VTC2003-Fall, Orlando, Florida, 6-9 October 2003

MMSE Extension of V-BLAST based on Sorted QR Decomposition

Dirk Wübben, Ronald Böhnke, Volker Kühn, and Karl-Dirk Kammeyer

Department of Communications Engineering University of Bremen www.ant.uni-bremen.de

Outline:

- System model
- MMSE detector utilizing QR decomposition of the channel matrix
- Criterion for optimum detection ordering
 - Sorted QR Decomposition
 - Post-Sorting-Algorithm
- Investigation of computational effort and performance comparison
- Summary

V-BLAST Architecture

MIMO system with n_T transmit and $n_R \ge n_T$ receive antennas

Ordered Successive Interference Cancellation (O-SIC)

- V-BLAST requires multiple calculation of pseudo-inverse \rightarrow high comput. effort
- QR based SIC utilizes decomposition H=QR and computes $\tilde{s} = Q^{H}x = Rs + \tilde{n}$
- Due to upper triangular structure of **R**, filter output signal \tilde{s} is partially free of interference and can be detected layer by layer in the sequence: n_T , n_T -1, ..., 1
- General Problems:
 - ZF leads to noise enhancement \rightarrow detector with MMSE criterion is favorable
 - Efficient algorithm to incorporate ordering into QR-based SIC

Relation between Linear MMSE and Linear ZF

- No obvious way to extend QR-based SIC to MMSE criterion
- Relation between linear MMSE detector and linear ZF detector
 - MMSE minimizes the mean squared error between the transmit vector s and the output of a linear detector G
 - Layers are detected by threshold decision of filter output signals

$$\tilde{\mathbf{s}} = \mathbf{G}\mathbf{x} = \left(\mathbf{H}^{H}\mathbf{H} + \mathbf{s}_{n}^{2}\mathbf{I}_{n_{T}}\right)^{-1}\mathbf{H}^{H}\mathbf{x}$$

Error covariance matrix

 Definition of (n_T+n_R) x n_T extended channel matrix and (n_T+n_R) x 1 extended receive vector

$$= \begin{bmatrix} \mathbf{H} \\ \mathbf{s}_{n} \mathbf{I}_{n_{T}} \end{bmatrix} \qquad \underline{\mathbf{x}} = \begin{bmatrix} \mathbf{x} \\ \mathbf{0}_{n_{T},1} \end{bmatrix} = \underline{\mathbf{H}} \mathbf{s} + \underline{\mathbf{n}} \qquad \qquad \mathbf{M} \mathbf{M} \mathbf{SE} = \mathbf{ZF} \text{ with respect to } \underline{\mathbf{H}}$$

 $\implies \tilde{\mathbf{s}} = \left(\underline{\mathbf{H}}^H \underline{\mathbf{H}}\right)^{-1} \underline{\mathbf{H}}^H \underline{\mathbf{x}} = \underline{\mathbf{H}}^+ \underline{\mathbf{x}}$

MMSE Detection with QR Decomposition

QR decomposition of extended channel matrix

 \mathbf{Q}_2 is an upper triangular matrix

• Relation 2:

$$\mathbf{Q}^{H}\mathbf{\underline{H}} = \mathbf{\underline{R}} = \mathbf{Q}_{1}^{H}\mathbf{\underline{H}} + \mathbf{s}_{n}\mathbf{Q}_{2}^{H}$$

$$\mathbf{Q}_1^H \mathbf{H} = \mathbf{\underline{R}} - \mathbf{s}_n \mathbf{Q}_2^H$$

Filtered receive vector

 $\tilde{\mathbf{s}} = \mathbf{Q}^H \underline{\mathbf{x}} = \mathbf{Q}_1^H \mathbf{x} = \underline{\mathbf{R}} \mathbf{s} + \mathbf{Q}_1^H \mathbf{n} - \underline{s}_n \mathbf{Q}_2^H \mathbf{s}$

- Last term constitutes the remaining interference that can not be removed
- Points out the trade-off between noise amplification and interference suppression

Optimum Detection Order

- Within QR-based O-SIC the order of detection can be arranged by exchanging the elements in s and the corresponding columns of <u>H</u>
 → leads to different QR decompositions
- > Investigation of error covariance matrix using $\mathbf{H} = \mathbf{Q}\mathbf{R}$

- F(k,k) gives estimation error for s_k after perfect interference cancellation and is proportional to the inverse of the diagonal element <u>r_{k,k}</u>
- Optimum sorting requires, that the SNR_k is maximized ($\mathbf{F}(k,k)$ is minimized) in order of detection (n_T , n_T -1, ..., 1)
 - → The optimum column permutation of <u>**H**</u> maximizes the diagonal elements $\underline{r}_{k,k}$ in this decreasing sequence $(n_T, n_T-1, ..., 1)$
- Brute Force approach calculates $n_T(n_T+1)/2-1$ different QR decompositions!

Sorted QR Decomposition (SQRD)

Modified Gram-Schmidt algorithm for QR decomposition

- Triangular matrix **<u>R</u>** is computed row by row from top to bottom $(1, ..., n_T)$
- ♦ Order of decomposition is just contrary to the ordering criterion of SIC
 → impossible to find always the optimum order within one QR Decomposition

Sorted QR Decomposition

• The determinant of the Gram matrix $\underline{\mathbf{H}}^{H}\underline{\mathbf{H}}$ is invariant to column exchanges in $\underline{\mathbf{H}}$

 $\det\left(\underline{\mathbf{H}}^{H}\underline{\mathbf{H}}\right) = \left[\det\left(\underline{\mathbf{R}}\right)\right]^{2} = \prod_{k=1}^{n_{T}} \underline{r}_{k,k}^{2} = const. \qquad \Longrightarrow \quad \text{product of } \underline{r}_{k,k} \text{ is constant}$

- Basic idea: Exchange the columns to *minimize* the diagonal elements <u>r</u>_{k,k} in order of their calculation
- As the product is constant, small <u>r</u>_{k,k} in the upper left part lead to large elements in the lower right part of <u>R</u>
- Only very small computational effort additional to unsorted QRD
- SQRD optimizes detection sequence within the QR decomposition, but does not always lead to the perfect detection sequence → Post-Sorting-Algorithm

Post-Sorting-Algorithm (PSA)

Investigation of error covariance matrix in case of optimal sorting

 $\mathbf{F} = \mathbf{s}_n^2 \left(\mathbf{R}^H \mathbf{R}\right)^{-1} = \mathbf{Q}_2 \mathbf{Q}_2^H$ $\mathbf{F}(k,k)$ is proportional to k-th row norm of \mathbf{Q}_2

- Due to detection order, last row of Q₂ must have minimum norm of all rows
- If this condition is fulfilled, the last row of the upper left $(n_T-1)x(n_T-1)$ submatrix of \mathbf{Q}_2 must have minimum norm of all rows in this submatrix, ...
- Now assume, that this condition is not fulfilled for \mathbf{Q}_2

	1. Iteration	2. Iteration	3. Iteration
Row with _ min. norm	→		
Exchange rows			
Block triangular structure			

- Exchange row with minimum norm & last row \rightarrow destroys triangular structure
- Block triangular structure is achieved by right multiplication with unitary Housholder matrix **Q** (also calculate $\mathbf{Q}_1 \mathbf{Q}$)
- Iterate this ordering and reflection steps for upper left $(n_T-1)x(n_T-1)$ submatrix of \mathbf{Q}_2, \ldots

Achieves optimally ordered QRD of H!

Computational Effort for Sorting Algorithms

Count each addition as one flop and each multiplication as three flops

- Overhead of SQRD in comparison to QRD is marginal: $f_{SQRD} = f_{QRD} + 2(n_T^2 n_T)$
- ◆ The effort of PSA depends on number of required permutations → upper bounded by ignoring the upper triangular structure of Q_2 : f_{PSA}
- ◆ Hassibi's Square-Root approach utilizes a common QRD, explicitly computes <u>**R**</u>⁻¹ and ignores structure of **Q**₂: $f_{\text{Hassibi}} \approx f_{\text{SQRD}} + f_{\text{PSA}}$

MMSE-SQRD + PSA:

SQRD already achieves an optimized sorting, thus PSA is only required in fraction of all transmissions (≈20%)

 \rightarrow worst case effort is given by f_{Hassibi}

A very efficient and adjustable algorithm is achieved!

Simulation Results for $n_T = n_R = 4$ and QPSK

- Order of detection has strong impact
- Up to 10 dB only small performance loss for **MMSE-SQRD**
- Combination of MMSE-SQRD and PSA exactly achieves V-BLAST performance

FER of encoded transmission, (7,5)-CC

- Coded schemes provide large gain
- Only small performance loss for coded MMSE-SQRD (1 dB for FER of 10⁻³)
- For coded schemes enormous gain of MMSE-SQRD to unsorted MMSE-QRD

Summary

- Unified framework for ZF and MMSE detection of V-BLAST
 - Ordered SIC based on QR decomposition
 - Equivalence of MMSE and ZF solutions by introducing extended system model
 - QR-based MMSE detection scheme is achieved due to this equivalence
- Sorted QR Decomposition (SQRD)
 - Sorted extension of Gram-Schmidt algorithm
 - Achieves enormous gain in comparison to unsorted QRD with small computational overhead
 - Requires less computational effort with only small degradation in error performance compared to V-BLAST
 - For coded transmission, performance degradation is marginal

Post-Sorting-Algorithm (PSA)

Perfectly closes the performance gap with minimum computational complexity

