problem at hand.

4. INTERPOLATION OF LAURENT POLYNOMIALS

In the sequel, several definitions about matrix polynomials
and their interpolation are reviewed. Detailed tutorial intro-
ductions are given in [12, 13] and special results are also de-
rived in [5, 6, 14].

4.1. Laurent Polynomial Matrix

Definition 1 (Laurent Polynomial Matrix) LetA(z) denote
a matrix valued function of the variablez ∈ U , whereU rep-
resents the unit circle.A(z) is called a Laurent polynomial
(LP) matrix onU of degreedeg{A(z)} = L = L1 +L2 if co-
efficient matricesAℓ ∈ Co×m with A−L1 6= 0 andAL2 6= 0

exist, so thatA(z) can be represented by

A(z) =

L2
∑

ℓ=−L1

Aℓ zℓ . (9)

Such a Laurent polynomial is denoted asA(z) ∼ LP(L1, L2).

Basically a Laurent polynomial is just an algebraic ob-
ject in the sense of a common polynomial matrix, except that
the indeterminantz can also have negative powers. Conse-
quently, thetypical elementp(z) = [A]j,i(z) is a common
Laurent polynomial and can thus be described in the form

p(z) = p−L1z
−L1 + · · · + p0 + · · · + pL2z

L2 , (10)

wherepℓ = [Aℓ]j,i is used to denote the associated elements
of the coefficient matricesAℓ.



4.2. Interpolation

4.2.1. Basics

Following the interpolation theorem of Lagrange, the valueof
a polynomial of degreeL at an arbitrary pointz, i.e. A(z), is
uniquely determined by the value ofA(zℓ) atL + 1 unequal
basis pointszℓ. The reverse task, i.e. the valuesA(zℓ) are
given for a set of basis pointszℓ and the polynomial has to be
determined, is the fundamental problem of polynomial inter-
polation. In order to solve this task several approaches exist,
e.g. Canonical basis, Lagrange, Newton and Trigonometic in-
terpolation [15]. In the sequel, we shortly summarize the ba-
sics of Canonical interpolation with respect to the typicalele-
mentp(z) = [A]j,i(z) and coefficientsp−L1, . . . , pL2 , where
we also make use of fundamental properties of the Newton
interpolation.

Let assume that the valuesvℓ = p(zℓ) are known atL + 1
distinct base pointsz0, . . . , zL ∈ U . Using these values a
system ofL + 1 linear equations can be established











v0

v1

...
vL











=











z−L1
0 . . . z0

0 . . . zL2
0

z−L1
1 . . . z0

1 . . . zL2
1

...
...

...
z−L1

L . . . z0
L . . . zL2

L



























p−L1

...
p0

...
pL2

















. (11)

Using matrix-vector notation (11) readsv = Zp with the
Vandermonde-like matrixZ containing the different powers
of the basis pointszi. Than, the coefficients of the polynomial
p(z) are given byp = Z−1v and the value ofp(z) for an
arbitraryz ∈ U can be calculated by interpolation

p(z) = [z−L1 . . . z0 . . . zL2 ] · p

= [z−L1 . . . z0 . . . zL2 ] · Z−1











v0

v1

...
vL











(12)

The direct generalization to matrix polynomials reads [14]

A(z) =
((

[z−L1 . . . z0 . . . zL2] · Z−1
)

⊗ I
)

·











A(z0)
A(z1)

...
A(zL)











(13)
Hence, to interpolate fromL + 1 basis pointszℓ the value for
an arbitrary evaluation pointz, the Vandermode matrixZ has
to be inverted. Depending on the chosen basis points this ma-
trix is almost singular and consequently numerical problems
may occur during inversion. However, using some relations
between the Vandermonde matrix and Newton interpolation,
the value of the polynomial coefficientspℓ can also be cal-
culated using the method of divided differences and without
calculation of an inverse [15].

4.2.2. Evaluation of Polynomials

After the coefficients of the polynomialp(z) have been cal-
culated using the valuesvℓ at the basis pointszℓ, the values
of p(z) for the remainingz ∈ U are of interest, i.e. execution
of the interpolation for a number of evaluation pointszκ ∈ U .
For the problem at hand we will be interested onNC evalua-
tion points that are equally distributed on the unit circle.Thus,
each evaluation pointzκ = e−jΩn·κ is aNC-th root of unity
and can also be described in the formzκ = zκ−1 · e−jΩn with
z0 = 1. For a series of such equally spaced evaluation points
the calculation of the polynomial can be carried out very effi-
ciently using a shift register structure containingL + 1 mem-
ory elementsbℓ. For the subsequent explanation we denote
the content of theℓ-th memory element at stepκ by b

(κ)
ℓ

At the beginning (κ = 0), the memory elements are ini-
tialized by the coefficients ofp(z), i.e. b

(0)
ℓ = pℓ for −L1 ≤

ℓ ≤ L2. Consequently, the summation of all memory ele-
ments yields the result forp(z) at positionz0 = e−jΩn·0 = 1

p(z0 = 1) = b
(0)
−L1

+ · · · + b
(0)
L2

= p−L1 + · · · + pL2 . (14)

For the next time clock, we update the memory elements by
b
(1)
ℓ = b

(0)
ℓ e−jΩn·ℓ for −L1 ≤ ℓ ≤ L2. Summing up yields

now the result forp(z1 = e−jΩn·1)

p(z1 = ejΩn) = b
(1)
−L1

+ · · · + b
(1)
L2

= b
(0)
−L1

ejΩn·L1 + · · · + b
(0)
L2

e−jΩn·L2

= p−L1e
jΩn·L1 + · · · + pL2e

−jΩn·L2 .

(15)

Using the same update procedure for the memory elements
b
(κ)
ℓ = b

(κ−1)
ℓ · e−jΩn·ℓ in each step the value of the poly-

nomial p(z) is calculated for allNC equidistant evaluation
pointszκ ∈ U . As only the initial memory contents are ef-
fected by the current data realization and the multiplication
with ejΩn·ℓ corresponds to a rotation, this recursive shift regis-
ter structure leads to a fast and efficient interpolation scheme.

Another efficient approach for performing the interpola-
tion is possible using IFFT and FFT. However, to apply the
Radix-2 implementations, this requires the number of basis
points to be a power of2.

5. INTERPOLATION BASED DETECTION

5.1. Problem Statement

By comparing the definition of the transfer function (1) with
the formal definition of the Laurent polynomial (9) in the vari-
ablez = e−jΩ ∈ U it becomes obvious, thatH(ejΩ) is a
LP matrix of degreeNH with coefficient matricesHTD(ℓ),
i.e. H(ejΩ) ∼ LP(NH, 0) [5]. Consequently, ifH(n) is
known for distinct subcarriersn ∈ P with P ⊆ N and
NP = |P| ≥ NH + 1, then all remaining coefficientsH(n)
with n ∈ I andI = N \P can be calculated by interpolation.



Using this philosophy, Borgmann and Bölcskei interpo-
lated the coefficients of the channel matricesH(n) for the
data subcarriers from the corresponding pilot carriers [5]. Fur-
thermore, they proposed to calculate the filter matrices forlin-
ear equalization of a MIMO-OFDM system only for a limited
number of carriers and determine the remaining filter matri-
ces by interpolation. However, as the inverse is no longer
rational, the direct interpolation of the inverse matricesis not
possible. But, because the determinant and the adjoint of a
polynomial matrix are again polynomial and the inverse can
be described with respect to these matrix functions using the
rule of Cramer, the interpolation of the filter matrices can be
traced back to the interpolation of the determinant and the ad-
joints [5, 14]. Cescato et al. extended in [6] this philosophy
of interpolation based detection with respect to successive in-
terference cancellation in terms of the QR decomposition, as
described next. Later on we extend this general idea with re-
spect to an optimized detection ordering.

5.2. Interpolation of QR Decomposition

As the matrices of the QR decompositionQ
(

ejΩ
)

andR
(

ejΩ
)

are in general rational functions ofejΩ, they are no LP ma-
trices and consequently they can not be interpolated using a
limited number of supporting points. However, the invertible
mapping1 [Q̃, R̃] = M[Q,R]

Q̃ = Q∆ and R̃ = ∆R (16)

with theNT×NT diagonal mapping matrix

∆ =











r1,1

0 r2
1,1r2,2

0 0
. . .

0 r2
1,1r

2
2,2 · · · rNT,NT











(17)

introduced in [6] yields LP matrices̃Q and R̃ and, conse-
quently, an interpolation is again possible. Of course,R̃ is
again upper triangular and̃Q is now an orthogonal matrix
with unequal column norms. The diagonal elements∆i =
[∆]i,i of (17) can be defined recursively as

∆i = ri,i ·
i−1
∏

j=1

r2
j,j = ri,i ·ri−1,i−1 ·∆i−1 for i ≥ 2 (18)

and∆1 = r1,1. Consequently, thei-th column ofQ̃ and the
i-th row of R̃ are given by

q̃i = ∆iqi and r̃(i) = ∆ir
(i) . (19)

Furthermore, we introduce the variableδi

δi =

i−1
∏

j=1

r2
j,j = r2

i,i · δi−1 for i ≥ 1 (20)

1In contrast to [6] we use a slightly different notation for the mapping,
i.e. an adopted definition of∆i. Furthermore, we omit the carrier indexn
for simplicity.

with δ0 = 1, so that∆i = ri,iδi−1 andq̃i = δi−1ui hold. The
corresponding demapping[Q,R] = M−1[Q̃, R̃] is given by

Q = Q̃∆−1 and R = ∆−1R̃ (21)

or componentwise byqi =∆−1
i q̃i andr(i) =∆−1

i r̃(i), where
∆i can be calculate using̃R by

∆i =
√

r̃i,i r̃i−1,i−1 for i ≥ 2 (22)

and∆1 =
√

r̃1,1. As stated in [6], the mapped variables are
Laurent polynomials

q̃i ∼ LP(iNH, (i − 1)NH)

r̃(i) ∼ LP(iNH, iNH)

δi ∼ LP(iNH, iNH)

(23)

and can thus be interpolated by polynomial expressions. Due
to r̃(NT) ∼ LP(NTNH, NTNH) the maximum number of
necessary basis points to interpolateQ̃(n) and R̃(n) is de-
termined by2NTNH + 1.
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Fig. 3. Exemplary values of the diagonal elements
log10 |RTD,i,i(ℓ)| (- -) andlog10 |R̃TD,i,i(ℓ)| (–) for all time
indices0 ≤ ℓ ≤ NC − 1 of a system withNT = NR = 4
antennas, channel orderNH = 5 andNC = 64 carriers

In order to visualize this basic difference between the orig-
inal matricesR(n) and the mapped matrices̃R(n), Fig. 3
shows the corresponding values of the time domain represen-
tation of the diagonal elements for an arbitrary channel of or-
derNH = 5 andNT = NR = 4. To emphasize the difference,
RTD,i,i(ℓ) andR̃TD,i,i(ℓ) are given in logarithmic scale for
1 ≤ i ≤ NT. Obviously, the vectorsRTD,i,i(ℓ) contain
nonzero elements for all indicesℓ and consequently can not
be interpolated without an error. In contrast,R̃TD,1,1(ℓ) con-
tains nonzero elements (or elements significantly larger than
10−15) only for ℓ = 0, . . . , 5 andℓ = 59, . . . , 63, or equiv-
alently for−5 ≤ ℓ ≤ 5. Thus,R̃1,1(n) ∼ LP(5, 5) holds
and a polynomial of degreeL = 10 with L + 1 = 11 evalua-
tion points is sufficient to calculate the values ofR̃1,1(n) for



all other carriers. It is furthermore obvious, that the degree
of r̃(i) increases withi and consequently a larger number of
basis points are necessary for interpolation. The verticallines
in Fig. 3 indicate the largest positive and negative index of
R̃TD,i,i(ℓ) unequal to zero.

5.3. Interpolation-based P-SQRD Detector

In order optimize the detection order for the interpolated QR
decomposition, we propose to calculate the sorted QR de-
composition only for the matricesH(n) with n ∈ P and
NP = |P| ≥ 2NTNH + 1 using the P-SQRD algorithm. For
an unsorted QR decomposition the choice of carriersn ∈ P
would be of no importance, as the polynomial is determined
by an arbitrary choice of carriers. For the sorted QR decom-
position an uniform distribution of carriersn ∈ P is favor-
able, as the determined detection order corresponds than to
the sequence found on basis of all carriersn ∈ N .

(1) DetermineH(n) for subarriersn ∈ P

(2) Perform P-SQRD with respect toH(n), n ∈ P

[Q(P),R(P),P] = P_SQRD(H(P))

(3) Apply mapping for eachn ∈ P

[Q̃(n), R̃(n)] = M[Q(n),R(n)]

(4) InterpolateQ̃(n) andR̃(n), n ∈ P , to obtain

Q̃(n) andR̃(n), n ∈ I

(5) a) Apply demapping for eachn ∈ I

[Q(n), R(n)] = M
−1[Q̃(n), R̃(n)]

b) Calculate∆2(n) for eachn ∈ I

Algorithm 1: Interpolated sorted QR decomposition for a
MIMO-OFDM system using P-SQRD

As listed in Algorithm 1 the corresponding matricesQ(n)
andR(n) are mapped afterwards ontõQ(n) and R̃(n), so
that the remaining matrices̃Q(n) andR̃(n) with n ∈ I can
be calculated by interpolation. Finally, the matricesQ(n) and
R(n) for n ∈ I can be found by the demappingM−1 in Step
5 a). Thus, the ordered QR decomposition for allNC matri-
cesH(n) are achieved by calculating onlyNP QR decompo-
sitions and some mapping and interpolation steps yielding a
reduction in complexity if the number of subcarriersNC sig-
nificantly exceeds2NTNH + 1.

However, we can further simplify the procedure by drop-
ping the inverse mapping and usingQ̃(n) directly for filtering
in (7). Due toH(n)=Q̃(n)∆−2(n)R̃(n) andQ̃H(n)Q̃(n) =
∆2(n), the relationQ̃H(n)H(n) = R̃(n) follows and conse-
quently the filter output signal is given by

d̃(n) = Q̃H(n)y(n) = R̃ d(n) + n̄(n) , (24)

with E{n̄(n) n̄H(n)}=σ2
n∆2(n) denoting the corresponding

noise covariance. Instead of performing the inverse mapping,

we only have to compute the diagonal elements of∆2(n)
(compare Step 5 b) in Algorithm 1) by

∆2
i(n) = R̃i,i(n) R̃i−1,i−1(n) (25)

and consider the noise variance within the LLR calculation.
The adaptation to the MMSE criterion is achieved by sim-

ply performing the QR decompositions with respect to the ex-
tended channel matricesH(n) = [HH(n) σnINT ]H , which
results again in LP matrices of degreeNH.

6. COMPUTATIONAL COMPLEXITY

In the sequel, we investigate the complexity of the proposed
interpolation based P-SQRD detection with respect to com-
plex floating point operationsF and compare it to the effort
required by a full P-SQRD detection and the approach by van
Zelst and Schenk. In order to achieve simple terms depend-
ing only on the system configuration, we count one complex
addition as one flop (floating point operation) and a complex
multiplication as three flops. All other operations, e.g. addi-
tion and multiplication with respect to real numbers, division,
square root, are traced back to this complexity measurement
[16]. The following investigation restricts to the Zero-Forcing
implementation.

The SIC following the SINR-approach by van Zelst and
Schenk needs

FSINR-SIC =O
(

(1
6N4

T+(2NR+ 1
6 )N3

T+3NRN2
T)NC

)

(26)
floating point operations and is less complex than the scheme
by Kadous [1]. The effort for the common P-SQRD-SIC de-
tection subdivides into the preprocessing part for sorted QR
decomposition onNC carriers, e.g. by executing the adopted
Gram-Schmidt algorithm, and the subsequent SIC detection.
Thus, this approach requires overall about

FP-SQRD-SIC,NC =O
(

((4NR+ 9
4 )N2

T+(5
2NR−

5
4 )NT)NC

)

(27)
operations. For the preprocessing of the interpolated P-SQRD-
SIC the common P-SQRD and the mapping are executed with
respect toNP carries and afterwards interpolation and calcu-
lation of∆2(n) takes place onNI = |I| carriers. The execu-
tion of the P-SQRD algorithm onNP carriers requires

FP-SQRD,NP = O
(

((4NR + 1
4 )N2

T − 3
2NRNT)NP

)

(28)

operations and the mapping ofQ(n) andR(n) on theseNP

carriers has a cost of

FM =
(

N2
T + (1 + 2NR)NT − 3 − 2NR

)

NP . (29)

For the approximation of the interpolation complexity we fol-
low the approach in [5, 6], where an equivalent complexity
measurement is introduced, as different efficient variantsfor
interpolation exist. They propose to approximate the cost per



interpolated point by two flops and thus we achieve an overall
effort for the interpolation of̃Q andR̃ of

FInt = O
(

(3
2N2

T + (3
2 + 3NR)NT)NI

)

. (30)

Finally, the effort for computing∆2(n) onNI carriers corre-
sponds to

F∆2 = 1
2 (NT − 1)NI (31)

and the overall effort for the preprocessing part is given by

FInt-P-SQRD = FP-SQRD,NP + FM + FInt + F∆2 . (32)
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Fig. 4. Fraction of flopsξ for a MIMO-OFDM system with
NT transmit antennas,NC = 1024 subcarriers and channel
orderNH = 8

In order to show the fraction of saved complexity within
the preprocessing-part, the quotient

ξ =
FInt-P-SQRD

FP-SQRD,NC

(33)

is depicted for a varying number of transmit and receive an-
tenna andNC = 1024 subcarriers in Fig. 4. It indicates an
increasing computational advantage of the new scheme for
increasing number of antennas. As an example, for a sys-
tem withNT = NR = 4 antennas the interpolated P-SQRD
algorithm requires approximately0.36 · FP-SQRD,NC flops
and consequently leads to a strong reduction in computational
cost.

For a varying, but equal number of transmit and receive
antennasNT = NR Fig. 5 shows the required number of flops
for the complete detection process with respect to the SINR-
SIC, P-SQRD-SIC and interpolated P-SQRD-SIC, again for
a system withNC = 1024 carriers and channel orderNH =
8. This figure visualizes the strong decrease in computa-
tional complexity achieved by our new interpolated approach
in contrast to both other approaches for the system with large
number of carriers.
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Fig. 5. Number of floating point operationsF for SINR-SIC,
P-SQRD-SIC and interpolated P-SQRD-SIC detection with
respect to the ZF criterion of a MIMO-OFDM system with
NT = NR antennas,NC = 1024 subcarriers and channel
orderNH = 8

7. PERFORMANCE ANALYSIS

In this section, we investigate the bit error rates (BER) fora
per-antenna-coded MIMO-OFDM system withNT = NR =
4 antennas, channel orderNH = 5 andNC = 128 carries,
where the[7, 5]8 convolutional code and 4-QAM modulation
is applied on each substream. Fig. 6 shows the results for lin-
ear and successive detection with respect to the ZF- and the
MMSE-criterion. Obviously, the sorted SIC schemes achieve
a substantial performance improvement in comparison to the
linear and to successive detection without ordering. As ex-
pected, the results for P-SQRD SIC with or without interpo-
lation correspond to each other and furthermore only a small
degradation with respect to the approach by Kadous is obvi-
ous. In order to avoid confusion, the BERs of the SINR-SIC
are omitted, but as investigated in [1], the corresponding re-
sults match almost with the P-SQRD-SIC.

8. SUMMARY AND CONCLUSIONS

In this contribution we proposed a new detection scheme for
coded MIMO-OFDM systems by applying an extended ver-
sion of the SQRD algorithm only to a limited number of carri-
ers yielding an optimized detection order for all carriers.Af-
ter applying an invertible mapping it is than possible to inter-
polate the QR decompositions for the remaining tones. For
sufficiently large number of carriers this results in a reduced
receiver complexity. It was shown that the proposed receiver
structure achieves comparable results to the schemes from lit-
erature with the mentioned reduction in computational com-
plexity.
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