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Abstract— Recently the use of lattice-reduction for signal
detection in multiple antenna systems has been proposed. In
this paper, we adopt these lattice-reduction aided schemes to
the MMSE criterion. We show that an obvious way to do
this is suboptimum and propose an alternative method based
on an extended system model. In conjunction with simple
successive interference cancellation this scheme almost reaches
the performance of maximum-likelihood detection. Furthermore,
we demonstrate that the application of Sorted QR Decomposition
(SQRD) as a initialization step can significantly reduce the com-
putational effort associated with lattice-reduction. Thus, the new
algorithm clearly outperforms existing methods with comparable
complexity.

Index Terms— MIMO systems, BLAST, Zero-Forcing and
MMSE detection, lattice-reduction, wireless communication.

I. INTRODUCTION

It is well-known that multiple antenna systems may provide
very high data rates in rich scattering environments. Within
the V-BLAST architecture parallel data streams are simulta-
neously transmitted over nT different antennas in order to in-
crease the spectral efficiency. Besides linear detection schemes
based on the zero-forcing (ZF) or the minimum mean square
error (MMSE) criterion, successive interference cancellation
(SIC) is a popular way to detect the transmitted signals at
the receiver site [1]. Unfortunately, for ill-conditioned channel
matrices all these schemes are clearly inferior to maximum-
likelihood (ML) detection. The latter may be accomplished
by sphere detection (SD), which is an ongoing research topic
[2]–[4]. However, SD requires a closest point search for each
transmitted vector, which still is rather demanding.

In mobile communication scenarios, where the channel
remains constant for several symbol durations, it is much more
preferable to spent most of the computational effort only once
at the beginning of each frame. Recently, lattice-reduction
(LR) has been proposed in order to transform the system
model into an equivalent one with better conditioned channel
matrix prior to low-complexity linear or SIC detection [5]–
[8]. These publications exclusively deal with ZF filtering for
symbol detection. In the present work we extend the LR-aided
detection schemes with respect to the MMSE criterion. To this
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end, we make use of an extended system model introduced in
[9] and further investigated in [10], [11].

The remainder of this paper is organized as follows. In
Section II, the system model and notation are introduced. The
fundamentals of LR are explained in Section III and different
detection schemes with and without reduction of the basis are
introduced in Section IV. The computational complexity as
well as the performance is analyzed in Section V. Concluding
remarks can be found in Section VI and some additional
comments on required shifting and scaling operations are given
in the Appendix.

II. SYSTEM DESCRIPTION

We consider the multiple antenna system shown in Fig. 1
with nT transmit and nR ≥ nT receive antennas in a flat fad-
ing environment. According to the V-BLAST architecture, the
data is demultiplexed into nT data substreams of equal length
(called layers). These substreams are mapped onto M -QAM
symbols and transmitted over the nT antennas simultaneously.
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Fig. 1. Model of a MIMO system with nT transmit and nR receive antennas.

In order to describe the MIMO system, one time slot of the
time-discrete complex baseband model is investigated. Let1 s

denote the complex valued nT×1 transmit signal vector, then
the corresponding nR×1 receive signal vector x is given by

x = Hs + n . (1)

In (1), n represents white gaussian noise of variance σ2
n

observed at the nR receive antennas while the average transmit

1Throughout this paper, (·)T and (·)H denote matrix transpose and
hermitian transpose, respectively. Furthermore, Iα indicates the α×α identity
matrix and 0α,β denotes the α × β all zero matrix. With R{·} and I {·}
we denote the real part and the imaginary part, respectively.



power of each antenna is normalized to one, i.e. E
{

ssH
}

=
InT

and E
{

nnH
}

= σ2
nInR

. The nR×nT channel matrix H

contains uncorrelated complex gaussian fading gains hi,j with
unit variance. We assume a flat fading environment, where
the channel matrix H is constant over a frame and changes
independently from frame to frame (block fading channel).
Within the derivation and discussion of the detector structures
we assume perfect knowledge about the channel state informa-
tion (CSI) by the receiver. However, within the performance
evaluation in Section V we also consider imperfect channel
knowledge due to channel estimation [12].

Treating real and imaginary parts of (1) separately, the
system model can be rewritten as

x = Hs + n , (2)

with the real-valued channel matrix

H =

[

R{H} −I {H}
I {H} R{H}

]

∈ � n×m (3)

and the real-valued vectors

x =

[

R{x}
I {x}

]

s =

[

R{s}
I {s}

]

n =

[

R{n}
I {n}

]

. (4)

By defining m = 2nT and n = 2nR the dimension of the real
channel matrix (3) is given by n×m = 2nR×2nT . Likewise
the dimension of the vectors (4) are given by x ∈ �

n,
n ∈ �

n and s ∈ Am, where A denotes the finite set of
real-valued transmit signals. For M -QAM this set is given
by A = {± 1

2a,± 3
2a, . . . ,±

√
M−1
2 a} with

√
M representing

the modulation index of the corresponding real-valued ASK.
The parameter a =

√

6/(M − 1) is used for normalizing
the power of the complex-valued transmit signals to 1. In
the sequel we will apply this real-valued representation, as
we can now interpret each noiseless receive signal as a point
of a lattice spanned by H. Additionally, the performance of
successive algorithms like the V-BLAST detection can be
improved by separating the real and imaginary part of each
transmit signal [13].

The optimum maximum-likelihood (ML) detector searches
over the whole set of transmit signals s ∈ Am, and decides
in favor of the transmit signal ŝML with minimum euclidian
distance to the receive vector x, i.e.

ŝML = arg min
s∈Am

‖x − Hs‖2 . (5)

As the computational effort is of order MnT , brute force ML
detection is not feasible for larger number of transmit antennas
or higher modulation schemes. A feasible alternative is the
application of sphere detector (SD) [2]–[4], which restricts
the search space to a sphere. However, the computational
complexity is still high in comparison to simple but suboptimal
successive interference cancellation (SIC). In the sequel, we
investigate the application of lattice-reduction (LR) in order
to improve the performance of SIC and linear detection (LD).
One advantage of this strategy is, that the computational
overhead required by the lattice-reduction algorithm is only
required once for each transmitted frame, so for large frame
length the effort for each signal vector is very small.

III. LATTICE REDUCTION

In the sequel, we interpret the columns hk (1 ≤ k ≤
m) of the real-valued channel matrix H as the basis of a
lattice and assume for the moment that the possible transmit
vectors are given by � m, the m dimensional infinite integer
space. Consequently, the set of all possible undisturbed receive
signals is given by

L(H) = L(h1, . . . ,hm) :=

m
∑

k=1

hk � (6)

and is called lattice L(H). However, the same lattice is also
spanned by any matrix H̃ emenated from H by the elementary
column operations

• interchanging columns
• multiplying any column by −1
• Adding a multiple of one column to another.

It can be shown, that the product of the corresponding elemen-
tary matrices results in a unimodular transformation matrix
T, i.e. T contains only integer entries and the determinant is
det(T) = ±1 [3]. Therefore, each matrix H̃ = HT generates
the same lattice L(H̃) = L(H), if and only if the m × m
matrix T is unimodular:

L(H̃) = L(H) ⇐⇒ H̃ = HT and T is unimodular . (7)

The inverse of unimodular matrices always exists and contains
also only integer values, i.e. T−1 ∈ � m. Obviously, the
relation H = H̃T−1 holds. As both matrices describe the
same receive signal space, we may choose that basis with
nicer properties for signal detection in Section IV.

For further investigations, we define the QR decomposition
H = QR with the n × m matrix Q = [q1, . . . ,qm] having
orthogonal columns of unit length (QT Q = Im) and the
upper triangular matrix R = (ri,j)1≤i,j≤m. Thus, each column
vector hk of H is given by hk =

∑k

`=1 r`,kq`. The vector qk

denotes the direction of hk perpendicular to the space spanned
by q1, . . . ,qk−1 and rk,k describes the corresponding length.
Furthermore, r`,k = qT

` hk is the length of the projection of
hk onto q`. In the same way, the decomposition H̃ = Q̃R̃ is
defined.

The aim of lattice-reduction is to transform a given basis
H into a new basis H̃ with vectors of shortest length or,
equivalently, into a basis consisting of roughly orthogonal
basis vectors. Usually, H̃ is much better conditioned than
H and therefore leads to less noise enhancement for linear
detection. In order to describe the impact of H on the noise
enhancement, we introduce the condition number κ(H) =
σmax/σmin ≥ 1, with σmax and σmin denoting the largest
and the smallest singular value of H, respectively [14]. With
‖H‖2 defining the spectral norm of H, the condition number
corresponds to κ(H) = ‖H‖2‖H−1‖2 = ‖R‖2‖R−1‖2. For
ill-conditioned matrices κ(H) is large, whereas for orthogonal
matrices κ(H) = 1, as no noise enhancement is caused. As the
reduced basis of H̃ is chosen to have roughly orthogonal basis
vectors, the corresponding condition number κ(H̃) is usually
much smaller than κ(H). Consequently, a linear detector with



respect to this new basis may achieve better performance
results, as the impact of noise enhancement is reduced.

With respect to the QR decomposition, the basis vector h̃k

is almost orthogonal to the space spanned by h̃1, . . . , h̃k−1, if
the elements |r̃1,k|, . . . , |r̃k−1,k| are close to zero. An efficient
(though not optimal) way to determine a reduced basis was
proposed by Lenstra, Lenstra and Lovàsz [15].

Definition (Lenstra-Lenstra-Lovász-Reduced): A basis H̃

with QR decomposition H̃ = Q̃R̃ is called LLL-reduced with
parameter δ (1/4 < δ ≤ 1), if [15]

|r̃`,k| ≤
1

2
|r̃`,`| for 1 ≤ ` < k ≤ m (8)

and

δ r̃2
k−1,k−1 ≤ r̃2

k,k + r̃2
k−1,k for k = 2, . . . ,m . (9)

If only (8) is fulfilled, the basis is called size-reduced.
The parameter δ influences the quality of the reduced basis.
Throughout this paper, we will assume δ = 3

4 as proposed in
[15]. The whole LLL algorithm is shown in Tab. 12. Given
the QR decomposition of H, it successively size-reduces the
basis according to (8), exchanges two basis vectors if (9) is
not fulfilled and adopts T, R̃ and Q̃. The output of the LLL
algorithm is given by Q̃, R̃, and T.

Tab. 1 LLL LATTICE-REDUCTION ALGORITHM [15]

INPUT: Q, R, P (default: P = Im)
OUTPUT: Q̃, R̃, T

(1) Initialization: Q̃ := Q, R̃ := R, T := P
(2) k = 2
(3) while k ≤ m
(4) for ` = k − 1, . . . , 1

(5) µ = dR̃(`, k)/R̃(`, `)c
(6) if µ 6= 0

(7) R̃(1 : `, k) := R̃(1 : `, k) − µ R̃(1 : `, `)
(8) T(:, k) := T(:, k) − µT(:, `)
(9) end
(10) end
(11) if δ R̃(k − 1, k − 1)2 > R̃(k, k)2 + R̃(k − 1, k)2

(12) Swap columns k − 1 and k in R̃ and T
(13) Calculate Givens rotation matrix Θ such that

element R̃(k, k − 1) becomes zero:

Θ =

[

α β
−β α

]

with
α = R̃(k−1,k−1)

‖R̃(k−1:k,k−1)‖

β = R̃(k,k−1)

‖R̃(k−1:k,k−1)‖

(14) R̃(k − 1 : k, k − 1 : m) := ΘR̃(k − 1 : k, k − 1 : m)

(15) Q̃(:, k − 1 : k) := Q̃(:, k − 1 : k)ΘT

(16) k := max{k − 1, 2}
(17) else
(18) k := k + 1
(19) end
(20) end

Obviously, the complexity of the algorithm highly depends
on the number of column exchanges, because in this case not

2Within the algorithm, A(a : b, c : d) denotes the submatrix of A with
elements from rows a, . . . , b and columns c, . . . , d. With dαc we denote the
nearest integer to α.

only matrix multiplications are required, but also the counter k
is decreased again (see line 16 of Tab. 1). In the first step (k =
2), no exchange operation is necessary if δ r̃2

1,1 ≤ r̃2
2,2 + r̃2

1,2

holds. Consequently, |r̃1,1| should be as small as possible.
Similar arguments hold for the remaining diagonal elements
r̃k,k. Therefore, the Sorted QR Decomposition (SQRD) in-
troduced in [16] and extended in [10], [11] may provide a
better starting point for the LLL algorithm than conventional
QR decomposition techniques. SQRD successively minimizes
|r1,1|, . . . , |rm,m| in the given order by permuting columns
of H, resulting in QR = HP with a permutation matrix
P. The additional computational effort due to sorting was
shown to be negligible [10]. In Section V we will see, that
the application of SQRD prior to the LLL algorithm leads to
a significant reduction of the computational complexity, as this
decomposition already achieves a pre-sorting.

IV. DETECTION ALGORITHMS

A. Common ZF and MMSE Detection Algorithms

In a zero-forcing (ZF) detector the interference is com-
pletely suppressed by multiplying the receive signal vector x

with the Moore-Penrose pseudo-inverse of the channel matrix
H+ =

(

HT H
)−1

HT . The decision step consists of mapping
each element of the filter output vector

s̃ZF = H+x = s +
(

HT H
)−1

HT n (10)

onto an element of the symbol alphabet by a minimum distance
quantization, which in case of M -QAM (after proper shifting
and scaling) corresponds to a simple rounding operation and
(if necessary) clipping to the allowed range of values (see
Fig. 2). For an orthogonal channel matrix, ZF is identical
to ML. However, in general ZF leads to noise amplification,
which is especially observed in systems with the same number
of transmit and receive antennas. In fact, using a result from
random matrix theory [17], it can be shown that in the large
system limit for nT = nR → ∞ the noise amplification tends
to infinity almost surely.

s

n

x ŝ

Linear detector for s

H
+

H
ZF

s
~

Fig. 2. Block diagram of linear zero-forcing detection.

The minimum mean square error (MMSE) detector takes
the noise term into account and thereby leads to an improved
performance. As shown in [9]–[11], MMSE detection is equal
to ZF with respect to an extended system model. To this end,
we define the (n+m)×m extended channel matrix H and the
(n + m)×1 extended receive vector x by

H =

[

H

σnIm

]

and x =

[

x

0m,1

]

. (11)



Then, the output of the MMSE filter can be written as

s̃MMSE =
(

HT H + σ2
nIm

)−1
HT x (12)

=
(

HT H
)−1

HT x = H+x , (13)

which exactly matches the structure of (10), i.e. x is filtered
by the pseudo-inverse of H. Thus, the MMSE detector agrees
to a ZF detector with respect to the extended system model
and consequently the condition number κ(H) determines
the effective noise amplification. This observation will be
extremely important for incorporating the MMSE criterion in
the lattice-based detection algorithms.

B. Lattice Reduction aided Linear Detection

As already mentioned, linear detection is optimal for an
orthogonal channel matrix. Now, with H̃ = HT and the
introduction of z = T−1s the receive signal vector (2) can
be rewritten as

x = Hs + n = HTT−1s + n = H̃z + n. (14)

Note that Hs and H̃z describe the same point in a lattice, but
the LLL-reduced matrix H̃ is usually much better conditioned
than the original channel matrix H. For s ∈ � m we also have
z ∈ � m, so s and z stem from the same set. However, for
M -QAM, i.e. s ∈ Am, the lattice is finite and the domain of
z differs from Am. This is illustrated in Fig. 3 for 16-QAM,
one transmit antenna (m = 2) and a transformation matrix
T = [1,−1; 0, 1].
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and transformed symbols z ∈ T−1A2 (right).

The idea behind LR-aided linear detection is to consider the
equivalent system model in (14) and perform the nonlinear
quantization on z instead of s. For LR-aided ZF this means
that first

z̃LR−ZF = H̃+x = z + H̃+n (15)
= T−1s̃ZF (16)

is calculated, where the multiplication with H̃+ usually causes
less noise amplification than the multiplication with H+ in
(10) due to the roughly orthogonal columns of H̃. Therefore, a
hard decision based on z̃LR−ZF is in general more reliable than
one on s̃ZF. However, the elements of the transformed vector
z are not independent of each other, e.g., in Fig. 3 the range
of possible values for z1 depends on z2. A straightforward
(though suboptimal) solution is to perform an unconstrained

element-wise quantization3 ẑLR−ZF = Q{z̃LR−ZF}, calculate
ŝLR−ZF = TẑLR−ZF, and finally restrict this result to the set
Am. Note that due to the quantization in the transformed
domain this receiver structure is not linear anymore. The
principle block diagram for a LR-aided detector is shown in
Fig. 3

equivalent system model

s

n

ẑz
T=H HT

~
x

1-
T

ŝDetector
for z

Fig. 4. Block diagram of a Lattice-Reduction based detector.

Similar to Section IV-A we may apply a MMSE filter
instead of the ZF solution in order to get an improved estimate
for z. One obvious way to do so is given by the MMSE-
solution of the lattice-reduced system (14)

z̃
(H)
LR−MMSE =

(

H̃T H̃ + σ2
nTT T

)−1

H̃T x (17)

= T−1s̃MMSE .

Again, this corresponds to simply replace s̃ZF in (16) by s̃MMSE
from (12). A better alternative is to perform the LR for the
extended channel matrix (11), i.e. H̃ = HT, and compute

z̃
(H)
LR−MMSE = H̃

+
x , (18)

because in this case the LR is executed with respect to
the MMSE filter, i.e. with respect to the MMSE criterion.
As the condition of H determines the noise amplification
of a common MMSE detector and not the condition of H,
this second solution will outperform the obvious solution.
We will see in Section V that this solution does not only
yield a performance gain, but also reduces the computational
complexity.

C. Lattice Reduction aided SIC

As H̃ is only roughly orthogonal, the mutual influence of
the transformed signals zi is small, but still present. Thus,
successive interference cancellation techniques like V-BLAST
may result in additional improvements. As shown in several
publications, e.g. [10], [11], SIC can be well described in terms
of the QR decomposition of the channel matrix. Applying this
strategy to the system model from (14) we get

z̃LR−ZF−SIC = Q̃T x = R̃z + Q̃T n , (19)

where Q̃ and R̃ have already been calculated by the LLL
algorithm. Due to the upper triangular structure of R̃, the
m-th element of z̃ is free of interference and can be used
to estimate zm. Proceeding with z̃m−1, . . . , z̃1 and assuming
correct previous decisions, the interference can be perfectly
cancelled in each step.

3Note that proper shifting and scaling is necessary in order to allow for
simple rounding in the quantization step. The concerning details are discussed
within the Appendix.



It is well known, that because of error propagation the order
of detection has a large influence on the performance of SIC.
The optimum order can be calculated efficiently by the so-
called Post-Sorting-Algorithm (PSA) proposed in [9], [10],
which exploits the fact, that the mean error in each detection
step is proportional to the diagonal elements of R̃−1.

Similar to linear detection, we can consider the lattice-
reduced version of the extended system model with the equiva-
lent channel matrix H̃ = Q̃ R̃. This leads to LR-aided MMSE-
SIC with decision variables given by

z̃LR−MMSE−SIC = Q̃
T
x = R̃z + η . (20)

where the newly defined noise term η also incorporates
residual interference. The detection procedure equals that of
LR-aided ZF-SIC.

D. Discussion of Decision Regions

In order to visualize the decision boundaries of the different
detection schemes, we analyze a simple scheme with m = n =
2 and s1 and s2 being integers of large range.
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Fig. 5. Exemplary receive signal space and decision areas of a) Maximum-
Likelihood detection, b) Linear Detection (LD), c) Successive Interference
Cancellation (SIC), d) LR-aided LD and e) LR-aided SIC.

The undisturbed received signals Hs in Fig. 5 a) can be
viewed as a lattice spanned by the basis vectors h1 and h2

where each lattice point corresponds to a linear combination
of the basis vectors. Due to the ML condition (5) all points
in the receive plane which are closer to a particular lattice
point than to any other are associated with this particular
lattice point forming the corresponding Voronoi region [4].
The boundary regions for LD in b) are parallelograms, where
the sides are parallel to the basis vectors. An ill-conditioned
basis results in a very narrow and stretched parallelogram,
with highly probable decision errors. In contrast, SIC decides
s1 and s2 one after another resulting in rectangular decision
regions with sides parallel to q1 and q2 and side length equal
to r1,1 and r2,2. In Fig. 5 d) the decision regions for LR-aided
LD are shown. The sides of the corresponding parallelogram

are now parallel to the almost orthogonal basis vectors h̃1

and h̃2. Consequently, this parallelogram is less stretched and
the boundaries nearly correspond to the Voronoi regions. This
difference becomes even smaller in case of LR-aided SIC,
shown in e). Due to the almost orthogonal basis H̃, the element
r̃2,2 (length of h̃2 perpendicular to h̃1) is larger than r2,2

resulting in an almost quadratic decision region.

V. PERFORMANCE ANALYSIS

In the sequel, we investigate a MIMO system with nT

transmit and nR receive antennas and M -QAM modulation.
Eb denotes the average energy per information bit arriving
at the receiver, thus Eb/N0 = nR/(log2(M)σ2

n) holds. At
first, we discuss the influence of SQRD on the computational
complexity of the LLL algorithm. Next, BER of simulation
results for systems with perfect channel state information
(CSI) at the receiver side and with imperfect CSI (pilot-aided
channel estimation) are presented.

A. Hint on Computational Effort

As mentioned in Section III the overall complexity of LLL
algorithm depends highly on the number of column exchanges,
as this does not only require matrix multiplications, but also
decreases the counter k. However, SQRD already exchanges
the columns of the channel matrix within the (necessary) QR
decomposition and achieves thereby already a pre-sorting for
the LLL algorithm. In order to investigate the impact of this
pre-sorting, Fig. 6 shows the average number of required
column exchanges c̄ (lines 12-16 in Tab. 1) within the LLL
algorithm in dependance of Eb/N0 for a system with nT =
nR = 4 antennas (or equivalently m = n = 8).
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Fig. 6. Average number of column exchanges c̄ within the LLL reduction
of a system with nT = nR = 4 antennas (m = n = 8).

A common lattice-reduction (LLL) of H requires an average
number of c̄LLL = 13.2 column exchanges. By applying
SQRD, which requires only negligible overhead compared
to standard QR decomposition, this number is significantly
reduced by a factor of 2.5 to c̄SQRD-LLL = 5.2. The com-
plexity decrease is even larger in the MMSE case, where the
extended channel matrix H is considered. In the low SNR
region almost no additional column exchanges according to
(9) are required by the SQRD-LLL combination, so only size-
reduction to fulfill (8) is performed. For Eb/N0 = 10 dB we
obtain c̄MMSE-LLL = 8.1 and c̄MMSE-SQRD-LLL = 0.8 indicating
a remarkable reduction of column exchanges by a factor



of 10. Compared to the common LLL, this factor is even
more impressive, i.e. c̄LLL/c̄MMSE-SQRD-LLL = 17.3. As the
MMSE solution converges to the ZF solution in the large
SNR region, the operated number of exchanges also approach
the corresponding numbers for ZF. Obviously, using the QR
decomposition achieved by SQRD reduces significantly the
computational complexity of the LLL algorithm. Furthermore,
performing a MMSE-reduction will lead not only to im-
proved detection performance but requires also less column
exchanges.

B. BER performance with perfect CSI

0 5 10 15 20 25 30
10−5

10−4

10
−3

10
−2

10
−1

10
0

PSfrag replacements

Eb

N0
in dB

B
E

R

ZF-LD
MMSE-LD
LR-ZF-LD
LR-MMSE-LD based on H

LR-MMSE-LD based on H

ML

Fig. 7. Bit Error Rate of a system with nT = 4 and nR = 4 antennas,
4-QAM symbols, ZF (continuous lines) and MMSE (dashed lines) linear
detection (LD).

Fig. 7 shows the bit error rates (BER) of the standard linear
ZF and MMSE detectors. Due to the noise enhancement, the
performance is poor in comparison to ML and both schemes
achieve only a diversity degree of d = nR − nT + 1 = 1.
In contrast, linear equalization of the lattice reduced system
reaches the full diversity degree of d = 4 and leads to a
significant performance improvement. As indicated in Section
IV-B, for MMSE detection it is much better to apply LR to the
extended channel matrix H instead of using H̃ for filtering.
Therefore, we will disregard the version based on H̃ in the
following. The proposed LR-MMSE (based on H) achieves
an improvement of approximately 3.3 dB in comparison to
LR-ZF for a BER of 10−5.

The performances of the successive detection schemes with
optimum ordering are illustrated in Fig. 8. As expected,
they clearly outperform the linear detection methods from
Fig. 7. Note that this improvement comes at almost no cost,
because the complexity of SIC (after having calculated the
QR decomposition) is comparable to that of linear detection.
Again, detection with respect to the lattice-reduced system
significantly reduces the bit error rate. The proposed LR-
MMSE-SIC scheme achieves almost ML performance, while

0 5 10 15 20 25 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

PSfrag replacements

Eb

N0
in dB

B
E

R

ZF-SIC
MMSE-SIC
LR-ZF-SIC
LR-MMSE-SIC
ML

Fig. 8. Bit Error Rate of a system with nT = 4 and nR = 4 antennas,
4-QAM symbols, ZF (continuous lines) and MMSE (dashed lines) optimally
sorted SIC detection.

the main computational effort is required only once per
transmitted frame.
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Fig. 9 shows the achieved performance of several detection
schemes versus the condition number κ(H) of the channel
matrix and Eb/N0 = 16 dB. Part a) contains the simulation
results for the common and LR-aided linear detection schemes
and ML detection. For κ(H) ≈ 1 all schemes achieve very
good performance with BER ≤ 10−5, as the common ZF
detector is equivalent to ML for κ(H) = 1. However, if the
matrix is ill-condition, the performances of the common ZF
and MMSE linear detector are poor, whereas the LR-aided
linear detectors achieve suitable results. The corresponding
BERs for common SIC and LR-aided SIC are given in part part
b) of Fig. 9. The successive schemes generally outperform the



linear schemes. Furthermore, MMSE-LR-SIC almost achieves
the BER of ML for the whole range of investigated condition
numbers.
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Fig. 10 shows the performance of the SIC algorithms for
the same antenna configuration (nT = nR = 4) and 16-QAM
modulation. The performance of the standard SIC algorithms
is far away of ML (realized by sphere detection). In contrast,
the LR-aided SIC schemes achieve very good results. It is
worth to note, that the effort for LLL does not depend on
the modulation index M , so the computational complexity for
lattice-reduction corresponds to the effort for the system with
4-QAM modulation.
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The BERs of SIC-based detection for a system with nT =
nR = 6 and 4-QAM modulation are shown in Fig. 11. We
observe the same performance improvement for the LR-aided

schemes and the benefit of the MMSE extension. The gap
between LR-MMSE-SIC and ML is only 1 dB for a BER of
10−5.
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Fig. 12. Bit Error Rate of a system with nT = 6 and nR = 6 antennas,
16-QAM symbols, ZF (continuous lines) and MMSE (dashed lines) optimally
sorted SIC detection.

In Fig. 12 the BER performance is shown for the same an-
tenna configuration, but 16-QAM modulation. Again, the LR-
based schemes clearly outperform the standard SIC algorithms
by several dB. The proposed LR-MMSE-SIC outperforms the
LR-ZF-SIC by 2.2 dB and the loss to ML is only 1.7 dB for
a BER of 10−5.

C. BER performance with imperfect CSI

In the sequel, we investigate the performance of common
and LR-aided detection schemes when only imperfect CSI
information due to pilot-aided channel estimation is available
at the receiver. For estimating the channel a complex nT ×L
training matrix SPilot = [s1, . . . , sL] with orthogonal rows
is added to each transmit frame [12]. With XPilot denoting
the corresponding nR × L receive matrix, the ML channel
estimation is given by Ĥ = XPilotS

+
Pilot.

Fig. 13 shows the corresponding BERs with imperfect CSI.
Similar to the results with perfect CSI in Fig. 8, the LR-
aided SIC schemes perform very well. Again, the LR-MMSE-
SIC almost achieves ML performance, with a small gap of
approximately 0.6 dB.

VI. SUMMARY AND CONCLUSIONS

In this paper, we investigated several detection schemes
for multiple antenna systems making use of the lattice-
reduction algorithm proposed by Lenstra, Lenstra and Lovász.
We showed that the straightforward way to perform MMSE
detection after lattice-reduction does not yield satisfying re-
sults. Instead, we proposed a new method, where LR is
applied to an extended system model. In conjunction with
successive interference cancellation, this strategy nearly leads
to maximum-likelihood performance. The robustness of the
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achieved detection algorithm with respect to channel esti-
mation was proofed by simulation result. Furthermore, we
analyzed the impact of a sorted QR decomposition on the
LLL algorithm and demonstrated that SQRD can dramatically
decrease the computational effort. Thus, we arrived at a near-
optimum detector with low complexity.

APPENDIX

As shown in Section III, two basis H and H̃ describe the
same lattice L if relation (7) holds and if the input signals
stem from the infinite integer space � m. For a M -QAM
constellation, the last condition is not fulfilled. However, we
can interpret Am as the shifted and scaled version of the
integer subset Dm ⊂ � m, i.e. Am = a (Dm + 1

21m) [7].
For M -QAM this integer integer subset is given by D =

{−
√

M
2 , . . . ,

√
M
2 − 1}. As an example, the transmit signals for

16-QAM are from the set A = {±0.316,±0.949}, whereas
the integer subset is given by D = {−2,−1, 0, 1}. With this
definition, the transmit signal vector s ∈ Am can be rewritten
as s = a (̄s + 1

21m) with s̄ stemming from the integer subset,
i.e. s̄ ∈ Dm. Consequently, the transformed signal vector z

can be represented by

z = T−1s = aT−1

(

s̄ +
1

2
1m

)

= a

(

z̄ +
1

2
T−11m

)

(21)
introducing the definition of the integer vector z̄ = T−1s̄ ∈
T−1Dm ⊂ � m.

The LR-aided detection schemes discussed in Section IV
comprise the estimation of z with respect to x = Hz+n and
mapping theses estimates onto the symbols s ∈ Am. When
performing LR-aided linear ZF detection, the filter output
signal is given by z̃ = z + H̃+n = a (z̄ + 1

2T
−11m) + H̃+n.

In order to achieve an estimation for z the scaled and shifted
filter output signal is component-wise quantized with respect

to � and re-scaled and re-shifted again

ẑ = a

(

Q � m

{

1

a
z̃ − 1

2
T−11m

}

+
1

2
T−11m

)

. (22)

The estimation for the transmit signal is ŝ = Tẑ and can
obviously be rewritten as

ŝ = Tẑ = aTQ � m

{

1

a
z̃ − 1

2
T−11m

}

+
a

2
1m . (23)

As these scaling and shifting operations are straightforward,
they have been omitted within the presentation of the LR-aided
detection schemes.

REFERENCES

[1] P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela,
“V-BLAST: An Architecture for Realizing Very High Data Rates Over
the Rich-Scattering Wireless Channel,” in Proc. International Sympo-
sium on Signals, Systems, and Electronics (ISSSE), Pisa, Italy, September
1998.

[2] U. Fincke and M. Pohst, “Improved Methods for Calculating Vectors
of Short Length in a Lattice, Including a Complexity Analysis,” Math.
Comp, vol. 44, pp. 463–471, 1985.

[3] C. P. Schnoor and M. Euchner, “Lattice Basis Reduction: Improved
Practical Alorithms and Solving Subset Sum Problems,” Mathematical
Programming, vol. 66, pp. 181–191, 1994.

[4] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest Point Search
in Lattices,” IEEE Trans. on Information Theory, vol. 48, no. 8, pp.
2201–2214, August 2002.

[5] H. Yao and G. Wornell, “Lattice-Reduction-Aided Detectors for MIMO
Communication Systems,” in IEEE Proc. Global Communications Con-
ference (GLOBECOM), Taipei, Taiwan, November 17-21 2002.

[6] H. Yao, “Effcient Signal, Code, and Receiver Designs for MIMO
Communication Systems,” Ph.D. dissertation, Massachusetts Institute of
Technology, June 2003.

[7] C. Windpassinger and R. F. H. Fischer, “Low-Complexity Near-
Maximum-Likelihood Detection and Precoding for MIMO Systems
using Lattice Reduction,” in Proc. IEEE Information Theory Workshop
(ITW), Paris, France, March 2003.

[8] ——, “Optimum and Sub-Optimum Lattice-Reduction-Aided Detection
and Precoding for MIMO Communications,” in Proc. Canadian Work-
shop on Information Theory, Waterloo, Ontario, Canada, May 2003, pp.
88–91.

[9] B. Hassibi, “An Efficient Square-Root Algorithm for BLAST,” in Proc.
IEEE Intl. Conf. Acoustic, Speech, Signal Processing (ICASSP), Istanbul,
Turkey, June 2000, pp. 5–9.
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