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Abstract— In rich-scattering environments layered space-time
architectures like the BLAST system may exploit the capacity ad-
vantage of multiple antenna systems. In this paper, we present a
novel, computationally efficient algorithm for detecting V-BLAST
architectures with respect to the MMSE criterion. It utilizes a
sorted QR decomposition of the channel matrix and leads to a
simple successive detection structure. The new algorithm needs
only a fraction of computational effort compared to the standard
V-BLAST algorithm and achieves the same error performance.

Index Terms— BLAST, MIMO systems, Zero-Forcing and
MMSE detection, wireless communication.

I. INTRODUCTION

In rich-scattering environments the V-BLAST (Vertical Bell
Labs Layered Space-Time) architecture proposed in [1] ex-
ploits the capacity advantage of multiple antenna systems. It
uses a vertically layered coding structure, where independent
code blocks (called layers) are associated with a particular
transmit antenna. At the receiver, these layers are detected
by a successive interference cancellation technique which
nulls the interferers by linearly weighting the received signal
vector with a zero-forcing nulling vector (ZF-BLAST). This
successive detection requires multiple calculations of pseudo-
inverses, being a computational expensive task. A reduced
complexity detection algorithm utilizing a sorted QR decom-
position of the channel matrix was proposed by the authors
in [2], [3]. It jointly calculates an optimized detection order
and the QR decomposition of the channel matrix and is called
ZF-SQRD (ZF Sorted QR Decomposition). An adaption of the
original ZF-BLAST to the MMSE criterion was presented in
[4] and a version with lower complexity was introduced in [5].

In this paper, we extend the ZF-SQRD algorithm to the
MMSE solution, called MMSE-SQRD. Similar to ZF-SQRD it
does not always find the optimal detection order and from there
a performance degradation may occur. If this drawback is not
acceptable for the specific application, a post-sorting algorithm
(PSA) can be used, leading to the ideal detection sequence
and thus to the performance of MMSE-BLAST. However,
the combination of MMSE-SQRD and PSA requires only
a fraction of computational effort compared to the BLAST
detection algorithm.

This work was supported in part by the German ministry of education and
research (BMBF) under grant 01 BU 153.

The remainder of this paper is as follows. In Section II,
the system model and notation is introduced. In order to
simplify later derivation we recall the linear ZF and MMSE
filter and introduce an extended system model in Section III.
The detection of BLAST systems using the QR decomposition
of the channel matrix is investigated in Section IV. The
computational effort and the performance analysis are given
in Section V and VI, respectively. Concluding remarks can be
found in Section VII.

II. SYSTEM DESCRIPTION

We consider a multiple antenna system with nT transmit
and nR ≥ nT receive antennas. The data is demultiplexed
into nT data substreams of equal length (called layers). These
substreams are optionally encoded by a convolutional code
(CC), bit-interleaved, mapped onto M -PSK or M -QAM sym-
bols si and transmitted over the nT antennas simultaneously.
For simplicity we will assume uncoded substreams for the
derivation of the detection algorithms, but will investigate the
performance of coded and uncoded systems in Section VI.
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Fig. 1. Model of a MIMO system with nT transmit and nR receive antennas.

In order to describe the MIMO system, one time slot of
the time-discrete complex baseband model is investigated.
Let1 s = [s1 . . . snT

]T denote the nT × 1 transmit signal
vector, then the corresponding nR ×1 receive signal vector
x = [x1 . . . xnR

]T is given by

x = Hs + n . (1)

In (1), n = [n1 . . . nnR
]T represents white gaussian noise

of variance σ2
n observed at the nR receive antennas while

1Throughout this paper, (·)T and (·)H denote matrix transpose and
hermitian transpose, respectively. Furthermore, Iα indicates the α×α identity
matrix and 0α,β denotes the α × β all zero matrix.



the average transmit power of each antenna is normalized
to one, i.e. E

{

ssH
}

= InT
and E

{

nnH
}

= σ2
nInR

. The
nR × nT channel matrix H contains uncorrelated complex
gaussian fading gains with unit variance. We assume a flat
fading environment, where the channel matrix H is constant
over a frame and changes independently from frame to frame
(block fading channel). The distinct fading gains are assumed
to be perfectly known by the receiver.

In order to detect the transmitted information, it would
be optimal to use a maximum-likelihood (ML) detector. As
the computational effort is of order MnT , ML detection
is not feasible for larger number of transmit antennas or
higher modulation schemes. Therefore, we present suboptimal
detection schemes with reduced complexity in the following
sections.

III. LINEAR DETECTION

In this section we recall the linear detection with respect
to the zero-forcing (ZF) and to the minimum-mean-square-
error (MMSE) criterion. By introducing an extended system
model, we show the similarity of both criteria. This analogy
will play a key role for the introduction of the MMSE based
QR detection algorithm in Section IV.

A. Zero-Forcing Detector (ZF)

In a linear detector, the receive signal vector x is multiplied
with a filter matrix G, followed by a parallel decision on
all layers. Zero-forcing means that the mutual interference
between the layers shall be perfectly suppressed. This is
accomplished by the Moore-Penrose pseudo-inverse (denoted
by (·)+) of the channel matrix [6]

GZF = H+ =
(

HHH
)

−1
HH , (2)

where we assumed that H has full column rank. The decision
step consists of mapping each element of the filter output
vector

s̃ZF = GZFx = H+x = s +
(

HHH
)

−1
HHn (3)

onto an element of the symbol alphabet by a minimum
distance quantization. The estimation errors of the different
layers correspond to the main diagonal elements of the error
covariance matrix

ΦZF = E
{

(̃sZF − s)(̃sZF − s)H
}

= σ2
n

(

HHH
)

−1
(4)

which equals the covariance matrix of the noise after the
receive filter. It is obvious that small eigenvalues of HHH will
lead to large errors due to noise amplification. This effect is
especially observed in systems with equal number of transmit
and receive antennas. In fact, using a result from random
matrix theory [7], it can be shown that in the large system
limit for nT = nR → ∞ the noise amplification tends to
infinity almost surely. In order to improve the performance the
noise term can be included in the design of the filter matrix
G. This is done by the MMSE detection scheme, where the
filter represents a trade-off between noise amplification and
interference suppression.

B. MMSE Detector

The MMSE detector minimizes the mean squared error
(MSE) between the actually transmitted symbols and the
output of the linear detector and leads to the filter matrix [6]

GMMSE =
(

HHH + σ2
nInT

)

−1
HH . (5)

The resulting filter output is given by

s̃MMSE = GMMSEx =
(

HHH + σ2
nInT

)

−1
HHx . (6)

The estimation errors of the different layers correspond to the
main diagonal elements of the error covariance matrix

ΦMMSE = E
{

(̃sMMSE − s)(̃sMMSE − s)H
}

(7)

= σ2
n

(

HHH + σ2
nInT

)

−1
.

With the definition of a (nT +nR)×nT extended channel matrix
H and a (nT + nR)×1 extended receive vector x through

H =

[

H

σnInT

]

and x =

[

x

0nT ,1

]

, (8)

the output of the MMSE filter given by (6) can be rewritten
as

s̃MMSE =
(

HHH
)

−1

HHx = H+x . (9)

Furthermore, the error covariance matrix (7) becomes

ΦMMSE = σ2
n

(

HHH
)

−1

= σ2
nH+H+H . (10)

Comparing (9) and (10) to the corresponding expression for
linear zero-forcing detector in (3) and (4), the only difference
is that the channel matrix H has been replaced by H. This ob-
servation is extremely important for incorporating the MMSE
criterion into the SQRD based detection algorithm.

IV. BLAST DETECTION

The V-BLAST detection algorithm [1] bases on the linear
zero-forcing solution, but detects the signals one after another
and not in parallel. In order to achieve the best performance,
it is optimal to choose always the layer with the largest
post detection signal-to-noise-ratio (SNR), or equivalently with
the smallest estimation error. The adaptation to the MMSE
criterion was presented in [4], [5], where the optimal sequence
maximizes the signal-to-interference-and-noise ratio (SINR)
in each detection step. The main drawback of the V-BLAST
detection algorithms lies in the computational complexity, as
it requires multiple calculations of the pseudo-inverse of the
channel matrix [3].

A. Zero-Forcing BLAST with QR Decomposition

It was shown in several publications, e.g. [2], [3], [8], that
the ZF-BLAST algorithm can be restated in terms of the QR
decomposition of the channel matrix H = QR, where the
nR ×nT matrix Q has orthogonal columns with unit norm
and the nT×nT matrix R is upper triangular. Multiplying the
received signal x with QH yields the sufficient statistic

s̃ = QHx = Rs + η (11)



for the estimation of transmit vector s. As Q is an unitary
matrix, the statistical properties of the noise term η = QHn

remain unchanged. Due to the upper triangular structure of R,
the k-th element of s̃ is given by

s̃k = rk,k · sk +

nT
∑

i=k+1

rk,i · si + ηk (12)

and is free of interference from layers 1, . . . , k − 1. Thus,
s̃nT

is totally free of interference and can be used to estimate
snT

after appropriate scaling with 1/rnT ,nT
. Proceeding with

s̃nT−1, . . . , s̃1 and assuming correct previous decisions, the
interference can be perfectly cancelled in each step. Then it
follows from (12) that the SNR of layer k is determined by
the diagonal element |rk,k|

2.
As already mentioned, the detection sequence is crucial

due to the risk of error propagation. It can be modified by
permuting elements of s and the corresponding columns of H

prior to the QR decomposition, leading to different matrices
Q and R [3]. In order to find the optimum sequence, |rk,k|,
which represents the component of the column vector hk that
is perpendicular to the space spanned by h1, . . . ,hk−1, needs
to be maximized for k = nT , . . . , 1. This may be accom-
plished in a straight forward way by performing O(n2

T /2)
QR decompositions of permutations of H [9]. The heuristic
approach ZF-SQRD does not assure the optimal order and
therefore leads to a small performance degradation but with
only of a fraction of computational complexity [2], [3]. After
introducing the QR based MMSE detection, we will present
the extension of ZF-SQRD to the MMSE criterion.

B. MMSE QR Detection

In order to extend the QR based detection with respect to
the MMSE criterion, we can apply the similarity of ZF and
MMSE detection noted in Section III-B. We introduce the QR
decomposition of the extended channel matrix (8)

H =

[

H

σnInT

]

= QR =

[

Q1

Q2

]

R =

[

Q1R

Q2R

]

, (13)

where the (nT +nR)×nT matrix Q with orthonormal columns
was partitioned into the nR×nT matrix Q1 and the nT ×nT

matrix Q2. Obviously,

QHH = QH
1 H + σnQH

2 = R (14)

holds and from the relation σnInT
= Q2R it follows that

R−1 =
1

σn

Q2 , (15)

i.e. the inverse R−1 is a byproduct of the QR decomposition
and Q2 is an upper triangular matrix. This relation will be
useful for the post-sorting algorithm proposed in Section IV-
D. Using (15) and (14), the filtered receive vector becomes

s̃ = QHx = QH
1 x = Rs − σnQH

2 s + QH
1 n . (16)

The second term on the right hand side of (16) including the
lower triangular matrix QH

2 constitutes the remaining interfer-
ence that can not be removed by the successive interference

cancellation procedure. This points out the trade-off between
noise amplification and interference suppression.

The optimum detection sequence now maximizes the signal-
to-interference-and-noise ratio (SINR) for each layer, leading
to minimal estimation error for the corresponding detection
step. The estimation errors of the different layers in the first
detection step correspond to the diagonal elements of the error
covariance matrix (10)

Φ = σ2
n

(

HHH
)

−1

= σ2
nR−1R−H . (17)

The estimation error after perfect interference cancellation
is given by σ2

n/|rk,k|
2. Thus, it is again optimal to choose

the permutation that maximizes |rk,k| in each detection step.
The algorithm proposed in the next section determines an
optimized detection sequence within a single sorted QR de-
composition and thereby significantly reduces the computa-
tional complexity in comparison to standard MMSE-BLAST
algorithms.

C. MMSE Sorted QR Decomposition (MMSE-SQRD)

In order to obtain the optimal detection order, first |rnT ,nT
|

has to be maximized over all possible permutations of the
columns of the extended channel matrix H, followed by
|rnT−1,nT−1|, and so on. Unfortunately, using standard al-
gorithms for the QR decomposition, the diagonal elements of
R are calculated just in the opposite order, starting with r1,1.
This makes finding the optimal order of detection a difficult
task.

A heuristic approach of arranging the order of detection into
the QR decomposition for the ZF detection was presented in
[2], [3]. This sorted QR decomposition algorithm is basically
an extension to the modified Gram-Schmidt procedure by
reordering the columns of the channel matrix prior to each
orthogonalization step. In the sequel we present an adapted
version of this algorithm for MMSE detection.

The fundamental idea is that |rk,k| is minimized in the order
it is computed (1, . . . , nT ) instead of being maximized in the
order of detection (nT , . . . , 1). This is motivated by the fact
that the layers detected last affect only few other layers through
error propagation and may therefore have rather small SINR’s,
which increases the probability of large SINR’s in the first
layers. Now, r1,1 is simply the norm of the column vector
h1, so the first optimization in the SQRD algorithm consists
merely of permuting the column of H with minimum norm
to this position. During the following orthogonalization of the
vectors h2, . . . ,hnT

with respect to the normalized vector h1,
the first row of R is obtained. Next, r2,2 is determined in
a similar fashion from the remaining nT − 1 orthogonalized
vectors, et cetera. Thereby, the extended channel matrix H is
successively transformed into the matrix Q associated with the
desired ordering, while the corresponding R is calculated row
by row. Note that the column norms have to be calculated only
once in the beginning and can be easily updated afterwards.
Hence, the computational overhead due to sorting is negligible.
An in-place-description of the whole MMSE-SQRD algorithm



is given in Tab. 1, with q
i

indicating column i of Q and vector
p denoting the permutation of the columns of H.

Tab. 1 MMSE-SQRD ALGORITHM

(1) R = 0, Q = H, p = (1, . . . , nT )
(2) for i = 1, . . . , nT

(3) normi = ‖q
i
‖2

(4) end
(5) for i = 1, . . . , nT

(6) ki = arg min`=i,...,nT
norm`

(7) exchange columns i and ki in R, p, norm and in the first
nR + i − 1 rows of Q

(8) ri,i =
√

normi

(9) q
i
:= q

i
/ri,i

(10) for k = i + 1, . . . , nT

(11) ri,k = qH

i
· q

k

(12) q
k

:= q
k
− ri,k · q

i

(13) normk := normk − r2

i,k

(14) end
(15) end

It should be emphasized that MMSE-SQRD does not always
lead to the perfect detection sequence, but in many cases of
interest the performance degradation is small compared to the
reduced complexity. Furthermore, whenever MMSE-SQRD
fails to find the optimal order, the post-sorting algorithm
described in the sequel may be applied. It assures the optimal
sorting and thereby achieves the same performance as MMSE-
BLAST.

D. Post-Sorting-Algorithm (PSA)

In order to introduce the Post-Sorting-Algorithm (PSA), we
investigate the structure of the error covariance matrix in case
of optimal sorting in more detail. Due to the relation (15) the
error covariance matrix (17) is given by

Φ = Q2Q
H
2 (18)

and Q2 is a square root of Φ [5]. As Q2 is upper triangular,
the k-th diagonal element of Φ is proportional to the norm of
the k-th row of Q2. Recalling the optimal ordering criterion,
the last row of Q2 must have minimum norm of all rows.
Assume that this condition is fulfilled, then the last row of
the upper left nT − 1 × nT − 1 submatrix of Q2 must have
minimum norm of all rows of this submatrix. In case of the
correct sorting this condition is accomplished by all upper left
submatrices.

Now assume that this condition is not fulfilled for the matrix
Q2. Then the row with minimum norm and the last row (as
well as the corresponding elements of p) need to be exchanged
at the expense of destroying the upper triangular structure.
However, by right multiplying the permuted version of Q2

with a proper unitary nT ×nT Householder reflection matrix2

2The Householder matrix for a 1×n row vector a with complex elements
is given by Θ = In − (1 + w)uHu with the definitions u =

a−‖a‖ en

‖a−‖a‖ en‖
,

en = [01,n−1 1] and w = ua
H

au
H

. Thus, aΘ = [01,n−1 ‖a‖] holds.

Θ, a block triangular matrix is achieved. Finally, Q1 has to be
updated to Q1Θ. Instead of permuting columns of R and left
multiplying with ΘH in each step, we can alternatively invert
Q2 at the end of the PSA, due to the relation R = 1/σnQ−1

2 .
These ordering and reflection steps are then iterated for the

upper left (nT − 1)×(nT − 1) submatrix of the such modified
matrix Q2 and the first nT −1 columns of the new matrix Q1,
resulting in the QR decomposition of the optimally ordered
channel matrix H. The whole post-sorting algorithm is given
in3 Tab. 2.

Tab. 2 POST-SORTING ALGORITHM

(1) kmin = nT

(2) for i = nT , . . . , 2
(3) for ` = 1, . . . , i
(4) error` = ‖Q2(`, 1 : i)‖2

(5) end
(6) ki = arg min`=1,...,i error`

(7) kmin = min(kmin, ki)

(8) if ki < i
(9) exchange rows i and ki in Q2 and col. i and ki in p
(10) end
(11) if kmin < i
(12) calculate Householder reflector Θ such that elements

of Q2(i, kmin : i − 1) become zero
(13) Q2(1 : i, kmin : i) := Q2(1 : i, kmin : i)Θ
(14) Q1(:, kmin : i) := Q1(:, kmin : i)Θ
(15) end
(16) end
(17) R = 1/σnQ−1

2

V. COMPUTATIONAL EFFORT

In this section we investigate the computational effort of the
proposed sorting algorithm. Therefore, the complex floating
point operations (flops) f are specified according to the
number of transmit and receive antennas. For simplicity, we
count each addition as one flop and each multiplication as
three flops. The MMSE-SQRD requires

fSQRD =
4

3
n3

T + 4n2
T nR +

1

3
n2

T + 2nT nR +
25

6
nT

flops. The overhead in comparison to an unsorted QR decom-
position is very small, only 2n2

T − 2nT additional operations
are necessary when the sorting steps are included in the
decomposition. For the PSA the computational effort depends
on the required number of permutations. We get an upper
bound for the complexity by ignoring the upper triangular
structure of Q2. In this case,

fPSA =
14

3
n3

T +4n2
T nR +

27

2
n2

T +3nT nR +
89

6
nT −7nR−30

complex floating point operations are necessary. The computa-
tional effort of the Hassibi approach [5] can be approximated
by fSQRD+fPSA. In case of MMSE-SQRD an optimized sorting
is already given by the decomposition. Consequently, the PSA

3A(a : b, c : d) denotes the submatrix of A with elements from rows
a, . . . , b and columns c, . . . , d.



is only required in a fraction of all transmissions and therefore
the complexity of the Hassibi approach serves as an upper
bound for the expected overall complexity.
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Fig. 2. Number of operations f in flops for unsorted MMSE-QRD, MMSE-
SQRD and the algorithm by Hassibi [5].

Fig. 2 shows the required number of complex floating
point operations for the unsorted MMSE-QR decomposition,
the SQRD and the Hassibi approach for varying number of
nT = nR antennas. Obviously the computational overhead
of SQRD is extremely small and a significant reduction in
comparison to the worst-case can be observed.

VI. PERFORMANCE ANALYSIS

In this section, we investigate the frame error rates (FER)
for a MIMO system with nT = 4 transmit and nR = 4
receive antennas and QPSK modulation. We compare uncoded
data streams and encoded streams, where the half rate (7, 5)8
convolutional code was used in each layer. Eb denotes the
average energy per information bit arriving at the receiver,
thus Eb/N0 = nR/(Rc log2(M)σ2

n) holds. Fig. 3 shows
the performance of MMSE-BLAST and MMSE-SQRD, both
uncoded and coded.
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Fig. 3. Frame Error Rate of a system with nT = 4 and nR = 4 antennas,
frame length L = 100, QPSK symbols, uncoded (continuous line) and
convolutional encoded (dotted line) substreams.

Comparing the simulation results of uncoded transmission,
the successive detection schemes achieve an improved per-
formance in comparison to the linear MMSE detector. The

strong impact of ordering becomes obvious by comparing
the unsorted (MMSE-QRD) and the schemes with optimized
detection order. As the MMSE-SQRD does not assure the
optimal order, a performance gap between MMSE-BLAST and
MMSE-SQRD is observed. This gap is completely closed by
applying the post-sorting algorithm, as MMSE-BLAST and
MMSE-SQRD-PSA find the same detection sequence.

However, for the coded system the performance loss of
MMSE-SQRD reduces to approximately 1 dB for a FER of
10−3 and is negligible for a FER of 10−2. On the other side,
the gain in comparison to the coded MMSE-QRD is enormous.
These observations can be explained in the following way.
The sorting maximizes the minimum SINR of all layers [8]
and thereby the operation point of the convolutional code
is achieved. As the effect of error propagation is reduced
by the application of forward error correction codes, the
influence of suboptimal sorting decreases. Thus, in many cases
of interest, the MMSE-SQRD would be the first choice for
implementation due to the reduced complexity.

VII. SUMMARY AND CONCLUSIONS

We have proposed a new detection algorithm for V-BLAST
systems with respect to the MMSE criterion. The algorithm
utilizes an optimized QR decomposition of the channel matrix
and leads to a simple successive detection. For those cases,
where MMSE-SQRD does not find the correct ordering, a
reordering can easily be applied, thereby resulting in an
optimum algorithm with reduced complexity. However, for
coded transmission, the performance degradation of MMSE-
SQRD compared to MMSE-BLAST is negligible.
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