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Abstract— In recent publications the use of lattice-reduction
for signal detection in multiple antenna systems has been
proposed. In this paper, we adopt these lattice-reduction-aided
schemes to the MMSE criterion. We show that an obvious
way to do this is infeasible and propose an alternative method
based on an extended system model, which in conjunction with
simple successive interference cancellation nearly reaches the
performance of maximum-likelihood detection. Furthermore, we
demonstrate that a sorted QR decomposition can significantly
reduce the computational effort associated with lattice-reduction.
Thus, the new algorithm clearly outperforms existing methods
with comparable complexity.

Index Terms— MIMO systems, BLAST, Zero-Forcing and
MMSE detection, lattice-reduction, wireless communication.

I. INTRODUCTION

It is well-known that multiple antenna systems may pro-
vide very high data rates in rich scattering environments.
In the famous V-BLAST architecture, parallel data streams
are transmitted over nT different antennas. Besides linear
detection schemes based on the zero-forcing (ZF) or the
minimum mean square error (MMSE) criterion, successive
interference cancellation (SIC) is a popular way to detect the
transmitted signals at the receiver site [1]. Unfortunately, for
ill-conditioned channel matrices all these schemes are clearly
inferior to maximum-likelihood (ML) detection. The latter
may be accomplished by sphere detection (SD), which is an
ongoing research topic [2]. However, SD requires a closest
point search for each transmitted vector, which still is rather
demanding. In mobile communication scenarios, where the
channel remains constant for several symbol durations, it is
much more preferable to spend most of the computational
effort only once at the beginning of each frame. Recently,
lattice-reduction (LR) has been proposed in order to transform
the system model into an equivalent one with better condi-
tioned channel matrix prior to low-complexity linear or SIC
detection [3], [4]. These publications exclusively deal with ZF
filtering for symbol detection. In the present work we extend
the LR-aided detection schemes with respect to the MMSE
criterion. To this end, we make use of an extended system
model introduced in [5] and further investigated in [6], [7].

This work was supported in part by the German ministry of education and
research (BMBF) under grant 01 BU 153.

The remainder of this paper is organized as follows. In
Section II, the system model and notation are introduced. The
fundamentals of LR are explained in Section III and different
detection schemes with and without reduction of the basis are
introduced in Section IV. A performance analysis is given in
Section V and concluding remarks can be found in Section
VI.

II. SYSTEM DESCRIPTION

We consider a multiple antenna system with nT transmit
and nR ≥ nT receive antennas. The data is demultiplexed
into nT data substreams (called layers). These substreams are
mapped onto M -QAM symbols and transmitted over the nT

antennas simultaneously.
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Fig. 1. Model of a MIMO system with nT transmit and nR receive antennas.

In order to describe the MIMO system, one time slot of the
time-discrete complex baseband model is investigated. Let1

s

denote the complex valued nT×1 transmit signal vector, then
the corresponding nR×1 receive signal vector x is given by

x = Hs + n . (1)

In (1), n represents white gaussian noise of variance σ2
n

observed at the nR receive antennas while the average transmit
power of each antenna is normalized to one, i.e. E

{

ss
H
}

=
InT

and E
{

nn
H
}

= σ2
nInR

. The nR×nT channel matrix
H contains uncorrelated complex gaussian fading gains with
unit variance. We assume a flat fading environment, where
the channel matrix H is constant over a frame and changes
independently from frame to frame (block fading channel).

1Throughout this paper, (·)T and (·)H denote matrix transpose and
hermitian transpose, respectively. Furthermore, Iα indicates the α×α identity
matrix and 0α,β denotes the α × β all zero matrix. With R{·} and I {·}
we denote the real part and the imaginary part, respectively.



The distinct fading gains are assumed to be perfectly known by
the receiver. Treating real and imaginary part of (1) separately,
the system model can be rewritten as

x = Hs + n , (2)

with the real-valued channel matrix

H =

[

R{H} −I {H}
I {H} R{H}

]

∈ R
n×m (3)

and the real-valued vectors

x =

[

R{x}
I {x}

]

s =

[

R{s}
I {s}

]

n =

[

R{n}
I {n}

]

. (4)

By defining m = 2nT and n = 2nR the dimension of the
real channel matrix (3) is given by n × m = 2nR × 2nT .
Likewise the dimension of the vectors (4) are given by x ∈ R

n,
n ∈ R

n and s ∈ Am, where A denotes the finite set of
real-valued transmit signals. For M -QAM this set is given
by A = {± 1

2a,± 3
2a, . . . ,±

√
M−1
2 a} with

√
M representing

the modulation index of the corresponding real-valued ASK.
The parameter a =

√

6/(M − 1) is used for normalizing
the power of the complex valued transmit signals to 1. In
the sequel we will apply this real-valued representation, as
we can now interpret each noiseless receive signal as a point
of a lattice spanned by H. Additionally, the performance of
successive algorithms like the V-BLAST detection can be
improved by separating the real and imaginary part of each
transmit signal [8].

The optimum maximum-likelihood (ML) detector searches
over the whole set of transmit signals s ∈ Am, and decides in
favor of the transmit signal ŝML that minimizes the euclidian
distance to the receive vector x, i.e.

ŝML = arg min
s∈Am

‖x−Hs‖2 . (5)

As the computational effort is of order MnT , brute force
ML detection is not feasible for larger number of transmit
antennas or higher modulation schemes. A feasible alternative
is the application of sphere detector (SD) [2], which restricts
the search space to a sphere. However, the computational
complexity is still high in comparison to simple but suboptimal
successive interference cancellation (SIC). In the sequel, we
investigate the application of lattice-reduction in order to
improve the performance of SIC and linear detection. One
advantage of this strategy is, that the computational overhead
is only required once for each transmitted frame, so for large
frame length the effort for each signal vector is very small.

III. LATTICE REDUCTION

In the sequel, we interpret the columns h` (1 ≤ ` ≤
m) of the real-valued channel matrix H as the basis of a
lattice and assume for the moment that the possible transmit
vectors are given by Z

m, the m dimensional infinite integer
space. Consequently, the set of all possible undisturbed receive
signals is given by the lattice

L(H) = L(h1, . . . ,hm) :=
m
∑

`=1

h`Z . (6)

The matrix H̃ = HT generates the same lattice as H, if and
only if the m×m matrix T is unimodular [9], i.e. T contains
only integer entries and the determinant is det(T) = ±1:

L(H̃) = L(H) ⇐⇒ H̃ = HT and T is unimodular . (7)

The inverse of unimodular matrices always exists and contains
also only integer values, i.e. T−1 ∈ Z

m. Obviously, the
relation H = H̃T−1 holds.

For further investigations, we define the QR decomposition
H = QR with the n ×m matrix Q = [q1, . . . ,qm] having
orthogonal columns of unit length (QT Q = Im) and the
upper triangular matrix R = (ri,j)1≤i,j≤m. Thus, each column
vector hk of H is given by hk =

∑k

`=1 r`,kq`. The vector qk

denotes the direction of hk perpendicular to the space spanned
by q1, . . . ,qk−1 and rk,k describes the corresponding length.
Furthermore, r`,k = qT

` hk is the length of the projection of
hk onto q`. In the same way, the decomposition H̃ = Q̃R̃ is
defined.

The aim of lattice-reduction is to transform a given basis
H into a new basis H̃ with vectors of shortest length or,
equivalently, into a basis consisting of roughly orthogonal
basis vectors. Usually, H̃ is much better conditioned than H.
With respect to the QR decomposition, h̃k is almost orthogonal
to the space spanned by h̃1, . . . , h̃k−1, if |r̃1,k|, . . . , |r̃k−1,k|
are close to zero. An efficient (though not optimal) way to
determine a reduced basis was proposed by Lenstra, Lenstra
and Lovász [10].

Definition (Lenstra-Lenstra-Lovász-Reduced): A basis H̃

with QR decomposition H̃ = Q̃R̃ is called LLL-reduced with
parameter δ (1/4 < δ ≤ 1), if [10]

|r̃`,k| ≤
1

2
|r̃`,`| for 1 ≤ ` < k ≤ m (8)

and

δ r̃2
k−1,k−1 ≤ r̃2

k,k + r̃2
k−1,k for k = 2, . . . ,m . (9)

If only (8) is fulfilled, the basis is called size-reduced.
The parameter δ influences the quality of the reduced basis.
Throughout this paper, we will assume δ = 3

4 as proposed in
[10]. The whole LLL algorithm is shown in Tab. 12. Given
the QR decomposition of H, it successively size-reduces the
basis according to (8), exchanges two basis vectors if (9) is
not fulfilled and adopts T, R̃ and Q̃. The output of the LLL
algorithm is given by Q̃, R̃, and T.

Obviously, the complexity of the algorithm highly depends
on the number of column exchanges, because in this case not
only matrix multiplications are required, but also the counter
k is decreased again. In the first step (k = 2), no exchange op-
eration is necessary if δ r̃2

1,1 ≤ r̃2
2,2+ r̃2

1,2 holds. Consequently,
|r̃1,1| should be as small as possible. Similar arguments hold
for the remaining diagonal elements r̃k,k. Therefore, the Sorted
QR Decomposition (SQRD) introduced in [11] and extended

2Within the algorithm, A(a : b, c : d) denotes the submatrix of A with
elements from rows a, . . . , b and columns c, . . . , d. With dαc we denote the
nearest integer to α.



Tab. 1 LLL LATTICE-REDUCTION ALGORITHM [10]

INPUT: Q, R, P (default: P = Im)
OUTPUT: Q̃, R̃, T
(1) Initialization: Q̃ := Q, R̃ := R, T := P
(2) k = 2
(3) while k ≤ m
(4) for ` = k − 1, . . . , 1

(5) µ = dR̃(`, k)/R̃(`, `)c
(6) if µ 6= 0

(7) R̃(1 : `, k) := R̃(1 : `, k)− µ R̃(1 : `, `)
(8) T(:, k) := T(:, k)− µT(:, `)
(9) end
(10) end
(11) if δ R̃(k − 1, k − 1)2 > R̃(k, k)2 + R̃(k − 1, k)2

(12) Swap columns k − 1 and k in R̃ and T
(13) Calculate Givens rotation matrix Θ such that

element R̃(k, k − 1) becomes zero:

Θ =

[

α β
−β α

]

with
α = R̃(k−1,k−1)

‖R̃(k−1:k,k−1)‖

β = R̃(k,k−1)

‖R̃(k−1:k,k−1)‖

(14) R̃(k − 1 : k, k − 1 : m) := ΘR̃(k − 1 : k, k − 1 : m)

(15) Q̃(:, k − 1 : k) := Q̃(:, k − 1 : k)ΘT

(16) k := max{k − 1, 2}
(17) else
(18) k := k + 1
(19) end
(20) end

in [6], [7] may provide a better starting point for the LLL
algorithm than conventional QR decomposition techniques.
SQRD successively minimizes |r1,1|, . . . , |rm,m| in the given
order by permuting columns of H, resulting in QR = HP

with a permutation matrix P. The additional computational
effort due to sorting was shown to be negligible [6]. We
will see in Section V, that the application of SQRD prior
to the LLL algorithm leads to a significant reduction of
the computational complexity, as this decomposition already
achieves a pre-sorting.

IV. DETECTION ALGORITHMS

A. Common ZF and MMSE Detection Algorithms

In a zero-forcing (ZF) detector the interference is com-
pletely suppressed by multiplying the receive signal vector x

with the Moore-Penrose pseudo-inverse of the channel matrix
H+ =

(

HT H
)−1

HT . The decision step consists of mapping
each element of the filter output vector

s̃ZF = H+x = s +
(

HT H
)−1

HT n (10)

onto an element of the symbol alphabet by a minimum distance
quantization, which in case of M -QAM (after proper shifting
and scaling) corresponds to a simple rounding operation and
(if necessary) clipping to the allowed range of values. For an
orthogonal channel matrix, ZF is identical to ML. However,
in general ZF leads to noise amplification, which is especially
observed in systems with the same number of transmit and
receive antennas.

The minimum mean square error (MMSE) detector takes
the noise term into account and thereby leads to an improved
performance. As shown in [6], [7], MMSE detection is equal
to ZF with respect to an extended system model. To this end,
we define the (n+m)×m extended channel matrix H and the
(n+m)×1 extended receive vector x by

H =

[

H

σnIm

]

and x =

[

x

0m,1

]

. (11)

Then, the output of the MMSE filter can be written as

s̃MMSE =
(

HT H + σ2
nIm

)−1
HT x (12)

=
(

HT H
)−1

HT x = H+x , (13)

which exactly matches the structure of (10).

B. Lattice Reduction aided Linear Detection

As already mentioned, linear detection is optimal for an
orthogonal channel matrix. Now, with H̃ = HT and the
introduction of z = T−1s the receive signal vector (2) can
be rewritten as

x = Hs + n = HTT−1s + n = H̃z + n. (14)

Note that Hs and H̃z describe the same point in a lattice, but
the LLL-reduced matrix H̃ is usually much better conditioned
than the original channel matrix H. For s ∈ Z

m we also have
z ∈ Z

m, so s and z stem from the same set. However, for
M -QAM, i.e. s ∈ Am, the lattice is finite and the domain of
z differs from Am. This is illustrated in Fig. 2 for 16-QAM,
one transmit antenna (m = 2) and a transformation matrix
T = [1,−1; 0, 1].
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Fig. 2. Original 16-QAM symbols s ∈ A2 with A = {± 1
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and transformed symbols z ∈ T−1A2 (right).

The idea behind LR-aided linear detection is to consider the
equivalent system model in (14) and perform the nonlinear
quantization on z instead of s. For LR-aided ZF this means
that first

z̃LR−ZF = T−1s̃ZF = H̃+x = z + H̃+n (15)

is calculated, where the multiplication with H̃+ usually causes
less noise amplification than the multiplication with H+ in
(10) due to the roughly orthogonal columns of H̃. Therefore, a
hard decision based on z̃LR−ZF is in general more reliable than
one on s̃ZF. However, the elements of the transformed vector
z are not independent of each other, e.g., in Fig. 2 the range
of possible values for z1 depends on z2. A straightforward



(though suboptimal) solution is to perform an unconstrained
elementwise quantization3 ẑLR−ZF = Q{z̃LR−ZF}, calculate
ŝLR−ZF = TẑLR−ZF, and finally restrict this result to the set
Am. Note that due to the quantization in the transformed
domain this receiver structure is not linear anymore.

Similar to Section IV-A we may apply a MMSE filter
instead of the ZF solution in order to get an improved estimate
for z. One obvious way is given by the MMSE-solution of the
lattice-reduced system (14)

z̃
(H)
LR−MMSE =

(

H̃T H̃ + σ2
nTT−1

)−1

H̃T x (16)

= T−1s̃MMSE . (17)

Again, this corresponds to simply replace s̃ZF in (15) by s̃MMSE
from (12). A better alternative is to perform the LR for the
extended channel matrix (11), i.e. H̃ = HT, and compute

z̃
(H)
LR−MMSE = H̃

+
x , (18)

because in this case the LR is optimized with respect to
the MMSE criterion. As the condition of H determines the
noise amplification of a common MMSE detector and not
the condition of H, this second solution will outperform the
obvious one. We will see in Section V that this solution
does not only yield a performance gain, but also reduces the
computational complexity.

C. Lattice Reduction aided SIC

As H̃ is only roughly orthogonal, the mutual influence of
the transformed signals zi is small, but still present. Thus,
successive interference cancellation techniques like V-BLAST
may result in additional improvements. As shown in several
publications, e.g. [6], [7], SIC can be well described in terms
of the QR decomposition of the channel matrix. Applying this
strategy to the system model from (14) we get

z̃LR−ZF−SIC = Q̃T x = R̃z + Q̃T n , (19)

where Q̃ and R̃ have already been calculated by the LLL
algorithm. Due to the upper triangular structure of R̃, the
m-th element of z̃ is free of interference and can be used
to estimate zm. Proceeding with z̃m−1, . . . , z̃1 and assuming
correct previous decisions, the interference can be perfectly
cancelled in each step.

It is well known, that because of error propagation the
order of detection has a large influence on the performance of
SIC. The optimum order can be calculated efficiently by the
so-called Post-Sorting-Algorithm (PSA) proposed in [5], [6],
which exploits the fact, that the mean error in each detection
step is proportional to the diagonal elements of R̃−1.

Similar to linear detection, we can consider the lattice-
reduced version of the extended system model with the equiva-
lent channel matrix H̃ = Q̃ R̃. This leads to LR-aided MMSE-
SIC with decision variables given by

z̃LR−MMSE−SIC = Q̃
T
x = R̃z + η . (20)

3Note that again proper shifting and scaling is necessary in order to allow
for simple rounding in the quantization step [4].

where the newly defined noise term η also incorporates
residual interference. The detection procedure equals that of
LR-aided ZF-SIC.

V. PERFORMANCE ANALYSIS

In the sequel, we investigate a MIMO system with nT = 4
transmit and nR = 4 receive antennas and 4-QAM modulation.
Eb denotes the average energy per information bit arriving at
the receiver, thus Eb/N0 = nR/(log2(M)σ2

n) holds. Tab. 2
shows the average number of required outer loops (lines 3-20
in Tab. 1) and column exchanges (lines 12-16 in Tab. 1) in the
LLL algorithm for4 Eb/N0 = 10 dB in order to investigate the
influence of using SQRD instead of a common unsorted QR
decomposition as initialization.

Tab. 2 AVERAGE NUMBER OF LOOPS AND COLUMN EXCHANGES IN THE
LLL ALGORITHM

LR Outer Loops Exchanges
(3-20) (12-16)

QR 32.3 13.2
ZF SQRD 17.1 5.2

QR 22.4 8.1
MMSE SQRD 8.5 0.8

Obviously, SQRD, which requires only negligible overhead,
significantly reduces the number of loops and thereby the
overall computational complexity of LLL. This is especially
true in the MMSE case, where the extended channel matrix
H is considered. As an example, the number of column
exchanges is reduced by a factor of 2.5 for ZF and 10 for
MMSE detection, respectively.
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Fig. 3 shows the bit error rates (BER) of the standard linear
ZF and MMSE detectors. Due to the noise enhancement, the

4Of course, the complexity of LLL does only depend on Eb/N0 for MMSE,
not for ZF.



performance is poor in comparison to ML and both schemes
achieve only a diversity degree of d = nR − nT + 1 = 1.
In contrast, linear equalization of the lattice-reduced system
reaches the full diversity degree of d = 4 and leads to a
significant performance improvement. As indicated in Section
IV-B, for MMSE detection it is much better to apply LR to the
extended channel matrix H instead of using H̃ for filtering.
Therefore, we will disregard the version based on H in the
following. The proposed LR-MMSE (based on H) achieves
an improvement of approximately 3.3 dB in comparison to
LR-ZF for a BER of 10−5.
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Fig. 4. Bit Error Rate of a system with nT = 4 and nR = 4 antennas,
4-QAM symbols, ZF (continuous lines) and MMSE (dashed lines) optimally
sorted SIC detection.

The performances of the successive detection schemes with
optimum ordering are illustrated in Fig. 4. As expected,
they clearly outperform the linear detection methods from
Fig. 3. Note that this improvement comes at almost no cost,
because the complexity of SIC (after having calculated the
QR decomposition) is comparable to that of linear detection.
Again, detection with respect to the lattice-reduced system
significantly reduces the bit error rate. The proposed LR-
MMSE-SIC scheme achieves almost ML performance, while
the main computational effort is required only once per
transmitted frame.

The BERs of SIC-based detection for a system with nT =
6 and nR = 6 are shown in Fig. 5. We observe the same
performance improvement for the LR-aided schemes and the
benefit of the MMSE extension. The gap between LR-MMSE-
SIC and ML is only 1 dB for a BER of 10−5.

VI. SUMMARY AND CONCLUSIONS

In this paper, we investigated several detection schemes for
multiple antenna systems making use of the lattice-reduction
algorithm proposed by Lenstra, Lenstra and Lovász. We
showed that the straightforward way to perform MMSE de-
tection after lattice-reduction does not yield satisfying results.
Instead, we proposed a new method, where LR is applied
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Fig. 5. Bit Error Rate of a system with nT = 6 and nR = 6 antennas,
4-QAM symbols, ZF (continuous lines) and MMSE (dashed lines) optimally
sorted SIC detection.

to an extended system model. In conjunction with succes-
sive interference cancellation, this strategy nearly leads to
maximum-likelihood performance. Furthermore, we analyzed
the impact of a sorted QR decomposition on the LLL algorithm
and demonstrated that SQRD can dramatically decrease the
computational effort. Thus, we arrived at a near-optimum
detector with very low complexity.
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