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ABSTRACT decompositions only for a limited humber of subcarriers

Spatial Multiplexing is a very popular approach to explbé t and to determine the matric€(n) andR () for the remain-
P P g Y pop P P ing carriers by interpolation, before executing SIC detect

cgpa_uty aQVantage qf multiple antgnpa systems and the .Conﬁhereby, the computational cost for QR decompositions-is re
blnat!on V.wth OFDM IS a very promising approach to refahzeduced yielding a reduction in overall complexity for suffi-
practical implementations also for wideband systems. i1 th ciently, large number of subcarriers. Within this contribat

r we present a novel, com ional efficient reatinati . . .
paper we present a novel, computational efficient reatirat we make use of their interpolation based QR decomposition

of successive mterference_z cancellation for per-anten_nbad in combination with our P-SQRD algorithm to achieve a SIC
MIMO-OFDM systems with a large number of carriers. It . - )
with optimized detection order.

utilizes a parallelized version of the SQRD algorithm only Outline of the Paper-in Section 2 we define the trans-

on a limited number of carriers in order to achieve the sam . :
detection order for all subcarriers. Afterwards, the QR deiteer function of the MIMO system and introduce the system

compositions for the remaining carriers are calculatednby i model. The fundamentals of SIC detection for MIMO-OFDM

terpolation. Depending on the system configuration thiddea systems are reviewed in Section 3 and basics about Laurent

to a significant complexity reduction in comparison to Otherpolynomials and their interpolation are presented in Secti
9 plextity P Afterwards, the interpolation based detection and the éomb

fchemes known from literature, but yielding comparable pernation with the P-SQRD algorithm are explained in Section 5.
ormance results. . .
The computational complexity and performance results are
investigated in Section 6 and Section 7, respectively. Tae m
1. INTRODUCTION jor results are than summarized in the final Section 8.
Notation: Matrices are represented by bold capital letters,
The utilization of OFDM in wideband multilayer MIMO sys- \yhere the element in row and column3 of a matrix A is
tems can be used to significantly reduce the receiver compdicated by[A]..s = aap. Accordingly, vectors are de-
plexity. Thereby MIMO-OFDM can be expected to be one ofgteq by small capital letters, whesg anda(® represent
the first commercially used implementation of the V-BLAST the 5-th column and thew-th row of A.. The matrix transpose
multilayer architecture. In order to make use of the freqyen and hermitian transpose are denotedh§ and(-)7, respec-
diversity and the benefits of successive interference ¢ancqive|y_ Furthermore],, represents the: x o identity matrix
lation (SIC), forward error correction (FEC) coding has 0ando, s denotes ther x 3 all zero matrix. The Kronecker
be applied to each antenna separately (per-antenna-codingoduct is given by and| /| represents the cardinality of a
PAC). However, this requires the saroptimizeddetection  setA/. In order to distinguish between variables in time and in
order on each subcarrier. For the QR-based SIC the authofigquency domain, we indicate variables in time domain (TD)

presented in [1, 2] a modified version of the SQRD algorithmyy an indexT'D whereas a labeling for variables in frequency
[3, 4], where the so called P-SQRD (Parallel Sorted QR Degomain (FD) is omitted.

composition) yield the Gram-Schmidt orthogonalizatioms f
the channel matrices on all subcarriers with the same opti-
mized detection order.

Recently, interpolation based detection algorithms hav
been introduced for MIMO-OFDM systems by Borgmann an
Bolcskei [5] and Cescato et al. [6]. The idea of these apWe consider a multiple antenna system wifh transmit and
proaches bases on the oversampling of the frequency responSr > Nt receive antennas in a frequency selective block
when applying the FFT. They propose in [6] to calculate QRfading environment, i.e. the channel is assumed to be aoinsta

2. SYSTEM DESCRIPTION

.1. MIMO Transfer Function



over a frame, but changes independently between frames. Thée vectomrp (k) denotes the additive white Gaussian noise

frequency selective channel of ord¥€y; between all transmit
and all receive antennas can be described bye 1 coeffi-
cient matricedHrp (¢) € CNoNt 0 < ¢ < Ny, containing

at each receive antenna at sampling timeith covariance
matrix E{nrp (k) n2(k)} = 021y,. The relation (3) ex-
presses the superposition of transmitted symbols not only i

the delayed fading gains between the antennas. The corrgpace but also in time direction and thereby points out tie tw

sponding transfer function of the MIMO channel is given by

Nu
H (/%) = Hrp() e 7% 1)

£=0

and is a polynomial matrix of degre®y in e=7 with the
normalized frequency < 2 < 2. By sampling this trans-
fer functionH (e’ at N¢ equidistant sampling frequencies
Q,, = 2mn/Ng, 0 < n < N¢ — 1, the channel matrices

Nu
H(n):=H (ejQ") = Z Hop (£) e 950 )
£=0

at discrete carrier frequencies are obtained. In gefésal>
Ny holds and consequently the transfer functldfe’?’) is
highly oversampled. Indeed, onlyy + 1 carriersH(n) are
required to calculate all oth@i(n) by interpolation, because
H(e’*?) is a Laurent polynominal matrix of degréé; [6].

2.2. MIMO-OFDM
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Fig. 1. MIMO-OFDM transmitter with per-antenna-coding

The transmitter of the investigated per-antenna-coded

MIMO-OFDM system is shown in Fig. 1. According to this

dimensional equalization problem.

At the receiver the cyclic prefix is removed and the fast
fourier transform (FFT) is used to perform the transforma-
tion back into frequency domain. As long &&; > Ny
holds, the application of the cyclic prefix and discrete feur
transform results inVg orthogonal MIMO systems. With
d(n) = [di(n),...,dn.(n)]T denoting theNT x 1 vector of
modulated symbols on carriér< n < N¢c — 1 andH(n)
representing the flat MIMO channel for carrierdefined in
(2), the corresponding received vector in frequency dornsain
given by [1]

y(n) =H(n)d(n)+n(n) for 0<n<Ng—1. (4)

3. SUCCESSIVE INTERFERENCE CANCELLATION

3.1. Principle of SIC for uncoded MIMO-OFDM

Due to (4), the MIMO-OFDM scheme is separated infe
orthogonal non-frequency selective MIMO systems and thus
common detection algorithms can be used on each carrier sep-
arately in case of anncodedsystem. In order to perform suc-
cessive interference cancellation (SIC) on subcariiethe
channel matrixH (n) is decomposed into thAR x Nt ma-

trix Q(n) with orthonormal columns and th€ x Nt upper
triangular matrixR.(n) by QR decomposition. By omitting

the index of the carrien for convenience, théth column of
Q(n) and thei-th row of R(n) are given by

q=—a % gnd @ = a’-H (5
uf -u; Tii
with the vector
1—1
u; = h; — Z 75,0 dj (6)

j=1

block diagram the information data is demultiplexed at thedenoting the component if orthogonal to the space spanned

transmitter intaVr parallel data stream$&fyers, encoded by

a convolutional encoder and after bitwise interleaving pegh
to M-QAM or M-PSK symbolgl;(n),1 <i < Np,0<n <
N¢—1. After transforming the symbols to time domain by us-
ing the inverse fast fourier transform (IFFT), a guard inékr
(GI) of length N¢ is added in form of a cyclic prefix before
the sequence a¥c+Ng signalsstp ;(k) is transmitted from
each antenna With stp (k) = [stp,1(k), ..., stD, np ()]
denoting theV transmit signals at time instahthe received
vector is given by

Nu
xtp (k) = ZHTD(@ stp(k —{) +nrp(k) . (3)
=0

byqi,...,q;—1. Itisworth to note, that all diagonal elements
r;,; are positive, real numbers and consequently the decompo-
sition (5) is unique.

It is well-known, that the order of detection has a deep
impact on the performance of the SIC and should therefore
be optimized [7]. With respect to the QR decomposition this
optimization can be achieved by permuting the columns of
H(n) leading to different decompositions. Withn) denot-
ing an optimized permutation matrix for carrierthe QR de-
composition is than given b (n) P(n) = Q(n) R(n). An
efficient algorithm to compute on optimized (not necessary
the optimum) permutation is given by the Sorted QR Decom-
position (SQRD) presented in [3]. After calculating the QR



decomposition oH(n) P(n) the received signaf(n) is fil-  estimated interference is canceled out and the successive i
tered byQ*(n) and due to the upper triangular formRi{n)  terference cancelation of the remaining layers is performe
the Nr-th layer of each filter output signal The block diagram of the receiver is depicted in Fig. 2.

d(n) = Q"(n)y(n) =R(n)d(n) +a(n) (V)

! N i
‘
‘

is free of interference. Following the quantization of tig-
nal, the estimated interference is cancelled out from therot
filter output signals and the successive interference dlance
tion of the remaining layers is performed [3].

The adaptation to the MMSE criterion is achieved by defin-
ing the extendecthannel matrixH(n) and theextendede-
ceive vectoly (n) for carriern through [8]

Fig. 2. Successive interference cancellation for a MIMO-
OFDM scheme withV = 4 transmit antennas

ﬂ(n)[H(”)] and y(n)[*"(”)}. (8)

onlny Instead of calculating the QR decomposition for all car-

) " _ riersn € N = {0,1,...,Nc — 1}, our aim in this paper
With the QR decompositiodl(n)P(n) = Q(n)R(n) the is to perform this calculation only fon € P c N with

. . . . ~ H

fiter output signal is than given by(n) = Q"(n) y(n) [4].  |p| < |\/| subcarriers and to calculate the remaining coef-
ficients ofQ(n) andR.(n) for carriersn € Z = N'\P by in-

3.2. SIC for MIMO-OFDM with PAC terpolation. In order understand the necessary algeliegis s

the basics about interpolation of so-called Laurent patyiro
Itis well-known, that encoding over frequency is necessary als are given in the next section. Afterwards the presented
OFDM systems to exploit frequency diversity. Furthermoreyesults are applied to the problem at hand.
it is favorable to implement the FEC on each antenna sepa-
rately, as the error correction capability of the code camth 4. INTERPOLATION OF LAURENT POLYNOMIALS
be used to reduce the problem of error propagation within the
SIC. However, successive detection of such a PAC MIMO1p, the sequel, several definitions about matrix polynomials

OFDM system requires the same detection sequence on eaghq their interpolation are reviewed. Detailed tutoriatdn

carrier [1] and consequently no separate optimization & po dquctions are given in [12, 13] and special results are also de
sible for each non-frequency selective MIMO system, but aRjyed in [5, 6, 14].

optimization over all carriers has to be performed.

In [9, 10] van Zelst _and Schenk proposed an _optimizatiorh_l_ Laurent Polynomial Matrix
scheme as an extension of the V-BLAST algorithm and an
approach using capacity terms was presented by Kadous @efinition 1 (Laurent Polynomial Matrix) LetA(z)denote
[11]. In [1, 2] the authors presented the P-SQRD algorithm@ matrix valued function of the variablec U/, wherels rep-
which achieves the QR decompositiHi{n)P = Q(n)R(n)  resents the unit circleA(z) is called a Laurent polynomial
for each permuted channel matiik(n)P with thesameper-  (LP) matrix onl/ of degreeleg{A(z)} = L = L, + L» if co-
mutation matrixP for all carriers. Within this algorithm we efficient matricesA, € C* with A_;, # 0 andAp, # 0
apply the basic philosophy of SQRD to th&: parallel QR  exist, so thaiA (z) can be represented by

decompositions of the matric&%(n) in such a way, that in Lo
each step the orthogonalization is performed with respect t A(z) = Z A2t 9)
that transmit antenna with minimum column norm orthogonal P

to the already spanned space. The complexity of the P-SQR -
corresponds to the complexity 8fc QR decompositions and QUCh aLaurent polynomialis denoted&z) ~ LP (L1, Lo).
a minor additional overhead. In contrast to the schemes pre- Basically a Laurent polynomial is just an algebraic ob-
sented in [9, 10, 11] this leads to a strong reduction in comject in the sense of a common polynomial matrix, except that
plexity with only minor performance degradation [1, 2]. the indeterminant can also have negative powers. Conse-
When the P-SQRD calculation of the PAC MIMO-OFDM quently, thetypical elemenp(z) = [A];,(z) is a common
system is done, the filter output signals (7) are calculatedaurent polynomial and can thus be described in the form
yielding an interference free signal on tiér-th layer of
d(n). After demodulation the Log-Likelihood-Ratios (LLR)
are deinterleaved and fed to the corresponding channel desherep, = [A/];; is used to denote the associated elements
coder. Using the interleaved code bits for remodulatioa, th of the coefficient matricea ;.

p(z):p,lele+~"+p0+~~~+pL22L2 , (20)



4.2. Interpolation 4.2.2. Evaluation of Polynomials

4.2.1. Basics After the coefficients of the polynomialz) have been cal-
culated using the values at the basis points,, the values
of p(z) for the remaining: € U are of interest, i.e. execution
of the interpolation for a number of evaluation pointse U.
For the problem at hand we will be interested§p evalua-

Following the interpolation theorem of Lagrange, the vailfie
a polynomial of degreé& at an arbitrary point, i.e. A(z), is
uniquely determined by the value &f(z,) at L + 1 unequal
basis pointsz,. The reverse task, i.e. the valuagz,) are tion points that are equally distributed on the unit cirdlaus
given for a set of basis points and the polynomial has to be ’

X ; L each evaluation point, = e=7»* is a N¢-th root of unity
determined, is the fundamental problem of polynomial mte.rand can also be described in the form= 2.y - e~% with

polation. In order to solve this task several approaches exi ~ = 1. For a series of such equally spaced evaluation points

. . . . .20
€.g. Car_lomcal basis, Lagrange, Newton and Trlgo_nomenc Mhe calculation of the polynomial can be carried out very effi
terpolation [15]. In the sequel, we shortly summarize the ba

i o . : i ciently using a shift register structure containibhg- 1 mem-
sics of Canonical mterpolatlon_w_lth respect to the typiiat ory elements,. For the subsequent explanation we denote
mentp(z) = [A];:(z) and coefficientp_;,, ..., pr,, where

. (1)
we also make use of fundamental properties of the NeWtoH1e content Of.théf th memory element at stepby b, -
interpolation. At the beginning £ = 0), the memory elements are ini-

- - -
Let assume that the values = p(z,) are knownat, +1  tialized by the coefficients qf(z), i.e. b, " = p, for —L; <

distinct base pointso, ...,z € U. Using these values a ¢ < L2. Consequently, the summation of all memory ele-
system ofL + 1 linear equations can be established ments yields the result for(z) at positionzg = e~/ = 1
L 0 L |P-In plzo=1) = b(,()%l +-+ bﬁ’ﬁ =p-r, + - +pr, . (14)
Vo 20 20 - 2
U1 ZfL1 T Z1L2 : For the next time clock, we update the memory elements by
S : ; pot (11) b = b0e=i%t for —L; < ¢ < L,. Summing up yields
v gl L ke : now the result fop(z; = e=7»1)
PL,

iy (1 1
Using matrix-vector notation (11) reads = Zp with the pla =€) = b(—%l Tt b(Lg
Vandermonde-like matriZ containing the different powers =) Il g p VeIl (15)
of the basis points;. Than, the coefficients of the polynomial _ WLy Ly — Ly
p(z) are given byp = Z~!'v and the value ofi(z) for an e PL2€ '

arbitraryz € U can be calculated by interpolation Using the same update procedure for the memory elements

p(z) =[5 ... 20 ... 2] p bé”) = bﬁ”’l_)- e~ 7%t in each step the value of the poly-
nomial p(z) is calculated for allN¢ equidistant evaluation
Yo pointsz, € U. As only the initial memory contents are ef-
_ [Zle 0 ZLQ] 71 v (12) fectedv by the current data realization and the multiplarati
: with e7*»¢ corresponds to a rotation, this recursive shift regis-
v ter structure leads to a fast and efficient interpolatioresu

Another efficient approach for performing the interpola-
tion is possible using IFFT and FFT. However, to apply the
A(z0) Radix-2 implementations, this requires the number of basis
A(z) points to be a power df.

: 5. INTERPOLATION BASED DETECTION
A(zr)

(13)
Hence, to interpolate fromh + 1 basis pointg, the value for
an arbitrary evaluation point the Vandermode matrix has By comparing the definition of the transfer function (1) with
to be inverted. Depending on the chosen basis points this méie formal definition of the Laurent polynomial (9) in the ivar
trix is almost singular and consequently numerical prolslemable z = ¢~/ ¢ U/ it becomes obvious, thd (e’®?) is a
may occur during inversion. However, using some relationsP matrix of degreeVy with coefficient matricedHp (¢),
between the Vandermonde matrix and Newton interpolatiori,e. H(e’*?) ~ LP(Ng,0) [5]. Consequently, ifHH(n) is
the value of the polynomial coefficients can also be cal- known for distinct subcarriera € P with 7 € A and
culated using the method of divided differences and withoutVp = |P| > Ny + 1, then all remaining coefficientd (n)
calculation of an inverse [15]. with n € Z andZ = N \'P can be calculated by interpolation.

5.1. Problem Statement



Using this philosophy, Borgmann and Bolcskei interpo-with § = 1, so thatA; = r; ;0,1 andq,; = d;_1u; hold. The
lated the coefficients of the channel matriddén) for the  corresponding demappiri®, R] = M~1[Q, R] is given by
data subcarriers from the corresponding pilot carriersH&}- _ _
thermore, they proposed to calculate the filter matricelrfor Q=QA! and R=A"R (21)
ear equalization of a MIMO-OFDM system only for a limited _ _
number of carriers and determine the remaining filter matrior componentwise by; = A;'G; andr(®) = A7 '#*), where
ces by interpolation. However, as the inverse is no longeA; can be calculate using by
rational, the direct interpolation of the inverse matritsesot
possible. But, because the determinant and the adjoint of a A=
polynomial matrix are again polynomial and the inverse can _ ) )
be described with respect to these matrix functions usiag thaNdA1 = /711 As stated in [6], the mapped variables are
rule of Cramer, the interpolation of the filter matrices can b Ja@urent polynomials
traced back to the interpolation of the determinant and the a
joints [5, 14]. Cescato et al. extended in [6] this philospph _
of interpolation based detection with respect to successiv ) ~ LP(iNy,iNy) (23)
terference cancellation in terms of the QR decompositien, a 8; ~ LP(iNy,iNg)
described next. Later on we extend this general idea with re-
spect to an optimized detection ordering. and can thus be interpolated by polynomial expressions. Due

to #N1) ~ LP(NrNy, NrNg) the maximum number of

5.2. Interpolation of QR Decomposition necessary basis points to interpol@én) andR(n) is de-
termined by2 Nt Ny + 1.

(22)

d; ~ LP(iNy, (i —1)Nyn)

As the matrices of the QR decompositi@ne’) andR (e7%)

are in general rational functions ef!, they are no LP ma- - r
trices and consequently they can not be interpolated using . _gf'"\::-- et T
limited number of supporting points. However, the invdgib =20 ‘ ‘ ]
mapping} [Q,f{] = M[Q,R| D 1|O 20 %0 40 50 . 60

N == o - ==
Q=QA and R=AR ae) 50 ! | f

-15
0

with the Nt x Nt diagonal mapping matrix

2
11722

0

. a7 : : —
0 0 e i b L
0 7”%,17"%,2 * TNy, Ny ! '

30

14

introduced in [6] yields LP matrice§ andR and, conse-
quently, an interpolation is again possible. Of coulBeis  Fig. 3.  Exemplary values of the diagonal elements
again upper triangular an@ is now an orthogonal matrix log;, |Rrp;:(¢)| (--) andlog,o |Rrp.i:(¢)| (-) for all time

with unequal column norms. The diagonal elemef{s=  indices0 < ¢ < N¢ — 1 of a system withNy = Ny = 4
[A];,; of (17) can be defined recursively as antennas, channel ordd%; = 5 and N¢ = 64 carriers
i—1
A =7 H T?j =riirictio1 A1 for i>2 (18) In order to visualize this basic difference between the-orig

inal matricesR(n) and the mapped matricdd(n), Fig. 3
' _ shows the corresponding values of the time domain represen-
andA; = r1,1. Consequently, theth column ofQ and the  tation of the diagonal elements for an arbitrary channeref o

j=1

i-th row of R are given by derNy = 5andNt = Ny = 4. To emphasize the difference,
&= A and  FD = A0 (19) RTD,iji(é) andf{TDJz,-(E) are given in logarithmic scale for
1 < i < Np. Obviously, the vector®p ;;(¢) contain
Furthermore, we introduce the variable nonzero elements for all indicésand consequently can not
i—1 be interpolated without an error. In contraﬁtm,u(é) con-
6;=][rj;=rli-6i:x for i>1 (20) tains nonzero elements (or elements significantly largem th
j=1 107 only for¢ = 0,...,5 and¢ = 59, ...,63, or equiv-

1in contrast to [6] we use a slightly different notation foetmapping, alently for =5 S ¢ <5 Thus’Rl’l.(n) ~ LP(5’ 5) holds
i.e. an adopted definition ak;. Furthermore, we omit the carrier index a_md a POIyn0m|a|_ O_f degrek = 10 with L + 1 = 11 evalua-
for simplicity. tion points is sufficient to calculate the valuesRf ; (n) for



all other carriers. It is furthermore obvious, that the @egr we only have to compute the diagonal elementsActn)
of ¥(¥) increases with and consequently a larger number of (compare Step 5 b) in Algorithm 1) by

basis points are necessary for interpolation. The veliives - -

in Fig. 3 indicate the largest positive and negative index of A¥(n) = Rii(n) Ri—1,i-1(n) (25)

Rp,;(¢) unequal to zero. _ . . . .
.5i(0) q and consider the noise variance within the LLR calculation.

) The adaptation to the MMSE criterion is achieved by sim-
5.3. Interpolation-based P-SQRD Detector ply performing the QR decompositions with respect to the ex-
tended channel matricdd(n) = [H(n) o,Iy.], which

In order optimize the detection order for the interpolatd®l Q . ;
é(_asults again in LP matrices of degrdg.

decomposition, we propose to calculate the sorted QR d
composition only for the matriceH (n) with n € P and
Np = |P| > 2Nt Ny + 1 using the P-SQRD algorithm. For 6. COMPUTATIONAL COMPLEXITY

an unsorted QR decomposition the choice of carniers P

would be of no importance, as the polynomial is determinedn the sequel, we investigate the complexity of the proposed
by an arbitrary choice of carriers. For the sorted QR decominterpolation based P-SQRD detection with respect to com-
position an uniform distribution of carriers € P is favor-  Plex floating point operationg” and compare it to the effort

able, as the determined detection order corresponds than fgduired by a full P-SQRD detection and the approach by van
the sequence found on basis of all carriers . Zelst and Schenk. In order to achieve simple terms depend-

ing only on the system configuration, we count one complex
addition as one flop (floating point operation) and a complex
multiplication as three flops. All other operations, e.gdiad
tion and multiplication with respect to real numbers, divis
square root, are traced back to this complexity measurement

(1) DetermineH(n) for subarriers: € P
(2) Perform P-SQRD with respect¥(n), n € P
[Q(P), R(P), P] = P_SQRD(H(P))

(3) Apply mapping for each € P [16]. The following investigation restricts to the Zero+Emg
[Q(n), R(n)] = M[Q(n), R(n)] implementation.
(4) InterpolateQ(n) andR(n), n € P, to obtain The SIC following the SINR-approach by van Zelst and
Q(n) andR(n),n € T Schenk needs

(5) a) Apply demapping for each e 7 - 1 a4 1\A73 2
[Q(n), R(n)] = M1 [Q(n), R(n)] Famnsic=0 (N + N+ 6Nt +3NRNT)NC()26)

2
b) CalculateA”(n) for eachn € 7 floating point operations and is less complex than the scheme

by Kadous [1]. The effort for the common P-SQRD-SIC de-
Algorithm 1: Interpolated sorted QR decomposition for atection subdivides into the preprocessing part for sorted Q
MIMO-OFDM system using P-SQRD decomposition oriV¢ carriers, e.g. by executing the adopted
Gram-Schmidt algorithm, and the subsequent SIC detection.
As listed in Algorithm 1 the corresponding matrid@$n ) Thus, this approach requires overall about
andR(n) are mapped afterwards on@(n) and R(n), so o\ 2 5 5
that the remaining matriced(n) andR(n) with n € Z can 7 P-SQRD-SIC.Ne =0 ((ANr+3)N+(3Nr—3)N1)No)
be calculated by interpolation. Finally, the matri€@&:) and , ) , (27)
R(n) for n € 7 can be found by the demapping " in Step operations. For the preprocessing of the |.nterpolated REZQ _
5a). Thus, the ordered QR decomposition foréll matri- SIC the common P-SQRD and the mapping are executed with
cesH(n) are achieved by calculating onljp QR decompo- respect taVp carries and afterwards interpolation and calcu-
. 2 o .
sitions and some mapping and interpolation steps yielding &tion of A”(n) takes place oy = [Z| carriers. The execu-
reduction in complexity if the number of subcarrievg sig-  ton of the P-SQRD algorithm ofVp carriers requires
nificantly exceed@ No Ny + 1. 1yn72 3
) = 4ANR + 7)Ni — s NgrNt)N 28
However, we can further simplify the procedure by drop- Frsoro.ne = O ((( R+ 3)NT = 5 NelT) P) (28)
ping the inverse mapping and usi€qn) directly forfiltering  operations and the mapping @(n) andR(n) on theseNp
in (7). Due toH(n) = Q(n)A™*(n)R(n) andQ"(n)Q(n) =  carriers has a cost of
A¥(n), the relationQ*(n)H(n) = R(n) follows and conse-
guently the filter output signal is given by Fm= (N% + (14 2Ng)Nt —3— 2NR) Np . (29

d(n) = Q"(n)y(n) = Rd(n) +@i(n) , (24)  For the approximation of the interpolation complexity we fo
low the approach in [5, 6], where an equivalent complexity
with E{fi(n) a”(n)} =02 A%(n) denoting the corresponding measurement is introduced, as different efficient varitots
noise covariance. Instead of performing the inverse mappin interpolation exist. They propose to approximate the cest p



interpolated point by two flops and thus we achieve an overal 1g°

effort for the interpolation o) andR of —&— SINR-SIC
—€— P-SQRD-SIC
Fine = O ((ENE + (2 + 3Nr)N1)NI) . (30) —— Interpol. P-SQRD-SIq
7

Finally, the effort for computingd?(n) on N carriers corre-
sponds to
Faz = +(Np —1)Ny (31)

and the overall effort for the preprocessing part is given by

Fint-P-SQRD = FP-SsQRD,Np + Fm + Fint + Faz . (32)

0.7 ‘ ;
! +NR’ = NT 104 L L L L L
0.65, —— Ng = Nr+1 [] 2 3 4 5 6 7 8
—*— Ngr = Np + 2 —
0.6 ’ ' ——Np = No+3 ] Nt = Nr
0.55f Fig. 5. Number of floating point operatiords for SINR-SIC,
05 P-SQRD-SIC and interpolated P-SQRD-SIC detection with
w respect to the ZF criterion of a MIMO-OFDM system with
0.45¢ Nt = Ny antennasNc = 1024 subcarriers and channel
o4l orderNg =8
0.35¢
7. PERFORMANCE ANALYSIS
0.3f
0.25 In this section, we investigate the bit error rates (BER)dor
2 per-antenna-coded MIMO-OFDM system withy = Ny =

Nt 4 antennas, channel orddfgy = 5 and N = 128 carries,

Fig. 4. Fraction of flopst for a MIMO-OFDM system with ~ Where the[7, 5]s convolutional code and 4-QAM modulation

N transmit antennasyc — 1024 subcarriers and channel is applied on each substream. Fig. 6 shows the results for lin
orderNy = 8 ear and successive detection with respect to the ZF- and the

MMSE-criterion. Obviously, the sorted SIC schemes achieve
In order to show the fraction of saved complexity within & Substantial performance improvement in comparison to the
the preprocessing-part, the quotient linear and to successive detection without ordering. As ex-
pected, the results for P-SQRD SIC with or without interpo-
_ Fine-psqrD (33) lation correspond to each other and furthermore only a small
FP-SQRD,Nc degradation with respect to the approach by Kadous is obvi-
is depicted for a Varying number of transmit and receive anOUS. In order to avoid ConfUSion, the BERs of the SINR-SIC
tenna andVe = 1024 subcarriers in Fig. 4. It indicates an @re omitted, but as investigated in [1], the correspondénag r
increasing computational advantage of the new scheme f@ults match almost with the P-SQRD-SIC.
increasing number of antennas. As an example, for a sys-
tem with Ny = Ny = 4 antennas the interpolated P-SQRD 8. SUMMARY AND CONCLUSIONS
algorithm requires approximately.36 - Fp.sqrp,n. flOps
and consequently leads to a strong reduction in computtionin this contribution we proposed a new detection scheme for
cost. coded MIMO-OFDM systems by applying an extended ver-
For a varying, but equal number of transmit and receivesion of the SQRD algorithm only to a limited number of carri-
antenna®vt = Ny Fig. 5 shows the required number of flops ers yielding an optimized detection order for all carrigks.
for the complete detection process with respect to the SINRer applying an invertible mapping it is than possible ternt
SIC, P-SQRD-SIC and interpolated P-SQRD-SIC, again fopolate the QR decompositions for the remaining tones. For
a system withV¢e = 1024 carriers and channel ordéfy =  sufficiently large number of carriers this results in a restic
8. This figure visualizes the strong decrease in computaeceiver complexity. It was shown that the proposed receive
tional complexity achieved by our new interpolated apphoac structure achieves comparable results to the schemesifrom |
in contrast to both other approaches for the system witlelargerature with the mentioned reduction in computational com-
number of carriers. plexity.
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P-SQRD-SIC
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Fig. 6. BER of LD and SIC with respect to the ZF)(or the
MMSE (--) criterion for a PAC MIMO-OFDM system with

Nt = Nr = 4 antennas, channel ordd%; = 5, Nog = 128
subcarriers, guard interval of lenglfy; = 5, 4-QAM
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