
Signal Processing 83 (2003) 1643–1659

www.elsevier.com/locate/sigpro

Impulse shortening and equalization of frequency-selective
MIMO channels with respect to layered space–time

architectures�

Dirk W.ubbena ;∗, Karl-Dirk Kammeyera

aDepartment of Communications Engineering, University of Bremen, P.O.Box 33 04 40, 28334 Bremen, Germany

Received 15 September 2002; received in revised form 17 December 2002

Dedicated to Prof. em. Dr.-Ing., Dr.-Ing.e.h., Dr. techn.e.h. Hans Wilhelm Sch.u6ler on occasion of his 75th birthday

Abstract

Multiple antenna systems may be used in fading environments to exploit an enormous capacity advantage. Most of
the coding schemes and transmission architectures published so far have been restricted to non-frequency-selective fading
channels. For adopting these narrowband schemes to frequency-selective environments, appropriate algorithms to mitigate
the in9uence of inter-layer interference and intersymbol interference have to be investigated. In this paper, we give a survey
of existing algorithms to shorten the e:ective channel impulse response and to equalize frequency-selective MIMO channels.
In addition, a successive detection algorithm similar to V-BLAST is viewed and a new improved iterative algorithm is
proposed. This algorithm is called Frequency-Selective Backward Iterative cancellation and achieves an enlarged detection
diversity. The main object of this investigation is to represent the di:erent systematics and to compare these schemes with
respect to simulated bit error rates.
? 2003 Elsevier Science B.V. All rights reserved.

1. Introduction

In a Rayleigh fading environment multiple antenna
systems provide an enormous increase in capacity
compared to single antenna systems [20]. Conse-
quently, multiple-input multiple-output (MIMO)
systems are predestined for high data rate wireless
communications. To exploit this potential, Foschini
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proposed a MIMO system containing a diagonally
layered coding structure named D-BLAST (Diago-
nal Bell Labs Layered Space Time) [12]. A simpli-
Ked scheme was proposed in [22] and is known as
V-BLAST (Vertical BLAST), which associates each
layer with a speciKc transmit antenna.

Recently, a discussion started to consider these al-
gorithms also in the broadband regime where the sig-
nal bandwidth exceeds the coherence bandwidth of
the channel. Therefore, appropriate algorithms to mit-
igate the in9uence of ILI (inter-layer interference) and
ISI (intersymbol interference) for each transmit signal
have to be investigated. From the literature di:erent
approaches are known: MLSE in space–time-domain,
orthogonal frequency division multiplexing (OFDM),
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equalization in frequency-domain, and equalization in
time-domain. The Krst approach has been proposed in
[21] utilizing a vector version of the Viterbi algorithm
but su:ers from an enormous complexity. The second
approach transforms the frequency-selective MIMO
channel into a large number of parallel and approxi-
mately 9at-fading MIMO channels using the inverse
fast Fourier transform (IFFT) at the transmitter and the
FFT at the receiver [15,18]. A comparative study of
equalization schemes in the frequency-domain utiliz-
ing the FFT and IFFT, but both at the receiver, is given
in [9]. In this paper we concentrate on the fourth ap-
proach, i.e., equalization in time-domain using a FIR
Klter at the receiver for impulse shortening.

Impulse shortening algorithms using a FIR pre-Klter
at the receiver have been well studied for single-input
single-output (SISO) transmission [2,11,14]. They
provide an elegant solution to shorten the (e:ective)
channel memory utilizing a time-domain equalizer
and results in a reduced number of states for a Viterbi
equalizer. 1 Due to the decreased number of states,
the computational complexity of the equalizer sig-
niKcantly diminishes. Furthermore, time-domain pre-
Klter can be used in OFDM transmission schemes to
reduce the required cyclic preKx length and there-
fore increases the data rate due to the reduced
overhead [19].

The extension of impulse shortening Klters to
MIMO channels has been presented in [1,3–6,17].
The proposed algorithms reduce the e:ective chan-
nel memory and may be used as preKlter for
MIMO-OFDM schemes. In addition, some of these
algorithms provide a MIMO-DFE structure and, con-
sequently, allow the immediate equalization of ILI
and ISI in space–time-domain.

Apart from these channel shortening algorithms,
an additional approach of using space-time Kl-
tering at the receiver has been proposed to de-
tect frequency-selective MIMO systems [16,17].
This scheme represents a generalization of the
V-BLAST detection algorithm for frequency-selective
fading channels. It is based on a multiple-input
single-output (MISO) decision feedback structure
to detect the distinct layers in a successive way.

1 Due to impulse shortening the Viterbi provides only
near-maximum-likelihood performance, thus the Viterbi is named
near MLSE (maximum-likelihood sequence estimator) detector.

We call it frequency-selective BLAST (FS-BLAST)
throughout this paper. An iterative extension of
this algorithm is proposed in the subsequent called
Frequency-Selective Backward Iterative Cancellation
(FS-BIC). This FS-BIC signiKcantly improves the
performance of FS-BLAST by increasing the detec-
tion diversity step-by-step.

The remainder of this paper is organized as fol-
lows. The MIMO system is described in Section 2 and
the impulse shortening algorithms are viewed in Sec-
tion 3. The Klter deKnitions are derived and the sys-
tem performance is evaluated by simulation results.
The FS-BLAST architecture and the new approach
FS-BIC are introduced in Section 4. The performance
of FS-BLAST is compared with the impulse shorten-
ing algorithms and the improvement of the iterative
scheme is investigated. A summary and conclusion
marks can be found in Section 5.

2. System description

2.1. Layered space–time architecture

We consider the frequency-selective (FS) multiple
antenna system with nT transmit and nR¿ nT receive
antennas shown in Fig. 1. The data is demultiplexed in
nT data substreams of equal length (called layers) and
these uncoded substreams are mapped into M -PSK or
M -QAM symbols. The data symbols are organized in
frames of equal length and are transmitted over the nT

antennas at the same time. The transmitter equals the
V-BLAST system [22–24] and is denoted as layered
space–time architecture.

To derive the input–output relation for this
frequency-selective transmission system, two di:erent
models are introduced in the subsequent paragraphs.

Fig. 1. Model of a frequency-selective MIMO system with nT

transmit and nR receive antennas.
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The Krst model describes the FS system as a linear
superposition of several 9at-fading MIMO systems,
whereas the second model uses a linear combination
of nT frequency-selective single-input multiple-output
(SIMO) systems.

2.2. MIMO input–output model

In order to describe the FS-MIMO system, we
denote the symbol transmitted by antenna m at
time instant k by sm(k) with average symbol en-
ergy �2

s and likewise the signal received at antenna
n is indicated by xn(k). The frequency-selective
single-input single-output (SISO) channel impulse
response (CIR) from transmit antenna m to receive
antenna n is given by the (L + 1) × 1 vector 2

hn;m = [hn;m(0) hn;m(1) : : : hn;m(L)]T. For simplic-
ity, we assume the same channel order L for all SISO
channels hn;m. It is further assumed that the channel
is constant over the frame length, but may change
from frame to frame (block fading channel) and is
perfectly known by the receiver. The power normal-
ization (E{‖hn;m‖2}=1) is used for the i.i.d. complex
channel coeOcients of each SISO channel. For this
each SISO channel is modelled by L statistically
independent Rayleigh fading processes with equal
average power (Fig. 1).

The nT transmitted symbols at time instant k are
collected in the nT × 1 vector

s(k) =



s1(k)

...

snT(k)


 (1)

and correspondingly the nR ×1 received signal vector

x(k) =



x1(k)

...

xnR (k)


 (2)

describes the nR received signals at the same time.
This receive vector contains a linear superposition of

2 Throughout the remainder, (·)∗; (·)T and (·)H denote the con-
jugation, the matrix transposition and the hermitian transposition,
respectively. Furthermore I
 indicates the 
 × 
 identity matrix
and 0
;� denotes the 
× � all zero matrix.

the delayed transmit vectors s(k − l) with tap delay
06 l6L and is calculated by

x(k) =
L∑
l=0

H(l)s(k − l) + n(k): (3)

In (3), n(k) labels the noise vector at the nR re-
ceive antennas at symbol time k, assuming uncor-
related white Gaussian noise and spatial covariance
E{n(k)nH(k)} = �2

nInR . The nR × nT MIMO matrix

H(l) =



h1;1(l) · · · h1; nT(l)

...
. . .

...

hnR ;1(l) · · · hnR ;nT(l)


 (4)

is a function of the index l, where 06 l6L. Thus,
the FS system is viewed as a superposition of
L + 1 non-frequency-selective MIMO systems and
noise. As an alternative, a second input–output model
as a superposition of nT SIMO transmissions is intro-
duced in the next paragraph.

2.3. SIMO input–output model

To describe the input–output relation between trans-
mit antenna m and all nR receive antennas the nR ×
(L+ 1) SIMO channel matrix

Hm =



hT

1;m

...

hT
nR ;m


 (5)

is deKned. With the sequence of L+ 1 symbols trans-
mitted by antenna m

sm(k) =




sm(k)

...

sm(k − L)


 (6)

the nR ×1 received signal vector x(k) in (2) becomes
a linear superposition of nT SIMO transmissions and
noise:

x(k) =
nT∑
m=1

Hmsm(k) + n(k): (7)

Of course, (7) corresponds to (3) as both equations
describe the same transmission scheme. The main
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di:erence lies in the alignment of the transmit sig-
nals and the channel coeOcients, respectively. As we
shall see in the derivation of the di:erent preKlters,
these two signal arrangements lead to compact Klter
deKnitions.

3. MIMO impulse shortening

3.1. Principle of impulse shortening

Reducing the e:ective length of a channel impulse
response by applying FIR Kltering at the receiver has
been adopted for SISO channels in a number of pub-
lications, e.g. [2,11,14]. The basic idea is to apply a
linear preKlter (called impulse shortening Klter, ISF)
at the receiver, so that the serial concatenation of the
transmission channel and the ISF has an overall im-
pulse response with less e:ective taps. Therefore the
Klter cascade can be described by a target impulse re-
sponse (TIR) with a shorter impulse response length,
which results in less computational e:ort for near
MLSE detection.

The idea of impulse truncation has also been
adopted for MIMO systems in several publications
(e.g. [1,3–6,17]) using a two dimensional space–time
Klter to reduce the e:ective channel memory. Con-
sequently, the aim of channel shortening is now to
transform the nR × nT MIMO system of order L into
a target system with nT transmit and nS equivalent
receive antennas 3 of order LS6L [5,6].

A block diagram of equalizing the received sig-
nal x(k) with a space–time preKlter W is shown in
Fig. 2, where B denotes the target impulse response
and k0 is an optional decision delay.

3.2. Filter design

In order to calculate the ISF and the TIR, the
MIMO input–output model deKned in Section 2.2 is
used. A impulse shortening scheme using the SIMO
model proposed in Section 2.3 has been derived
in [17].

3 The number of Klter output signals nS will be speciKed later
on in the derivation of the ISF and will be furthermore equated
to the number of transmit antennas nT for the detection schemes
viewed in Section 3.3.

Fig. 2. Block diagram of the MIMO impulse shortening scheme
deKned by the impulse shortening Klter W and the target impulse
response B.

3.2.1. Describing a sequence of received signals
To describe an input sequence of the MIMO im-

pulse shortening Klter W, the input–output relation in
(3) has to be extended to describe a sequence of re-
ceived signals. With regard to the ISF order N , we
denote the sequence of N + 1 received signals by the
nR(N + 1) × 1 vector

x(k) =




x(k)

...

x(k − N )


 (8)

and the sequence of N + L + 1 transmit vectors (1)
by the nT(N + L+ 1) × 1 vector

s(k) =




s(k)

...

s(k − N − L)


 : (9)

By deKning the nR(N + 1) × nT(N + L + 1) block
Toeplitz matrix

H =




H(0) · · · H(L) 0 0

0 H(0) · · · H(L)
...

...
...

0 · · · H(0) · · · H(L)




(10)

and the sequence of noise vectors n(k) we can calcu-
late the sequence of N + 1 received vectors by

x(k) =H s(k) + n(k): (11)

With respect to later derivations, we deKne the
nT(N + L+ 1)× nT(N + L+ 1) input autocorrelation
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matrixRss=E{s(k)sH(k)} and the nR(N+1)×nR(N+
1) noise correlation Rnn = E{n(k)nH(k)}. Both are
assumed to be nonsingular. Furthermore, we intro-
duce the nT(N + L + 1) × nR(N + 1) input–output
cross-correlation

Rsx = E{s(k)xH(k)}
= E{s(k)(H s(k) + n(k))H}
=RssHH (12)

and the nR(N +1)×nR(N +1) output autocorrelation

Rxx = E{x(k)xH(k)}
= E{(H s(k) + n(k))(H s(k) + n(k))H}
=HRssHH + Rnn: (13)

3.2.2. Derivation of impulse shortening ;lter W
As shown in Fig. 2, the sequence of received signals

x(k) is Kltered by a two-dimensional (space and time
domain) impulse shortening Klter W of order N . The
nS output signals of this ISF are calculated by

y(k) =
N∑
l=0

W(l)x(k − l) =Wx(k): (14)

with y(k) = [y1(k); : : : ; ynS (k)]
T denoting the nS × 1

output vector. The ISF is deKned by N + 1 Klter taps
W(l)

W(l) =



w1;1(l) · · · w1; nR (l)

...
...

...

wnS ;1(l) · · · wnS ;nR (l)


 (15)

each of dimension nS×nR and the complete space-time
Klter of dimension nS ×nR(N +1) is denoted by W=
[W(0) W(1) : : : W(N )]. A detailed block diagram
of MIMO Kltering for an ISF with nS =4 output layers
is shown in Fig. 3.

The cascade of the MIMO channel H and the ISF
W can be viewed as a MIMO channel with nT trans-
mit and nS equivalent receive antennas. For the special
case of nS = nT the space–time preKlter has been de-
rived in [1,4], whereas this restriction was relaxed in
[5,6]. We will use this relaxed condition for the Klter
derivation and specify it later on due to the di:erent
receiver structures.

Fig. 3. Space–time Kltering of the received signals x(k − l) with
N + 1 matrix taps W(l) to create nS = 4 output signals yi(k).

Obviously, the aim of designing the ISF W is to
equalize the given MIMO channel matrixH to a target
impulse response with LS6L matrix taps. This target
system is denoted by the nS × nT(LS +1) Klter matrix
B = [B(0) B(1) : : : B(LS)] containing the nS × nT

space-only matrix taps B(l)

B(l) =



b1;1(l) · · · b1; nT(l)

...
...

...

bnS ;1(l) · · · bnS ;nT(l)


 : (16)

The input of this Klter is given by the sequence of
LS + 1 transmit vectors delayed by k0 time steps. For
this we deKne the corresponding nT(LS +1)× 1 input
vector

s̃(k − k0) =




s(k − k0)
...

s(k − k0 − LS)


 = "k0s(k) (17)

which can be factorized into the window matrix 4

"k0 = [0nT(LS+1)×nTk0 InT(LS+1) 0nT(LS+1)×nT�] (18)

of dimension nT(LS+1)×nT(L+N+1) and the trans-
mit sequence s(k) introduced in (9). Consequently,
the aim of the window matrix is the extraction of
LS +1 consecutive transmit vectors from the sequence
of N + L + 1 transmit vectors, parameterized by the
delay k0. As already known for SISO impulse short-
ening, optimizing this delay k0 has a deep impact on
the performance of the receiver structure. Later on, the
minimization of the mean square error (MSE) is used

4 Parameter � is determined by � = N + L− LS − k0.
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to optimize the delay in the range 06 k06N + L−
LS which results in a maximum signal-to-noise ratio
(SNR) at the equalizer output [1,4].

Since the target system B considers only LS + 1
6L+ 1 taps for each SISO subchannel, an error be-
tween ISF output and TIR output occurs. To indicate
this error we deKne the nS×1 error vector (see Fig. 2)

e(k) =Bs̃(k − k0) −Wx(k)

=B"k0s(k) −Wx(k) (19)

= B̃s(k) −Wx(k) (20)

by applying (17) in the second line and utilizing the
deKnition

B̃= B"k0 = [0nS×nTk0 B 0nS×nT�] (21)

in the last line. Filter matrix B̃ is of dimension
nS × (N + L + 1) and represents the idealized serial
concatenation of H and W with nS output layers and
contains only LS + 1 e:ective matrix taps denoted
by B. In contrast, the real concatenation of H and
W generally leads to more than LS + 1 matrix taps
unequal to zero and thus a:ects the error vector e(k).

Using the deKnition of the error vector, the op-
timal Klter Wopt is calculated by using the orthog-
onality principle [13], which states that the optimal
error vector is orthogonal to the observed data, i.e.
E{e(k)xH(k)} = 0. Using (20) we obtain

E{e(k)xH(k)}= E{(B̃s(k) −Wx(k))xH(k)}
= B̃Rsx −WRxx = 0 (22)

with the input–output cross-correlation Rsx and the
output autocorrelation Rxx, respectively. By solving
(22) we achieve a well-deKned relation between the
two Klter matrices:

Wopt = B̃RsxR−1
xx

= B̃RssHH(HRssHH + Rnn)−1

= B̃(R−1
ss +HHR−1

nn H)−1HHR−1
nn ; (23)

where (12) and (13) were used in the second line.
The third line is achieved by means of the matrix
inversion lemma. 5 Consequently, for a given B̃ the
optimal preKlter Wopt is uniquely speciKed by (23)

5 A−1 − A−1B[DA−1B + C−1]−1DA−1 = (A + BCD)−1.

and from there we can concentrate on optimizing B̃ in
the sequel.

3.2.3. Derivation of target impulse response B
In order to derive the TIR B in the sense of min-

imizing the mean-square-error (MSE), the nS × nS

error autocorrelation matrix Ree=E{e(k)eH(k)} is in-
troduced to deKne the Klter output SNR [1].

SNRISF =
(1=nT(N + L+ 1)) trace(Rss)

1
nS

trace(Ree)
: (24)

The maximization of SNRISF is an appropriate con-
dition 6 to optimize the target impulse response B.
Assuming uncorrelated data Rss = �2

s InT(N+L+1) the
maximization of SNRISF obviously leads to minimiz-
ing the trace of Ree, which results in the general opti-
mization problem [1]

Bopt = arg min
B

trace (Ree): (25)

To avoid the trivial solution B = 0, this optimization
problem has to be solved with respect to additional
constraints. Some common constraints have been de-
rived in [1,4] and the resulting algorithms will be re-
called in Section 3.3. In advance, the structure of the
error autocorrelation is further investigated to get a
better insight into the optimization problem.

Using Wopt = B̃RsxR−1
xx from (23), we can describe

the error autocorrelation matrix by [1]

Ree = E{e(k)e(k)H}
= B̃(Rss − RsxR−1

xx R
H
sx)B̃

H (26)

= B̃R⊥B̃H; (27)

where the deKnition R⊥=Rss−RsxR−1
xx R

H
sx was intro-

duced in the last line. Using again (12) and (13) and
applying the matrix inversion lemma, we can write for
this nT(N + L+ 1) × nT(N + L+ 1) matrix

R⊥ =Rss − RsxR−1
xx R

H
sx

=Rss − RssHH(HRssHH + Rnn)−1HRss

= (R−1
ss +HHR−1

nn H)−1: (28)

6 The maximization of the SNR is not necessarily the optimum
criterion, since the MSE solution contains a bias [8,14]. Alterna-
tively, an unbiased criterion can be found by minimizing the bit
error probability.
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Fig. 4. Graphic interpretation of submatrix QR of R⊥ in dependence
of delay k0 and TIR order LS.

It is worth to note that R⊥ does not depend on k0 or
LS, so it needs to be computed only once for maximiz-
ing the SNRISF. The error-auto-correlation in (27) is
reformulated using the deKnition B̃=B"k0 from (21)

Ree = B̃R⊥B̃H = B̃"k0R
⊥"H

k0B
H

=B QRBH (29)

with QR="k0R
⊥"H

k0 being a nT(LS + 1)× nT(LS + 1)
submatrix of R⊥ parameterized by k0 and LS. The up-
per left element of QR corresponds to the (k0 +1)th di-
agonal element of R⊥, and the size of QR is determined
by LS. A graphic interpretation of this submatrix in
dependence of the delay parameter k0 and TIR order
LS is shown in Fig. 4 for a given number of transmit
antennas nT, Klter order N , and channel order L.

3.3. Shortening concepts and equalization strategies

In this section, di:erent constraints for solving
the optimization problem (25) are proposed. First,
the optimum shortening algorithm in the sense of
minimizing the trace (Ree) is introduced (called
ONC). This is the best solution, when the main
task is to shorten a MIMO channel [1]. As long
as the target system remains frequency-selective
(LS¿ 0), additional space-time equalizing techniques
or the use of MIMO-OFDM are necessary to de-
tect the transmitted signals. For the special case of
a non-frequency-selective target system (LS = 0) we

propose an easy detection scheme, being a kind of a
linear detection equalizer.

In addition to this optimum shortening algorithm,
two other constraints are presented (called ITC and
MLTC). These constraints directly allow a detection
of the transmitted signals by MIMO decision feedback
equalization (MIMO-DFE).

3.3.1. Orthogonality constraint (ONC)
Under the ONC, the target system B is constrained

to have orthogonal rows, i.e., BBH=InS . With this con-
straint the average energy of all layers at the output of
the ISF W are equal. Using the ordered eigendecom-
position of the nT(LS +1)×nT(LS +1) submatrix QR 7

QR =U&UH =U diag(�1; : : : ; �nT(LS+1))UH (30)

with �16 �26 · · ·6 �nT(LS+1), the error-auto-
correlation (29) becomes

Ree = B QRBH = BU&UHBH: (31)

The equalizer output SNR is maximized (correspond-
ingly, the trace of Ree is minimized) in the case of
Ree being a diagonal matrix [4], which results in the
condition

BU = [InS 0nS×nT(LS+1)−nS ] (32)

and consequently the optimum TIR and the error-
autocorrelation are given by

BONC
opt = [InS 0nS×nT(LS+1)−nS ]U

H (33)

RONC
ee;min = diag(�1; : : : ; �nS): (34)

As QR has nT(LS + 1) eigenvalues, the number of re-
ceive antennas nS of the target system B is limited by
nS6 nT(LS +1) and allowing nS¿nT may be used to
achieve an additional diversity gain depending on the
regarded MIMO transmission scheme and the applied
detection strategie [5].

As already mentioned, reducing the impulse length
with ONC Kltering requires an additional equal-
ization step for signal detection or the applica-
tion of MIMO-OFDM, in general. Nevertheless, a
non-frequency-selective TIR is achieved 8 by setting

7 diag(�1; : : : ; �
) denotes a 
 × 
 diagonal matrix with the
diagonal elements �1; : : : ; �
.

8 By equalizing the FS-MIMO system to a non-frequency-
selective system B with LS=0 the maximum number of equivalent
receive antennas nS is limited by nS6 nT(LS + 1) = nT.
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LS = 0 and to detect the layers of such a truncated
MIMO system, the well known V-BLAST algorithm
could be applied [22]. It generally detects the distinct
layers by a successive interference cancellation tech-
nique which nulls the interferer by linearly weighting
the received signal vector with a zero-forcing nulling
vector. By taking into account that B is a nT ×nT uni-
tary matrix BBH = BHB = InT the V-BLAST scheme
simpliKes, as the layers are already separated in space
and consequently the interference cancellation step
can be omitted. Using (19) withWx(k)=Bs̃(k−k0)−
e(k), the ISF output in (14) becomes

y(k) =Wx(k) = Bs̃(k − k0) − e(k): (35)

By multiplying the ISF output (35) with BH and con-
sidering s̃(k − k0) = s(k − k0) for LS = 0 a modiKed
received vector z(k)= [z1(k); : : : ; znT(k)]

T is achieved

z(k) =BHy(k)

=BHBs̃(k − k0) + BHe(k)

= s(k − k0) + Rn(k); (36)

with Rn(k) denoting a modiKed noise vector. The mod-
iKed received vector z(k) contains no ISI nor ILI, but
denotes an immediate measurement for transmit sig-
nal s(k−k0). Consequently, the transmitted layers can
easily be detected by applying an appropriate quan-
tization function to the elements of this modiKed re-
ceived vector. Summarizing this scheme, it yields an
equalization in space and time domain and can there-
fore be regarded as a linear equalizer.

3.3.2. Tap constraint (TC)
Under the tap constraint (TC), one matrix tap

B(�)(06 �6LS) of the TIR B is forced to be equal
to a determined matrix C of dimension nT×nT, which
immediately implies nS = nT. Therefore the optimiza-
tion problem (25) was solved in [4] with respect to
the constraint B(= C using the deKnitions 9

(=




0�nT×nT

InT

0(LS−�)nT×nT


 : (37)

9 With B(, matrix tap � of B is highlighted and the remaining
taps are cancelled.

The solution of this problem is given by

BTC
opt = C((H QR−1()−1(H QR−1 (38)

RTC
ee;min = C((H QR−1()−1C: (39)

To achieve not only an impulse shortening, but also a
scheme for detecting FS-MIMO systems, we further
specify this solution of the optimization problem (25)
by applying the tap constraint to the Krst matrix tap
of B, i.e., � = 0, or more speciKcally, B(0) = C. As
we shall see later on, this restriction allows eOcient
MIMO-DFE structures. For the special case of �= 0,
(37) becomes (= [InT 0nT×nTLS ]

T and with using the
partition 10

QR−1 =

[
R11 R12

RH
12 R22

]
(40)

the TIR structure can be viewed in detail. With these
deKnitions (38) becomes

BTC
opt; �=0 =C((H QR−1()−1(H QR−1

=CR−1
11 [R11 R12]

=C[InT R−1
11 R12] (41)

and the error-autocorrelation (39) simpliKes as

RTC
ee;min; �=0 =C((H QR−1()−1C

=CR−1
11 C: (42)

These equations indicate the general solution of the
optimization problem, when restricting B(0) to be
equal to a deKned matrix C. In this case, the output of
the ISF Klter is given by

y(k) =Cs(k − k0) +
LS∑
l=1

B(l)s(k − k0 − l) + Rn(k)

=Cs(k − k0) +
LS∑
l=1

B(l)ŝ(k − k0 − l) + Rn(k)

=Cs(k − k0) + d̂(k) + Rn(k) (43)

with d̂(k) denoting the interference of previously
transmitted signals assuming correct previous deci-
sions (ŝ(k−k0−l)=s(k−k0−l) for 16 l6LS) and

10 Matrix R11 is of dimension nT × nT.
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Fig. 5. Block diagram of the MIMO decision feedback equalizer.

Rn(k) indicating a modiKed noise vector. Subtracting
the estimated interference from the Klter output

z(k) = y(k) − d̂(k) = Cs(k − k0) + Rn(k); (44)

a direct measurement z(k) for the transmit signals
s(k − k0) is achieved, which can be detected utiliz-
ing an appropriate scheme according to the chosen
constraint matrix C. Hence, the in9uence of previ-
ously decisions are subtracted from the Klter output,
a MIMO-DFE 11 structure is achieved, as shown in
Fig. 5.

In the special case of a non-frequency-selective
TIR, i.e. by setting LS = 0, a linear equalizer (LE)
in time direction is already achieved by the impulse
shortening Klter. Consequently, the MIMO-DFE
structure simpliKes to a memoryless detector and the
signals are detected according to the structure of C.

Depending on the chosen constraint C, appropriate
schemes for detecting the transmitted signals s(k−k0)
on basis of z(k) have to be selected. In the sequel,
we will introduce two common constraints, specify
the solution of the optimization problem, and propose
corresponding detection schemes.

3.3.2.1. Identity tap constraint (ITC) The identity
tap constraint (ITC) chooses C to be equal to the iden-
tity matrix, i.e., C = InT = B(0). With this condition,
the ISF output (43) gets

y(k) = s(k − k0) + d̂(k) + Rn(k) (45)

and the detector input vector becomes

z(k) = y(k) − d̂(k) = s(k − k0) + Rn(k): (46)

This vector directly denotes a value to independently
estimate the signals s(k−k0), hence the signals are sep-
arated in space-domain. Using the restriction C= InT

11 In the context of CDMA an equivalent matrix DFE applying
inKnite impulse response Klter has been proposed in [10].

in (41) and (42) the TIR and the error-autocorrelation
becomes

BMMSE-DFE
opt = [InT R−1

11 R12]; (47)

RMMSE-DFE
ee;min = R−1

11 ; (48)

respectively, which correspond to the MIMO
MMSE-DFE structure studied in [3].

By determining LS = 0 a non-frequency-selective
TIR is achieved and the TIR is obviously given by

BLE
opt = InT : (49)

Thus a full equalization in space and time domain is
achieved by the impulse shortening Klter, which im-
plies a direct detection of the distinct layers. It is worth
to note that this linear equalization scheme and the lin-
ear equalization scheme for ONC shortening proposed
in Section 3.3.1 obtain the same bit error rate perfor-
mance as both methods perform a full equalization in
space–time-domain.

3.3.2.2. Monic lower triangular constraint (MLTC)
Instead of using the ITC condition, we now restrict
C = B(0) to be a monic 12 lower triangular matrix.
With the Cholesky factorizationR11=LDLH, whereL
is a monic lower triangular matrix and D is a diagonal
matrix, the error autocorrelation (42) becomes

RTC
ee;min; �=0 = CR−1

11 C= CL−HD−1L−1C: (50)

The optimum monic lower triangular matrix C=B(0)
that minimizes trace of (50) is given by the matrix
B(0) = L [4]. With this deKnition, the TIR and the
error-autocorrelation becomes

BMLTC
opt = [L D−1L−1R12] (51)

RMLTC
ee;min =D−1; (52)

respectively. For MLTC the Klter output signal in (43)
speciKes as

y(k) = Ls(k − k0) + d̂(k) + Rn(k) (53)

and an ISI-free signal can again be achieved by sub-
tracting the estimated interference in a MIMO-DFE
structure. Under the assumption of correct previous
decisions this detector input signal (44) gets

z(k) = Ls(k − k0) + Rn(k): (54)

12 A monic matrix has diagonal elements equal to one.
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Table 1
Overview of target impulse responses for ONC, ITC, and MLTC
constraint and appropriate detection schemes for di:erent TIR
order LS

Hence, L is a lower triangular matrix, z(k) is partly
free from ILI and can be detected by a successive
interference cancellation (SIC) technique, which ex-
ecutes a decision feedback equalization in space di-
rection. This method is similar to the detection of
non-frequency selective V-BLAST systems using the
QR decomposition of the channel matrix [23,24]. The
only di:erence concerns the order of detection, which
is from top to bottom 13 due to L being lower triangu-
lar. By restricting LS = 0 under MLTC condition the
MIMO-DFE structure simpliKes again to a memory-
less detector and the signals can directly be detected
using the SIC scheme.

3.3.3. Survey of the detection schemes
As an overview, Table 1 summarizes the di:er-

ent impulse shortening and equalization schemes
discussed so far. For the di:erent constraints, it graph-
ically shows the resulting target systems B for a TIR
order of LS¿ 0 and LS = 0. Comments about appro-
priate detection schemes are given in the last column.

13 Consequently, the sequence of detection is given by
s1(k − k0); s2(k − k0); : : : ; snT (k − k0).

It was shown in [1] that ONC impulse shorten-
ing always outperforms ITC in sense of maximizing
the SNRISF. Therefore it is the best solution for
reducing the number of e:ective taps. In general,
additional space–time equalization techniques like
MIMO-OFDM or frequency-domain equalization are
necessary for signal detection. In the special case of a
non-frequency-selective target system, a memory less
detector can be applied.

The ITC and the MLTC shortening algorithms are
a special case of the more general tap constraint. By
restricting the Krst tap of the target system to speciKc
values, both schemes can be used in a MIMO-DFE
structure. In case of ITC, the Krst tap is forced to an
identity matrix, which achieves a separation in space–
domain for the according transmit signal. By subtract-
ing previously detected signals from the Klter output
a modiKed signal that is free from ISI and ILI is ob-
tained, which can be decided by an appropriate quan-
tization function. For LS = 0 a complete separation in
space–time-domain is achieved and the signal can be
detected directly.

In contrast to ITC the second approach MLTC
achieves only a partly separation in space-domain and
requires a successive interference cancellation tech-
nique in addition to the MIMO-DFE structure. For
the speciKc case of a non-frequency-selective target
system the transmit signals can directly be detected
by using a SIC detector. In [4] it was shown, that
MLTC outperforms ITC in sense of SNRISF and ad-
ditionally, eOcient schemes optimizing the decision
delay k0 have been discussed.

3.4. Simulation results

In the sequel, we investigate the bit error rate (BER)
for a frequency-selective MIMO system with nT =
4; nR =6 antennas and uncoded QPSK modulation. Eb

denotes the average energy per information bit arriving
at the receiver, thus �2

s = log2(M)Eb=nR holds. For
a varying channel order L, Fig. 6 shows the BER of
ONC impulse shortening with Klter order N = 10 and
linear equalization according to (36). As a reference,
the BER of V-BLAST for a non-frequency-selective
MIMO channel (L= 0) is included.

The BER performance becomes worse with an in-
creasing number of matrix taps L due to an increas-
ing MSE. Shortening a channel of order L = 6 to
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Fig. 6. ONC shortening with Klter order N = 10 and linear equal-
ization for a varying MIMO channel order L.

Fig. 7. ONC shortening and linear equalization of a
frequency-selective MIMO channel of order L = 6 with varying
ISF order N .

a non-frequency-selective target system results in a
number of pre and post taps not neglected by the TIR,
which results in a remaining ISI and e:ects a noise
enhancement.

For the same receiver structure, the BER perfor-
mance for a MIMO system with channel order L= 6
and varying Klter order N is shown in Fig. 7. As ex-
pected, increasing the number of Klter taps N results
in an improved performance but on the expense of an

Fig. 8. ITC (solid lines) and MLTC (dotted lines) equalization of
a frequency-selective channel of order L = 6, Klter order N = 10
and varying TIR order LS. ONC with LS = 0 and memoryless
detector is denoted by dots.

increased computational complexity. The improve-
ment of the SNRISF with increasing N has been inves-
tigated in [1] and shows, that the SNRISF converges
to a determined value. Consequently, incrementing
the Klter order above N = 25 will only lead to a small
BER improvement for this example.

The performance of the decision feedback structures
ITC and MLTC, including the special case of linear
equalization by LS = 0, is discussed next. For a chan-
nel order L= 6 and Klter order N = 10, Fig. 8 shows
the BER for ITC and MLTC impulse shortening with
varying TIR order LS and appropriate decision feed-
back structure. The performance of ONC with LS = 0
and memoryless detection corresponds to ITC with
LS = 0, since both schemes perform linear equaliza-
tion. It is obvious that MLTC outperforms ITC for
every conKguration due to the higher equalizer SNR.
Furthermore, the noise enhancement reduces with an
increasing TIR order LS and therefore results in a
better BER.

4. Frequency selective BLAST

4.1. Principle of FS-BLAST

In this section, we investigate the frequency selec-
tive extension of V-BLAST as proposed in [16,17] and
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Fig. 9. Initial MISO-DFE stage of FS-BLAST to detect layer m.

call it FS-BLAST. Similar to V-BLAST, in each de-
tection step one layer is treated as target layer and all
other layers are treated as interferers. The target layer
is detected by suppressing the inter-layer interferers,
the estimated signals are subtracted from the received
signal; the remaining layers are detected in the same
successive way.

To derive the receiver structure, we use the DFE
structure consisting of a MISO feedforward Klter
(FFF) and a SISO feedbackward Klter (FBF) shown
in Fig. 9. It is worth to note that this DFE structure is
only used for Klter derivation, whereas in the imple-
mentation near MLSE equalizer may be used in each
stage, as explained in Section 4.3.

The sequence of received signals is again Kltered
in space and time domain, but the aim of this FFF
is now to extract the target layer m, but suppress the
other layers and also part of the own ISI. The FBF Kl-
ters the sequence of decisions on previously detected
symbols delayed by k0 time steps and its output is
subtracted from the FFF output. Thus, the feedback-
ward Klter is used to remove that part of ISI from
the present estimate caused by previously detected
symbols.

4.2. MISO-;lter design

To calculate the FFF and the FBF, the MISO model
deKned in Section 2.3 is adopted. The main reason for
using this model is the signal alignment of each target
layer m in a sequence, as given by (6). To deKne the
FFF and the FBF, the input–output relation in (7) has
to be extended to describe a sequence of received sig-
nals. To calculate the sequence vector x(k) (deKned
in (8) to denote a sequence of N + 1 received sig-
nals) the transmit signal vector (6) is extended to the

(N + L+ 1) × 1 sequence vector

Qsm(k) =




sm(k)

...

sm(k − L− N )


 : (55)

By utilizing the nR(N+1)×(N+L+1) block Toeplitz
matrix 14

QHm =




Hm

Hm

. . .

Hm



; (56)

the input–output relation for a sequence of received
signals is given by

x(k) =
nT∑
m=1

QHm Qsm(k) + n(k): (57)

At the Krst stage of detection, the sequence of received
signals x(k) is Kltered by the MISO FFF wm and the
Klter output (14) becomes

ym(k) =
N∑
l=0

wm(l)x(k − l) = wmx(k): (58)

In contrast to the ISF used in Section 3, the FFF wm
has only one output signal and by using a small letter
the Klter is indicated to be a vector. Consequently, the
row vector 15 wm=[wm(0) wm(1) : : : wm(N )] of di-
mension 1×nR(N+1) denotes the FFF and consists of

14 By describing column l of matrix Hm by vector (Hm)l the
channel matrix is given Hm=[(Hm)1 (Hm)2 : : : (Hm)L+1] and
(56) reads

QHm =




(Hm)1 (Hm)2 · · · 0

0 (Hm)1 · · · (Hm)L+1

0 0
. . .

. . .
. . .




and is block Toeplitz.
15 With respect to Section 3 vector wm can be regarded as one

row of an impulse shortening Klter matrix W. In contrast to ISF
the feedforward Klter is only derived with respect to one layer
m and the calculation of the remaining FFF bases on a stepwise
reduced channel matrix as remarked later on.
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N + 1 space-only Klter taps wm(l) = [wm;1(l) : : :
wm;nR (l)] each of dimension 1 × nR.

To get an ISI-free representation for sm(k− k0), the
sequence of LS most recent decisions of target layer m

ŝm(k − k0 − 1) =



ŝm(k − k0 − 1)

...

ŝm(k − k0 − LS)


 (59)

is Kltered by the 1 × LS feedbackward Klter 16 (FBF)
Qbm = [bm(1) bm(2) : : : bm(LS)] with decision delay
k0 to be optimized. Finally, the output of the FBF is
subtracted from the FFF output

zm(k) =wmx(k) − Qbmŝm(k − k0 − 1)

= [wm Qbm] ·
[

x(k)

−ŝm(k − k0 − 1)

]

= fmam (60)

and decided by utilizing an appropriate quantization
device to form the estimation ŝm(k − k0) (see Fig.
9). In Eq. (60), the 1 × nR(N + 1) + LS row vector
fm = [wm Qbm] contains the FFF and FBF coeOcients
for layer m, whereas am denotes the currently received
sequence and (under the assumption of correct previ-
ous decisions ŝm(k)=sm(k)) the negative of the trans-
mitted sequence from antenna m delayed by k0 taps.
The MMSE solution for the Klter design is found by
minimizing the cost-function [17]

JMSE = E{|zm(k) − sm(k − k0)|2}
= E{|fmam − sm(k − k0)|2}
= fmQmfHm − fmpm − pH

mf
H
m + �2

s (61)

with the nR(N + 1) + LS × 1 vector 17

pm = E{ams∗m(k − k0)} = �2
s

[
( QHm)k0+1

0N+L+1

]
(62)

and the nR(N + 1) + LS × nR(N + 1) + LS matrix

Qm = E{amaH
m} =

[
Rxx −RH

smx

−Rsmx Rsmsm

]
: (63)

16 We denote the Klter vector by an overlined letter, to indicate
it length being LS and not LS + 1.

17 ( QH)
 denotes column 
 of matrix QH.

Fig. 10. First two MISO-DFE stages of the successive interference
suppression and cancellation structure.

The nR(N + 1) × nR(N + 1) covariance matrix Rxx
in (63) has already been deKned in (13). The cross
correlation between transmit signal sm(k−k0−1) and
receive sequence x(k) is calculated by

Rsmx = E{ŝm(k − k0 − 1)xH(k)}
= �2

s ( QHm)H
k0+2:::k0+LS+1 (64)

and for the LS × LS input autocorrelation matrix we
Knd

Rsmsm = E{ŝm(k)ŝHm(k)} = �2
s ILS : (65)

By expanding the cost function in (61) to quadratic
form JMSE = (fmQm − pH

m)Q−1
m (QmfHm − pm) −

pH
mQ

−1
m pm + �2

s , the minimum of JMSE is obviously
donated by the Klter vector fm= pH

mQ
−1
m and the mean

square error is given by MSEm = �2
s − pH

mQ
−1
m pm.

According to [17] in each detection step � the layer
m with the smallest MSEm is selected and detected
with an optimized delay k0 taken into account. After
detecting the layer, its interference can be removed
from the received signal x(k) similar to V-BLAST
[12] and the corresponding entries in the channel ma-
trix are cancelled. The remaining layers are detected
in the same way and the output of detection stage �,
is given by ŝ(�)(k) (Fig. 10).

4.3. ML-detection

By regarding the MISO-DFE stage in Fig. 9 in terms
of channel impulse shortening, the MISO Klter creates
a SISO channel of order LS between transmit antenna
m and the output ym(k) of the FFF. The target im-
pulse response (TIR) of this SISO channel is given
by the 1 × (LS + 1) row vector bm = [bm(0) Qbm] =
[bm(0) bm(1) : : : bm(LS)] and consequently a stan-
dard MLSE algorithm can be used for equalizing the
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Fig. 11. BER for a frequency-selective MIMO channel of order
L = 6 and MLTC equalization and FS-BLAST with Klter order
N = 10 for varying TIR order LS.

FFF output stream with a (reduced) channel order LS.
Under ideal conditions the Klter tap bm(0) should be
equal to one, whereas in the presence of noise it is not.
Its value is determined by 18 bm(0) = wm( QHm)k0+1.

In the remainder of this section, we always assume
near MLSE of the FFF output, which outperforms a
time-domain DFE in general. Therefore, the design
criteria for a FS-BLAST receiver are given by the
feedforward Klter order N , the decision delay k0 and
the order LS of the target impulse response. By reduc-
ing the order LS, the equalizer e:ort is decreased enor-
mously at the expense of performance degradation.

4.4. Simulation result

To compare the performance of FS-BLAST with
MLTC, we use the system described in Section 3.4
with nT = 4; nR = 6 antennas and QPSK modulation.
Fig. 11 shows the BER for a FS-MIMO system with
L = 6 using preKlter of order N = 10 and a varying
TIR order LS.

For LS = 0 and 2 the FS-BLAST signiKcantly out-
performs MLTC detection due to the successive de-
tection algorithm. With an increasing TIR order LS the
bit error rate of FS-BLAST improves as the noise en-
hancement reduces, but with the cost of an increasing

18 Hence bm(0) is smaller than one, the MMSE solution is biased
[8] and the signal zm(k) has to be scaled by 1=bm(0) prior to
threshold decision in the DFE structure Fig. 9.

Fig. 12. BER per layer for a system with nT = 4 and nT = 6
antennas, QPSK modulation, frequency-selective channel of order
L= 6, FS-BLAST with Klter order N = 10 and TIR order LS = 4.

computational complexity for MLSE detection. For a
TIR order of LS = 4 only a small di:erence between
MLTC and FS-BLAST exists.

To motivate our iterative extension of FS-BLAST,
Fig. 12 shows the BER for each layer in order of
detection. In the lower SNR region error propagation
has a large in9uence, hence the layer detected Krst
performs slightly better than the layers detected in
the subsequent. The BER curves traverse at a SNR of
approximately 5dB, which presents the decreasing
in9uence of error propagation. Consequently, the per-
formance of the later detected layers improves due to
their higher diversity degree. 19 Based on this obser-
vation, we propose an iterative detection scheme in
the next paragraph, which is a generalization of the
Backward Iterative Cancellation algorithm presented
in [7].

4.5. Backward-iterative cancellation

To enhance the performance of V-BLAST, Benjeb-
bour et al. proposed an iterative improvement of the
successive detection scheme for 9at fading channels
[7]. In this section we apply the key note of the back-
ward iterative cancellation (BIC) detection scheme
to frequency-selective channels and therefore call it

19 As an example, for a 9at-fading system with nT =4 and nR =6
antennas, the Krst layer is detected with an antenna diversity of
gd = nR − nT + 1 = 3, whereas the second layer achieves a higher
diversity gd = nR − (nT − 1) + 1 = 4 [24].
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Fig. 13. Block diagram of the iterative FS-BIC detection scheme for a system with nT =4 transmit antennas with ∗ denoting the convolution.

FS-BIC. A block diagram of this algorithm for a sys-
tem with nT = 4 antennas is shown in Fig. 13.

In the Krst iteration (i=1) of FS-BIC, the common
FS-BLAST algorithm as proposed in Section 4.2 is
applied (denoted by FS BLAST(x)). The estimates of
the Krst detected layer are denoted by 20 ŝ(1)

(1), whereas

ŝ(1)
(�) is the output of stage �. After detecting all layers

with the FS-BLAST algorithm, the interference of the

layer detected last (ŝ(1)
(nT)) is subtracted from the re-

ceived signal x to get a modiKed received signal vector

Tx = x−H(nT)ŝ
(1)
(nT) (66)

and the corresponding coeOcients of the channel ma-
trix are set to zero. The detection of the remaining
nT − 1 layer denoted by FS BLAST( Tx) is repeated
with the FS BLAST algorithm and the output is de-
noted by ŝ(2)

(1); : : : ; ŝ
(2)
(nT−1). To renew the detection of

the high-diversity layer (nT), the in9uences of these
new estimates are subtracted from the receive signal
x and by equalizing

x(nT) = x−
nT−1∑
m=1

H(m)ŝ
(2)
(m) (67)

we obtain ŝ(2)
(nT).

In the third iteration step, the interference of ŝ(2)
(nT)

and ŝ(2)
(nT−1) is subtracted from the received signal and

consequently only the Krst nT−2 layers are detected by
FS-BLAST. With these new replicas, the estimates for
layer (nT) and (nT−1) are renewed, again. The whole
iterative detection algorithm contains nT iteration steps
and is summarized in Table 2.

20 To simplify the description, we omit the time index k in the
remainder of this paragraph.

Table 2
FS-BIC Algorithm

4.6. Performance of FS-BIC

In this section we investigate the performance of the
iterative FS-BIC algorithm for the system determined
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Fig. 14. BER versus iteration number i for channel order L = 6,
FFF order N =10 and target impulse response (TIR) order LS =4.

Fig. 15. BER versus iteration number i for FS-BLAST with TIR
order LS = 2 and 4.

in Section 4.4 with nT =4 and nR =6 antennas, QPSK
modulation, channel order of L= 6 and FFF order of
N =10. Fig. 14 shows the BER in each iteration for a
receiver with a TIR order of LS = 4. An improvement
of about 2:3 dB is visible for the second iteration step
compared to the initial detection stage. The improve-
ment in the third iteration becomes smaller, but is still
remarkable, whereas the fourth iteration leads only to
a slight enhancement.

Fig. 15 shows the BER versus number of iteration
for the same system, but with a TIR order of only
LS = 2, which results in a decrease in computational
complexity due to the smaller trellis. The performance

is again improved by the iterative detection algorithm
and only a di:erence of approximately 0:5 dB com-
pared with the detector with LS = 4 is visible for a
BER of 10−5.

It is worth to note that the order of detection and
the corresponding decision delay k0 from the Krst it-
eration step can be retained for the subsequent steps.
Consequently, the computational e:ort for these itera-
tion steps is enormously smaller compared to the Krst
step.

5. Summary and conclusions

In this paper we reviewed several algorithms to
equalize frequency selective MIMO systems in the
space–time-domain. After deriving impulse shorten-
ing Klters, di:erent constraints have been investigated
to allow a memoryless detection due to linear equal-
izing or decision feedback equalizing. These di:erent
schemes were compared by means of Monte-Carlo
simulations. Furthermore, the extension of V-BLAST
for frequency-selective channels has been regarded.
Due to the successive structure and the applica-
tion of the maximum likelihood sequence equalizer,
FS-BLAST outperforms the MIMO-DFE algorithms
in the case of short target impulse responses. An addi-
tional improvement of the FS-BLAST scheme can be
achieved by applying an iterative cancellation scheme
denoted as FS-BIC. The performance enhancement of
this iterative algorithm compared to FS-BLAST was
discussed by simulation results.

Further improvements of the di:erent regarded
schemes can be reached by implementing forward
error correction codes and soft-input–soft-output
equalizers in a turbo-like scheme. In addition, the
performance of the several receiver structures should
be investigated with respect to non-perfect channel
estimation.
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